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BACKHAUL LOAD AND PERFORMANCE OPTIMALITY OF
PARTIAL JOINT PROCESSING SCHEMES IN LTE-A

NETWORKS

By

MOHAMMAD KOUSHA

December 2014

Chair: Fazirulhisyam Hashim, PhD
Faculty: Engineering

Surging demand for more new mobile broadband services everywhere, urged
3GPP to take advantage of small cells and frequency reuse factor of one in
4G LTE. However, the problem of performance degradation caused by Inter-
Cell-Interference (ICI) also raised for cell-edge users. Coordinated Multipoint
Transmission and Reception (COMP) is a cutting edge solution to ICI in LTE-
Advanced. COMP techniques are divided into Coordinated Scheduling / Beam-
forming and Joint Processing. This thesis focuses on downlink joint processing,
where each user receives data from various transmission points, improving the sig-
nal strength and cancelling interference. Joint processing transmission strategy
is further divided into two schemes: Joint Transmission (JT) in which, multiple
points transmit simultaneously to a user and Dynamic Point Selection (DPS)
where, a single transmitter accommodates a user at each Transmission Time In-
terval (TTI). Joint processing demands for considerable amount of backhauling,
signaling and data sharing that put a doubt on its feasibility. Previously, Par-
tial Joint Processing has been proposed and evaluated for joint transmission as
the most demanding scheme for backhaul in a static cluster for a flat fading
Rayleigh channel. By limiting the cooperation in an active set of Evolved Node
B (eNBs) for each user, the feedback and backhaul load is reduced with some per-
formance degradation. In this thesis, Centralized and Partial Joint Processing
are mathematically defined and evaluated for both JT and DPS in a multi-path
environment using the WINNER II channel model which has been developed for
LTE-Advanced. Centralized means full cooperation when complete channel ma-
trix presents in the beamformer. But, partial joint processing translates in sparse
channel matrices available at the central precoder entity and leads in the rank
deficiency of channel correlation matrix in the zero forcing beamformer (ZFBF).
A dynamic user-wise algorithm is proposed to resolve this problem. In depth
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comparison among these schemes using different metrics like average sum-rate
per cell, data rate and feedback rate demonstrates the better performance of cen-
tralized cooperation over partial cooperation with higher backhaul load. Joint
transmission outperforms dynamic point selection but with higher backhaul re-
quirements. The utility of PJP schemes for three different traffic types shows that
DPS is preferred over JT for elastic and adaptive applications. The significance
of the proposed algorithm is also proven in comparison with previous approach
by maintaining the same performance while reducing the backhaul load up to
30%. The proposed algorithm also leverages the location dependency of the joint
processing. All these achieved because the proposed algorithm targets those users
located at the cluster borders who more likely cause rank deficiency.
Keywords: Inter-Cell Interference, 3GPP, CoMP, 4G LTE, Partial Joint Process-
ing, WINNER, Precoder, Beamforming, Zero-Forcing.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia
sebagai memenuhi keperluan untuk ijazah master sains

