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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment 

of the requirement for the degree of Master of Science  

DAMAGE DETECTION AND CHARACTERIZATION IN C-GLASS AND 

E-GLASS FIBRE-REINFORCED POLYMER DUE TO LOW AND HIGH 

VELOCITY IMPACT EVENTS 

By 

SYAFIQAH NUR AZRIE BT SAFRI 

November 2014 

Chair: Mohamed Thariq Bin Hameed Sultan, PhD 

Faculty: Engineering 

This thesis presents low velocity impact testing and high velocity impact testing on 

fibreglass reinforced polymer. The materials used in this experiment are Type C-

glass/Epoxy 600 g/m² and Type E-glass/Epoxy 800 g/m². The ultimate objective of 

this research is to conduct an experimental investigation using low velocity impact 

testing and high velocity impact testing to detect and quantify impact damage for 

Glass Fibre Reinforced Polymer Type C-glass/Epoxy 600 g/m² and Type E-

glass/Epoxy 800 g/m² plate. The purpose of this research is to choose the best 

material for structural application by comparing the mechanical properties and 

damage characteristics of GFRP Type C-glass/Epoxy 600 g/m² and Type E-

glass/Epoxy 800 g/m². 

The experimental results of low-energy drop-weight impact tests on woven-roving 

Glass Fibre Reinforced Polymer (GFRP) type C-glass/Epoxy 600 g/m² and Type E-

glass/Epoxy 800 g/m² are presented. The effects of specimen thickness based on the 

number of plies and impact energy are investigated. Impact damage and response 

was observed for eight levels of impact energies, 6, 12, 18, 24, 30, 36, 42 and 48 J. 

From the experimental studies, it can be concluded that for each type of GFRP, the 

impact energy showed excellent correlation with the impact response. The difference 

in the number of plies fabricated and the mechanical properties for both types of 

GFRP do affect the impact response and impact damage of the specimens tested.  

The experimental results of the high velocity impact test using a Single Stage Gas 

Gun (SSGG) show that both types of GFRP exhibit damage in terms of fibre 

cracking, and fibre pull out after being tested with four different gas gun pressures. 

Before fibre failure occurs, they undergo matrix cracking and delamination processes 

first. As the gas gun pressure increases, the initial velocity of the projectile increases, 

the projectile kinetic energy increases, the maximum force exerted on the specimen 

increases, and the energy absorbed by the specimen also increases. Most of the 

impacted specimens show that GFRP type E-glass/Epoxy 800 g/m²  experienced a 

smaller damage area compared to type C-glass/Epoxy 600 g/m². From the test, the 

effect of the shape of the projectile, the target thickness and the gas gun pressure 

affected the performance of GFRP.  
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It can be concluded that GFRP type E-glass/Epoxy 800 g/m² is stronger compared to 

GFRP type C-glass/Epoxy 600 g/m² since it has more fibre volume since it is higher 

in density and has good mechanical properties. Therefore, GFRP type E-glass/Epoxy 

800 g/m² is recommended to be used in structural applications.   



© C
OPYRIG

HT U
PM

iii 
 

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Master Sains 

PENGESANAN DAN PENCIRIAN KEROSAKAN DALAM POLIMER 

BERTETULANG GENTIAN KACA C DAN E AKIBAT PERISTIWA 

KELAJUAN RENDAH DAN TINGGI 

Oleh 

SYAFIQAH NUR AZRIE BT SAFRI 

November 2014 

Pengerusi: Mohamed Thariq Bin Hameed Sultan, PhD 

Fakulti: Kejuruteraan 

Tesis ini membentangkan ujian kesan halaju rendah dan ujian kesan halaju tinggi ke 

atas gentian kaca polimer bertetulang. Bahan-bahan yang digunakan dalam 

eksperimen ini adalah Jenis C-kaca/epoksi 600 g/m² dan Jenis E-kaca/epoksi 800 

g/m². Objektif utama kajian ini adalah untuk menjalankan siasatan ujikaji 

menggunakan ujian kesan halaju rendah dan ujian kesan halaju tinggi untuk 

mengesan dan menentukan kuantiti kerosakan kesan untuk gentian kaca polimer 

bertetulang Jenis C-kaca/epoksi 600 g/m² dan Jenis E-kaca/epoksi 800 g/m². Tujuan 

kajian ini adalah untuk memilih bahan terbaik untuk aplikasi struktur dengan 

membandingkan sifat-sifat dan ciri-ciri mekanikal kerosakan Jenis C-kaca/epoksi 

600 g/m² dan Jenis E-kaca/epoksi 800 g/m² . 

