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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment 
of the requirement for the degree of Master of Science  

ABSTRACT 
 

OPTIMISATION OF SECOND STAGE DILUTE ACID HYDROLYSIS OF 
OIL PALM FRONDS INTO GLUCOSE  

 
 

By  
 
 

SOHEIL NEKOUI  
 
 

October 2014  
 
 

Chairman :Professor Robiah Yunus, PhD 
 
Faculty :Engineering 
 
In this study, the potential of OPF as a lignocellulosic feedstock to produce 
fermentable sugars using two-stage dilute-acid hydrolysis was assessed. The 
proximate analysis revealed that OPF fibre was composed of 32.93% cellulose, 
29.91% hemicellulose and 19.53% lignin. This study focused on the hydrolysis of 
cellulose fraction of OPF into glucose in the second-stage of two-stage dilute acid 
hydrolysis. The second stage reactions were carried out above 150 °C. Four 
parameters that affect the yield of glucose, namely acid concentration, reaction 
temperature, reaction time and liquid to solid ratio were investigated. The batch 
reactions were carried out under different operating conditions as proposed by the 
experimental design generated by the Response Surface Methodology (RSM). The 
RSM was used to determine the optimum point for the second stage dilute acid 
hydrolysis process. In the first stage of dilute acid hydrolysis 4.33 g/L (33% yields) 
glucose was recovered. From the second stage hydrolysis, at optimum condition of 
150 °C temperature, 6 % sulphuric acid concentration, 62 min of reaction time and a 
liquid/solid ratio of 28:1, the glucose yield was 4.48 g/L (34%). The amount of 
generated inhibitor (HMF and furfural) was 0.22 g/l. The total glucose yield from both 
stages of the two-stage hydrolysis process under optimum conditions was 67%. 
 
The kinetics study on the formation of glucose from dilute acid hydrolysis of OPF 
revealed that the reaction was a first order irreversible reaction. Based on the values 
of rate constants, it was found that the rate of formation of glucose (k1) was more 
dominant than the rate of degradation (k2). The activation energy values at the 
optimum acid concentration of 6% were 85.733 kJ/mol for glucose formation and 
123.238 kJ/mol for glucose degradation. The n value for glucose formation at 150 °C 
was 0.647 while for glucose degradation was at 0.487. The findings of this study 
suggest that the glucose yield can be increased while the inhibitor formation can be 
decreased by increase in acid concentration and decrease in reaction temperature. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia Sebagai 
memenuhi keperluan untuk ijazah Master Sains 

ABSTRAK 
 

PENGOPTIMUMAN TAHAP KEDUA HIDROLISIS ASID CAIR PELEPAH 
KELAPA SAWIT KEPADA GLUKOSA 

 
 

Oleh 
 
 

SOHEIL NEKOUI  
 
 

Oktober 2014  
 
 

Pengerusi : Professor Robiah Yunus, PhD 
 
Fakulti : Kejuruteraan 
 
Dalam kajian ini potensi pelepah kelapa sawit sebagai bahan mentah untuk 
menghasilkan lignoselulosa gula beragi menggunakan dua peringkat hidrolisis asid-
cair dinilai. Analisis proksimat mendedahkan bahawa serat pelepah kelapa sawit 
terdiri daripada 32.93% selulosa, 29.91% hemiselulosa dan 19.53% lignin. Itu, 
kajian ini memberi tumpuan kepada hidrolisis pecahan selulosa daripada pelepah 
kelapa sawit menjadi glukosa dalam peringkat kedua bagi dua peringkat hidrolisis 
asid-cair. Tindakbalas peringkat kedua telah dijalankan di atas suhu 150 °C. Empat 
parameter yang memberi kesan kepada hasil glukosa, iaitu kepekatan asid, suhu, 
masa tindak balas dan nisbah cecair kepada pepejal telah disiasat. Reaksi ‘kelompok’ 
telah dijalankan di bawah keadaan operasi yang berbeza seperti yang dicadangkan 
oleh reka bentuk eksperimen yang dihasilkan oleh rekabentuk metodologi 
tindakbalas permukaan (RSM). RSM ini digunakan untuk menentukan titik optimum 
untuk peringkat kedua hidrolisis asid-cair. Peringkat pertama hidrolisis asid-cair 
telah menghasilkan glukosa sebanyak 4.33 g/L (33% yield). Daripada hidrolisis asid 
peringkat kedua, pada keadaan suhu optimum 150 °C, 6% kepekatan asid sulfurik, 
62 minit masa tindak balas dan nisbah cecair / pepejal 28:1, hasil glukosa adalah 
4.48 g/L(34 % yield). Jumlah perencat (HMF dan furfural) yang dihasilkan adalah 
0.22 g/L. Jumlah hasil glukosa daripada kedua peringkat proses hidrolisis dua 
peringkat pada keadaan optimum adalah 67%. 
 