BEBAN ANGKUT BALIK DAN KEOPTIMUMAN PRESTASI
SKIM PEMPROSESAN SEPARA BERSAMA dALAM

RANGKAIAN LTE-A

Oleh

MOHAMMAD KOUSHA

December 2014

Pengerusi: Fazirulhisyam Hashim, PhD
Fakulti: Kejuruteraan

permintaan bagi lebih banyak perkhidmatan jalur lebar mudah alih yang baru
di mana-mana, menggesa 3GPP untuk memanfaatkan kelebihan daripada sel-
sel kecil dan faktor satu frekuensi penggunaan semula dalam 4G LTE. Walau
bagaimanapun, masalah penurunan prestasi yang disebabkan oleh Ganguan-Anta
ra-Cell (ICI) juga meningkat khususnya untuk pengguna-pengguna sel-tepian.
Penghantaran Berbilang Titik Terkoordinasi dan Penerimaan (COMP) adalah
penyelesaian tercanggih untuk ICI dalam LTE-Lanjutan. Teknik COMP ter-
bahagi kepada Penjadualan/Pembentuk Alur Terkoordinasi dan Pemprosesan
Bersama. Tesis ini memfokuskan kepada pemprosesan bersama pautan turun,
dimana setiap pengguna menerima data dari pelbagai titik-titik penghantaran,
memperbaiki kekuatan isyarat dan membatalkan ganguan. Strategi penghan-
taran pemprosesan bersama terbahagi pula kepada dua skim: Penghantaran
Bersama (JT) dimana, beberapa titik menghantar pada masa yang sama kepada
seorang pengguna dan Pemilihan Titik Dinamik (DPS) dimana, sebuah pemancar
tunggal menempatkan seorang pengguna pada setiap Sela Masa Penghantaran
(TTI). Pemprosesan bersama menuntut kepada sejumlah besar angkut balik,
pengisyaratan dan perkon gsian data yang meletakkan keraguan pada kebolehlak-
sanaannya. Sebelum ini, Pemprosesan Separa Bersama telah dicadangkan dan
dinilai untuk penghantaran bersama sebagai skim yang paling dituntut untuk
angkut balik dalam kelompok statik bagi sesebuah saluran Rayleigh pudaran
rata. Dengan menghadkan kerjasama dalam sesebuah set aktif Nod B Terevolusi
(eNBs) untuk setiap pengguna, beban suap balik dan angkut balik telah diku-
rangkan dengan beberapa penurunan prestasi. Dalam tesis ini, Pemusatan dan
Pemprosesan Separa Bersama telah ditentukan dan dinilai untuk kedua-dua JT
dan DPS dalam persekitaran berbilang laluan yang menggunakan model saluran
WINNER II yang telah dibangunkan untuk LTE-Lanjutan. Pemusatan bermak-
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sud kerjasama sepenuhnya apabila matriks saluran lengkap wujud dalam pem-
bentuk alur itu. Tetapi, terjemahan pemprosesan separa bersama dalam matriks
saluran jarang ada tersedia pada entiti prapengekod pusat dan membawa kepada
penurunan taraf bagi matriks korelasi saluran dalam pembentuk alur pemaksaan
sifar (ZFBF). Satu algoritma dinamik bijak-pengguna telah dicadangkan untuk
menyelesaikan masalah ini. Perbandingan mendalam antara skim-skim ini meng-
gunakan metrik berbeza seperti purata jumlah-kadar setiap sel, kadar rata dan
kadar suap balik menunjukkan bahawa prestasi kerjasama berpusat adalah lebih
baik berbanding kerjasama separa dengan beban angkut balik yang lebih tinggi.
Penghantaran bersama mengatasi prestasi pemilihan titik dinamik tetapi memer-
lukan angkut balik yang lebih tinggi. Utiliti skim-skim PJP untuk tiga jenis trafik
yang berlainan menunjukkan bahawa DPS lebih menjadi pilihan berbanding JT
untuk aplikasi anjal dan mudah suai. Keberertian algoritma yang telah dicadan-
gkan juga terbukti melalui perbandingan dengan pendekatan lain sebelumnya
berdasarkan prestasi dan beban angkut balik. Algoritma yang telah dicadan-
gkan ini juga memanfaatkan pergantungan lokasi pemprosesan bersama. Semua
ini tercapai kerana algoritma yang telah dicadangkan mensasarkan pengguna-
pengguna yang terletak di sempadan-sempadan kelompok yang lebih cenderung
untuk menyebabkan penurunan taraf.
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CHAPTER 1

INTRODUCTION

1.1 Background

To accommodate the users with increasing demand for the ubiquitous mobile
data, the evolution of mobile communications has extended through several new
generations. This evolution started with First generation (1G), and continued
to (2G), Third (3G) and 4th Generation (4G) of cellular network as depicted in
Figure 1.1.