Bagi ujian halaju kelajuan rendah, keputusan eksperimen menunjukkan kesan 

ketebalan specimen berdasarkan bilangan helai dan tenaga kesan terhadap Polimer 

Bertetulang Gentian Kaca (GFRP) jenis C-kaca/epoksi 600 g/m² dan Jenis E-

kaca/epoksi 800 g/m² dibentangkan. Lapan tahap tenaga kesan, 6, 12, 18, 24, 30, 36, 

42 dan 48 J digunakan untuk melihat tindak balas bahan dan impak kerosakan. Dari 

kajian eksperimen, ia boleh disimpulkan bahawa bagi setiap jenis GFRP, tenaga 

kesan menunjukkan korelasi yang baik dengan kesan tindak balas. Perbezaan 

bilangan helai fabrikasi dan sifat-sifat mekanikal untuk kedua-dua jenis GFRP 

memberi kesan kepada impak dan kesan kerosakan daripada spesimen yang diuji.  

Keputusan eksperimen daripada ujian halaju tinggi menggunakan senapang gas 

termampat menunjukkan bahawa kedua-dua jenis polimer bertetulang gentian kaca 

mengalami kerosakan pameran dari segi keretakan serat, dan penarikan serat selepas 

diuji dengan empat tekanan gas yang berbeza. Sebelum kegagalan serat berlaku, 

mereka menjalani keretakan matriks dan proses delaminasi terlebih dahulu. Akibat 

daripada penambahan tekanan gas senapang, halaju awal peluru akan bertambah, 

tenaga kinetic peluru bertambah, daya maksimum dikenakan ke atas spesimen, dan 

tenaga yang diserap oleh spesimen juga meningkat. Kebanyakan spesimen 

menunjukkan bahawa jenis GFRP E-kaca/epoksi 800 g/m² mengalami kerosakan 

yang lebih kecil berbanding dengan jenis C-kaca/epoksi 600 g/m². Berdasarkan ujian, 
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kesan bentuk peluru, ketebalan sasaran dan tekanan senapang gas menjejaskan 

prestasi GFRP.  

Ia boleh disimpulkan bahawa jenis GFRP E-kaca/epoksi 800 g/m² lebih kuat 

berbanding dengan jenis GFRP C-kaca/epoksi 600 g/m² kerana ia mempunyai 

isipadu yang lebih serat, lebih tinggi kepadatan dan mempunyai sifat mekanik yang 

lebih baik. Oleh itu, GFRP Jenis E-kaca/epoksi 800 g/m² adalah disyorkan untuk 

digunakan dalam aplikasi struktur. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

A composite material is a combination of two or more materials and it creates a new 

material with a unique combination of properties. Normally, composite material is 

formed by reinforcing fibres in a matrix resin as shown in Figure 1. The strength and 

stiffness of the composites is provided by the reinforcing fibre or fabric, while the 

rigidity and environmental resistance of the composite is provided by the matrix. 

 
Figure 1: Formation of composite material using fibres and resin (Mazumdar, 

2002 ). 

Composites made with a polymer matrix have become more common and are widely 

used in various industries. In the mid-1960s and early-1970s, composites started to 

be developed in the aircraft industry. The military were the initial inventors and users 

of composites where the high performance composites were applied on the 

empennages of the F-14 and F-15 fighter aircraft. The F-15 fighter aircraft used 

Boron/epoxy for the horizontal stabilisers, rudders and vertical fins. In the mid-1970s, 

the fighter aircraft F-15 used carbon/epoxy for the speed brake (Campbell, 2006). In 

the past few decades, the use of composites in structural applications, especially in 

the aerospace industry has been increasing as shown in Figure 2.   
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Figure 2: Typical composite structures used in A330 commercial aircraft 

(Crown, 2003). 

The manufacturers have used various techniques to improve the impact resistance 

and damage tolerance characteristics of fibre composites. The advantages of 

composite materials are that they can have the best qualities of their original material 

and often some qualities that neither element possesses. Some of the properties that 

can be improved by forming a composite material are as shown in Figure 3.  

 
Figure 3: Properties that can be improved after producing a composite (Jones, 

1998)

Composites are used not only for their mechanical properties, which are best for the 

applications that need good weight to strength ratio, but also for electrical, thermal, 

tribological and environmental applications (Vijaykumar, 2014). The application of 

composite materials has become increasingly popular, especially in aerospace 

structures. 