Generally, the first generation of cellular networks came up in the 1980s, using
analog mobile radio systems followed by 2G which revealed the first digital sys-
tem named as GSM (Global System for Mobile Communications). After that,
3G network, which was the pioneer mobile system in handling multimedia data
transmission besides voice communications was lunched. Later on, Long Term
Evolution (LTE) and its major enhancement LTE-Advanced were introduced just
a few years back in 2009 and 2010. This generation is usually referred to as 4G
and envisaged as a big improvement in wireless systems, promising a wide range
of coverage with high data rates up to 100 Mbps for LTE and 1 Gbps for LTE-
A. Third Generation Partnership Project (3GPP) organization was following the
predefined requirements by ITU-IMT-2000. All generations developed by 3GPP
are as follows:

First-generation cellular networks (1G) arrived in the late 1970s. It was analog-
based and limited to voice services only. In the early 1980s, 1G mobile communi-
cation systems were populated. Limited spectral efficiency of first generation of
networks led up to the evolution toward 2G tackling the drawbacks of 1G.

Second-generation (2G) first introduced digital communication which was promised
to address the disadvantages of 1G and enhance the spectral efficiency and voice
quality. In the second generation, GSM (Global System for Mobile Commu-
nications) and CDMA (Code Division Multiple Access) networks were widely
deployed all over the globe [1]. Employing slow frequency hopping for voice com-
munication and Time Division Multiple Access (TDMA) transmission methods
in GSM networks, could outperform other analog counterparts.

Third-generation Universal Mobile Telecommunications System (UMTS) is the
improved version of the GSM standard. The UMTS Terrestrial Radio Access Net-
work (UTRAN) is the base of the 3G built on Wide band Code Division Multiple
Access (WCDMA) radio technology. The radio technology enhancement owes to
using 5 MHz bandwidth and GSM/EDGE Radio Access Network (GERAN) [2].

As the first step toward 4G mobile broadband network, Long-Term Evolution
(LTE) standard launched by 3GPP in 2004 [3]. The LTE technology was sup-
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posed to enable service provisioning and high peak data rates, low latency and
the greatest spectral efficiency so far. Owing to the flat and IP-based architecture
of LTE, it supports a large variety of services such as voice, data and video (LTE
will be discussed in Section 2.3).

1 G

2.4 kbps

2 G

64 kbps

3 G

2 Mbps

4 G

100 Mbps

Figure 1.1: The evolution of communication networks.

Moving forward from previous cellular networks toward new mobile communi-
cations, necessitates fundamental changes in the size of the cells and frequency
reuse strategies. The scarcity of bandwidth, spectrum and power on one hand
and the demand for higher broadband data rates on the other hand, in wireless
systems have highlighted the need for new solutions to achieve more spectral ef-
ficient communication. As it is illustrated in Figure 1.2, keeping an eye on the
trend of communication networks during past decades reveals the tendency of
using smaller cells and bigger frequency reuse factors. It leads to providing more
resources to be assigned to users being served in each cell. Small cells and hetero-
geneous networks are the key features used in 3GPP Long Term Evolution (LTE)
network. The most problematic issue arising in 4G systems utilizing small cells
and aggressive frequency reuse is Inter-Cell Interference (ICI) that affects the
data rates of the users at the cell-edge which degrades the average cell spectral
efficiency.

In the context of LTE-advanced, some new technologies have been proposed
to overcome the problematic ICI. One such technology is COMP whereby, the
cell-edge user performance will be enhanced as well as average cell performance
through coordination among cells by means of beamforming, scheduling or joint
processing. A consortium named ’EASY-C’ project was defined in order to in-
vestigate the real world feasibility of such conceptual research with field trials,

2
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Figure 1.2: Trend of cellular networks [4].

aiming for low latency, fairness and high spectral efficiency. EASY-C is the first
testbed started in June 2009, deploying COMP in Dresden, Germany [5]. In Jan-
uary 2010, a new European research project, ARTIST4G was launched with the
goal of exploring further use of COMP towards the next generation of wireless
cellular systems [6].

In conventional cellular systems, eNBs are placed in the cell center covering a
limited surrounding area. The signals coming from neighboring cells cause in-
terference. It is especially a severe problem in the cell-edge, leading to degraded
spectral efficiency. By making the channel state information (CSI) of all links
available in an entity namely central unit (CU), interference from other cells
can be avoided by means of beamforming. This interference, pre-cancellation by
beamforming and power allocation is called Precoding. In this context, dirty Pa-
per Coding (DPC) can be seen as a sophisticated precoding technique which can
efficiently remove the interference at the transmitter in a Gaussian channel [7].
In multiuser-MIMO, DPC is a capacity increasing strategy, but is not viable in
practice, because it needs non-casual CSI to be known at the transmitter. There-
fore, sub-optimal beamforming techniques like Zero Forcing Beamformer (ZFBF)
and Minimum Mean Square Error (MMSE) beamformer are more practical for
implementation. ZFBF can reach a sum-rate that of DPC with well-planned
user selection. It can be applied at the transmitter with increasing the average
transmit power, but interference cancellation methods at the user side are not
favorable because it poses the problem of space constraint (not less than two
antennas at the mobile terminal) and battery power draining. As a result the
interference cancellation rationally needs to be carried out at the eNB.

COMP transmission is defined as cooperation of multiple eNBs or network points
when transmitting to a user, collaborating to remove interference. Aiming this to
happen, the CSI data of all the eNBs need to be available at the central unit to do
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precoding. This comprises the centralized joint processing algorithm, where a set
of eNBs form a cluster of cooperative cells. However, coordination among eNBs
holding coherent joint processing necessitates tremendous requirements for high
speed and low latency backhauling on fiber or over microwave links to make the
CSI available at the central unit [8]. Hence, various joint processing sub-schemes
are proposed to reduce the backhauling burden on the network. One of such
schemes is partial joint processing algorithm, where only a subset of eNBs are
chosen based on a threshold value allowed to share the CSI and user data to take
part into the transmission. This way, the backhaul load will drop. As long as
transmission is conducted from multiple distant antennas, COMP transmission
is also known as network MIMO and distributed antenna system.

Distributed antenna systems provide much tremendous performance gains over
conventional techniques. Foschini In [9], has proved the capacity will increase
with the minimum number of antennas in the transmitter (Tx) and the receiver
(Rx), for a constant bandwidth or power. MIMO brings some fantastic bene-
fits like array gain, diversity gain, multiplexing gain, interference reduction and
avoidance, but exploiting all of this may be impossible. Nonetheless, the perfor-
mance spectral efficiency gains owing to the coordination of multiple antennas
is illustrated in [10], A significant increase in spectral efficiency has been shown
as the number of coordinated antennas increase. Coordinating multipoint trans-
mission generally is referred to as Network MIMO (NW MIMO) or Distributed
Antenna Systems (DAS).

Although COMP can be applied in uplink (UL) and downlink (DL), the focus of
this thesis is on the Coordinated Multipoint Transmission. So that, throughout
this document COMP refers to the DL transmission. According to [11] and [12],
two sub-schemes of coordinated multipoint in downlink are:

• Coordinated scheduling among multiple cells.
It is an improved version of ICI coordination in Release 8 of LTE specifica-
tions. In next 3GPP LTE standards like TR36.814 this scheme is referred
to as Coordinated Scheduling or Coordinated Beamforming. Whereby, the
data to a User Equipment (UE) is transmitted from one of the eNBs while
the scheduling decisions are coordinated. (See Figure 1.3(a)). Due to this,
only the generated beams and scheduling decisions need to be coordinated.
The user data only needs to be present at one serving eNB.
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Figure 1.3: JP schemes with centralized topology. (a) Centralized co-
ordinated scheduling/beamforming. (b) Centralized coordinated joint
processing. (Parts of this figure are drawn based on [14])