Strength Weight Stiffness Wear resistance

Corrosion 
resistance

Fatigue life
Thermal 

conductivity
Acoustical
insulation



© C
OPYRIG

HT U
PM

3 

 

The advantages of using composites in aircraft structures are; weight reduction, high 

corrosion resistance and high resistance to damage from fatigue. These factors play a 

role in reducing the operating costs of the aircraft in the long term, further improving 

its efficiency. Lately composites have been used in beam-type structures under high 

loading rates, such as the drive shafts in vehicles, the rotor blades of helicopters, the 

intake fan blades of jet engines and the entire composite wing of a spacecraft 

(Chatelet, Lornage, & Jacquet-Richardet, 2002).   

In structural industry however, corrosion is one of the biggest problems experienced. 

As an example, in the marine industry, they start to use composites in boats or ships 

structure since composites do not corrode like metals. This advantage of composites 

is also chosen for roads and bridges, since roads and bridges are easily corroded. 

Composites offer a longer life span with less maintenance due to their corrosion 

resistance (Campbell, 2006). Figure 4 shows the composite designs in infrastructural 

applications. 

 
Figure 4: Fibres-reinforced composites for infrastructural parts (Park & Seo, 

2011). 

Glass Fibre Reinforced Polymer (GFRP) is a type of polymer matrix composite 

(PMC) that has been widely used throughout the structure of large civil aircraft due 

to its high specific strength, stiffness and good fatigue resistance. It is the most 

economical choice depending on the cost of the material, the production cost, the life 

cycle cost, and the material’s properties. In recent years, there has been an increasing 

demand to reduce the weight of the armour structures used in various applications 

such as tanks and helicopters. This weight reduction results in improved mobility, 

improved fuel efficiency and the transportability of the armoured vehicle. Glass 

Fibre Reinforced Polymer (GFRP) is light weight with the ability to resist heavy 

loads and supply excellent resistance to impact. 

However, laminated composite, as example, aircraft components are at risk of impact 

from runway debris, hail and birds. This research studies the structural integrity of 

Glass Fibre Reinforced Polymer (GFRP) structures under low and high velocity 

impacts. Impact damage is an important issue for composites because composites are 

brittle. Composites only absorb energy in elastic deformation and damage 

mechanisms. The term damage resistance denotes the sum of the impact damage 

which is induced in a composite structure (Agrawal, Singh, & Sarkar, 2014).  
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Impact behaviours and impact damage depend on many parameters such as the 

projectile/impactor shape, impact velocity and energy, boundary conditions and lay-

up sequence (Chib, 2006). Furthermore, laminated fibre reinforced composite 

materials have various damage modes such as fibre breakage, matrix cracking, and 

delamination. These various damage modes appear together under the impact loading 

(Kim, Rim, Lee, & Hwang, 2013). 

GFRP has many important properties which make it suitable to be widely used in any 

structural applications. More on the structural application for GFRP are discussed in 

chapter 2. Therefore, this research is intended to determine the performance of GFRP 

under low velocity impact and high velocity impact loading since structures are 

always at risk of experiencing these events.  

1.2 Problem Statements 

A question that is naturally raised is how to improve the survivability of structures 

regarding low and high velocity impacts. Since structural failure is caused primarily 

by fracture, a fundamental understanding of the mechanisms and mechanics of the 

material is one of the most important steps needed to solve the problem. In a high 

velocity impact, fracture often occurs in an impacted zone where compression is 

dominant. For a low velocity impact, invisible cracks often occur, but they cannot be 

seen using the naked eye. It is important to understand the deformation and damage 

mechanisms involved in the impact of targets, for the effective design of composite 

structures.  

There are a lot of Glass Fibre Reinforced Polymer (GFRP) types based on their 

special characteristics. Glass Fibre Reinforced Polymer (GFRP) type E is mostly 

used to reinforce composite structures compared to others. Glass Fibre Reinforced 

Polymer (GFRP) type E and Glass Fibre Reinforced Polymer (GFRP) type C are 

similar, but each are designed to serve to their advantage in specific end user. 

However, Glass Fibre Reinforced Polymer (GFRP) type C has high corrosion 

resistance in acidic environment and type E is useful when strength and high 

electrical resistivity is needed (Richerson, 1997).  