• Joint Processing among multiple cells.
When a particular mobile user receives its data from multiple eNBs, 3GPP
TR 36.814 referred this as Joint Processing. Hence, removing the interfer-
ence and increasing the signal strength is achieved. (See Figure 1.3(b)).
Coherent joint processing requires huge backhaul capacity, as the user
data needs to be shared among all the coordinating eNBs. Joint process-
ing COMP attains potentially larger theoretical gains in terms of average
and cell-edge user’s throughput in comparison with coordinated schedul-
ing/beamforming [13]. However, Joint Processing schemes are discussed in
this thesis.

The performance improvement brought to new communication networks by COMP,
comes with some challenges to be addressed. Main challenging issues in realizing
COMP are listed as follows:

• Non-causal CSI: Perceiving the future channel condition to employ more
complex coding like DPC results in capacity improvement in MU-MIMO,
but because of the involved complexity, this is practically unfeasible.

• Delay: The CSI mismatch caused by time delay while sharing information
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among eNBs results in the inefficiency of precoding based on expired chan-
nel knowledge. Therefore, the gains achieved by COMP highly depend on
update CSI at the transmitter side.

• Synchronization: For schemes like Coherent Joint Transmission synchro-
nization of shared control signals between eNBs in time and phase is really
crucial. This strict synchronization brings intense requirements for high
speed backhauling. Implementation of COMP algorithms on FPGA (Field
Programmable Gate Array) can help better synchronization [15].

• CSI Availability:

– Exploiting Time Division Duplex (TDD) can enable utilizing the re-
ciprocal nature of UL and DL so that the CSI estimated at the eNB
from the UL can be used in the DL. Hence, no need for user to feed
back the CSI. This reciprocity of wireless channel works well because
the frequency used in both UL and DL is within the coherence band-
width (Bc 1/TD, Bc is the bandwidth over which the fading remains
correlated. TD is the delay spread) of the channel [16].

– In Frequency Division Duplex (FDD), the UL and DL transmissions
are exploited on different frequencies and it necessitates the CSI feed-
back from UE.

• Impact of feedback errors: Errors occurring due to data compression or
quantization algorithms used in UE to feedback the CSI will affect the co-
operation.

1.2 Problem Statement

As it has been recently investigated in [17], with current real world network
backbone capacity, COMP strategies are less likely practical because of their
high required backhaul load. This is specially more severe for joint processing
schemes as they are more demanding for backhaul and feedback load. Partial
joint processing is a solution to reduce the backhaul requirements of joint pro-
cessing with some performance degradation. Partial Joint Transmission (PJT)
schemes have been defined and evaluated first for Rayleigh fading channels in [18].
According to the current research, Dynamic point selection JP opposes less bur-
den on the backhaul in comparison with joint transmission JP. It motivates an
in depth analysis of PJP for both JT and DPS in a more realistic propagation
environment emulated by WINNER II channel model for LTE-A. A user-wise
algorithm is also proposed to define the cooperation area in a way that the rank
deficiency of channel coefficients matrix in ZFBF is addressed. Eventually, joint
transmission and dynamic point selection schemes are evaluated based on their
ability in maintaining QOS for three different online applications.
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1.3 Aims and Objectives

In this thesis different Partial joint processing schemes will be characterized and
evaluated for both JT and DPS considering their performance and required back-
haul. Moreover, a dynamic active set threshold value selection algorithm will
be suggested to address the rank deficiency that outperforms the one suggested
in [19]. The key contribution of this work is to perform an in depth analysis among
all possible Partial joint processing algorithms and to propose an algorithm that
can dynamically maintain a certain level of cooperation in which ZFBF is work-
ing properly. To achieve this, the fulfillment of these objectives is crucial as part
of this thesis:

• To mathematically define different Partial Joint Processing schemes.