The ultimate objective of this research is to conduct an experimental investigation 

using low velocity impact testing and high velocity impact testing to detect and 

quantify impact damage for Glass Fibre Reinforced Polymer Type C-glass/Epoxy 

600 g/m² and Type E-glass/Epoxy 800 g/m² plate. Therefore, the purpose of this 

research is to choose the best material for structural application by comparing the 

mechanical properties and damage characteristics of GFRP Type C-glass/Epoxy 600 

g/m² and Type E-glass/Epoxy 800 g/m². 

Previous researches have usually involved experiments on the impact parameter 

effects that may affect the impact test result. Very limited researches have been 

carried out in comparing these two types of materials. It is important to understand 

the differences in impact response between Glass Fibre Reinforced Polymer (GFRP) 

Type C-glass/Epoxy 600 g/m² and Type E-glass/Epoxy 800 g/m² since both of these 

materials are rarely used in structural application even though it is the best choice for 

weight to strength application.  
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Therefore, this thesis is intended to compare the impact response of Glass Fibre 

Reinforced Polymer (GFRP) Type C-glass/Epoxy 600 g/m² and Type E-glass/Epoxy 

800 g/m² using two different types of impact test, which are low velocity impact 

testing and high velocity impact testing.  

For the high velocity impact test, Glass Fibre Reinforced Polymer Type C-

glass/Epoxy 600 g/m² and Type E-glass/Epoxy 800 g/m² plates were tested using a 

single stage gas gun (SSGG) with varying gas gun pressures, different projectile 

shapes and different target specimen thicknesses. For the low velocity impact test, 

Glass Fibre Reinforced Polymer Type C-glass/Epoxy 600 g/m² and Type E-

glass/Epoxy 800 g/m² plates were tested using the drop weight impact test, where the 

impact energy and the specimen thickness are varied. These tests will produce results 

that will show the impact performance for both materials.  

1.3 Research Aim and Objectives 

The present research aims to conduct an experimental investigation on two types of 

Glass Fibre Reinforced Polymer (GFRP) Type C-glass/Epoxy 600 g/m² and Type E-

glass/Epoxy 800 g/m² using low velocity impact testing and high velocity impact 

testing.  

The study is divided into three objectives. The objectives in this work are:  

i. To fabricate low velocity impact test specimens using a traditional hand lay-

up techniques and to manufacture high velocity impact test specimens with 

the aid of a hot bonder machine and vacuum bagging. 

ii. To investigate the effect of the number of layers on the impact characteristics 

and failure modes of Glass Fibre Reinforced Polymer (GFRP) Type C-

glass/Epoxy 600 g/m² and Type E-glass/Epoxy 800 g/m² at different impact 

energy levels using a drop weight tester and non-destructive testing.  

iii. To investigate the effect of specimen’s thickness, the type of projectiles and 

the impact velocity on the impact characteristics and failure modes of Glass 

Fibre Reinforced Polymer (GFRP) Type C-glass/Epoxy 600 g/m² and Type 

E-glass/Epoxy 800 g/m² using a single stage gas gun (SSGG) and non-

destructive testing.  

1.4 Structure of the Thesis 

This thesis consists of six chapters, which can be described as follows: 

i. Chapter 1 presents an overview of the whole thesis including the problem 

statement and the research objectives for the whole research and the 

contribution from this research.  

ii. Chapter 2 presents a critical literature review on composite material, 

especially Glass Fibre Reinforced Polymer (GFRP), an overview on low 

velocity impact testing and high velocity impact testing, and damage 

identification using structural health monitoring.   
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iii. Chapter 3 describes the procedure for fabricating impact test specimens and 

the experimental work performed using low velocity and high velocity impact 

test rigs. This chapter also explains in detail the damage detection method use 

to examine the failure mode for the impacted test specimen.  

iv. Chapter 4 presents and discusses the low velocity impact test results for Glass 

Fibre Reinforced Polymer (GFRP) Type C-glass/Epoxy 600 g/m² and Type 

E-glass/Epoxy 800 g/m². Critical analysis and damage analysis of the 

impacted specimen is also presented in this chapter.  

v. Chapter 5 presents the high velocity impact test results for Glass Fibre 

Reinforced Polymer (GFRP) Type C-glass/Epoxy 600 g/m² and Type E-

glass/Epoxy 800 g/m². This chapter also discusses and analyses impact 

specimens using the damage detection method.  

vi. Chapter 6 presents the research conclusions, summarises the major results, 

and gives suggestions for future work. 
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