• To evaluate the joint processing schemes regarding their backhaul requirements
and also their performance based on two different metrics: acquired sum-
rate and utility for three internet applications.

• To propose a dynamic thresholding algorithm to address the rank deficiency of
channel coefficients matrix.

1.4 Scope of the Thesis

In this thesis, joint processing schemes introduced in [18] are further expanded
to Dynamic point selection as well as joint transmission in a frequency selective
channel utilizing WINNER II channel model. An OFDM approach is used to
exploit the frequency selective nature of the channel. In fact, implementing an
OFDM approach, joint processing algorithms are applied in every resource block
(RB). To take the worst case scenario into consideration, all users are assumed
to be scheduled on all RBs in each TTI.

The main focus is on the impact of Partial Joint Processing (PJP) algorithms for
both JT and DPS. As expected Based on the numerical results, the PJT schemes
have higher average sum-rate per cell per RB compared to PDPS with the cost
of more backhaul load and complexity. Partial schemes can satisfy the QOS re-
quirements of users with less backhaul load requirement.

Limited number of links give rise to the presence of sparse CSI at the central
unit to exploit interference cancellation. As a drawback, for low values of active
set threshold and for users closer to the eNB the rank deficiency of the scaled
channel correlation matrices occurs in the partial zero-forcing beamformer design.
Hence, a dynamic active set thresholding algorithm is proposed that defines the
cooperation strategy over the cluster where the cooperation strategy expands the
coverage for all users. This algorithm more optimally chooses a joint processing
scheme in comparison with the previous proposed algorithm to solve the rank
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deficiency.

As the main purpose of each communication system is to accommodate users
properly, a utility factor is used to measure the ability of joint processing schemes
in assuring the QOS for three different traffic types. The provided utility gains
by JT and DPS for hard real-time, adaptive, and elastic applications plus their
required feedback load can help to optimally select a JP scheme.

1.5 Study Module

The chosen strategy to conduct this study is illustrated in Figure 1.4, where solid
lines determine the direction toward the defined goals and the dashed boxes rep-
resent the other areas of research around interference mitigation.

Interference 
avoidance 
schemes 

Reuse based 
schemes 

Coordination 
based schemes 

(COMP) 

 CS/CB JP 

Distributed Centralized 

DPC ZFBF 

DPS JT 

Figure 1.4: Study module.
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1.6 Thesis Organization

This section presents the organization of this document. This dissertation will
proceed as follows:
Chapter 2 establishes the necessity of this research through its background and
previous works. Inter-cell interference is explained and the importance of inter-
cell interference cancellation in 4G LTE is established. Coordinated multipoint
transmission is identified as a key technique in LTE-A in line with its predecessors
to address ICI. And finally, partial joint processing is introduced as a solution to
high demand of JP for backaul load.

In chapter 3, the system model is defined in details. This chapter gives a mathe-
matical description of different schemes under study, which primarily consists of
the joint processing algorithms being applied to the WINNER II channel model.
The layout of the assumed scenario, including the cluster area together with the
generation of the channel matrix, antennas for the eNB/UE are discussed under
the section named WINNER II channel model.

Chapter 4 includes a brief explanation of simulation setup and presentation of re-
sults through comparison of different schemes. Throughout this chapter, central-
ized schemes versus partial schemes and dynamic point selection schemes versus
joint transmission schemes are compared and evaluated based on their average
sum-rate, backhaul load and utility factor. The efficiency of the proposed algo-
rithm is also examined in contrast with one other previous approach.

The conclusions derived from this thesis, which also highlights possible future
works in line with this WINNER/Joint Processing framework are mentioned in
section 5. Finally, publications out of this work are appended in a final chapter
named publication.
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annales des télécommunications, 63(5-6):253–269, 2008.
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Markus Landmann, Gerd Sommerkorn, and Reiner S Thomä. 3d-antenna
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