Kajian kinetik kepada pembentukan glukosa daripada hidrolisis asid-cair pelepah 
kelapa sawit mendedahkan bahawa reaksi itu adalah kadar pertama reaksi tidak 
boleh diubah. Berdasarkan nilai pemalar kadar, didapati bahawa kadar pembentukan 
glukosa (k1) adalah lebih dominan daripada kadar degradasi (k2). Nilai tenaga 
pengaktifan pada kepekatan asid optimum 6% adalah 85.733 kJ/mol untuk 
pembentukan glukosa dan 123.238 kJ/mol untuk degradasi glukosa. Nilai n untuk 
pembentukan glukosa pada 150 °C adalah 0.647 manakala bagi degradasi glukosa 
adalah pada 0.487. Hasil kajian ini mencadangkan bahawa hasil glukosa boleh 
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ditingkatkan manakala pembentukan perencat boleh dikurangkan dengan 
peningkatan dalam kepekatan asid dan pengurangan suhu tindakbalas. 
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      CHAPTER 1 
 

1 INTRODUCTION 
 
1.1 Background 
 
Due to fluctuation in price of petroleum, limited fossil fuel reserve and growing 
concern associated with the environmental impact of fossil fuel, the current research 
attention is driven towards finding alternative non-fossil fuels for the transportation 
sector. An alternative fuel must be readily available, environmentally acceptable, 
economically competitive and technically feasible (Meher et al., 2006). 
 
Biomass-based fuel is known as biofuel. Biofuels are the  potential candidate for 
alternative “green” energy substitute for fossil fuels (Demirbas, 2009). Currently 
biodiesel and bioethanol are two main renewable liquid fuels for the transportation 
sector, which could substitute for diesel and gasoline fuels (Demirbas, 2008). The 
advantages of biomass-based fuels are as following: (1) they reduce the greenhouse 
gases (GHG) emissions, (2) They are easily produced from common organic 
resources, (3) they represent a CO2-cycle within combustion, (4) They are 
biodegradable and contribute to sustainable development (Demirbas, 2008). 
 
Bioethanol is a grain-based alcohol, scientifically known as ethyl alcohol EtOH or 
C2H5OH (Balat, 2011). It can be produced synthetically from crude oil or by 
microbial process of biomass resources via fermentation process. Compared to 
gasoline, ethanol provides a larger octane number (108), wider flammability limit 
and faster flame speed (Balat et al., 2008). In 2011, global bioethanol production 
reached a record of 22.356 million gallons (AFDC, 2013). The US and Brazil are the 
world's largest producers of biofuel, together providing around 90% of the biofuel 
production exploiting corn and sugarcane respectively (Limayem and Ricke, 2012).  
 
Bioethanol is currently being used as an additive in gasoline formulation usually at 
concentration of 10% bioethanol to 90% gasoline (E10). It is commonly known as 
“gasohol” which provides higher octane and cleaner emissions compared to gasoline. 
E10 could be applied in all conventional engines without any engine modification. 
This blend could also be utilized at a higher concentration, if the engine is modified, 
for example, E85 (Balat and Balat, 2009). Some countries have employed bioethanol 
program such as the Brazil (E20, E25, and any blend), United States (E10 and E85), 
Canada (E10 and E85) and Australia (E10) (Balat et al., 2008). 
 
Bioethanol can be produced from various feedstocks containing fermentable sugars 
after which will be metabolized by different microorganisms. Two types of 
feedstocks are mostly utilized globally in the last decades: sugar cane and corn 
starch, particularly in regions like Brazil and United States. The production of 
bioethanol from these sources is controversial because of the food versus fuel issues.  
These raw materials have been used historically as food for humans and as feed for 
animals. Thus, using these feedstocks for fuels will disturb the food supply and may 
trigger sharp increase in food prices.  
 
The bioethanol derived from the edible source is known as the first-generation 
bioethanol (FGB) (Goh et al., 2010b). In order to minimize the controversy 
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associated with  these food-grade feedstocks for  bioethanol production, attention 
have been shifted towards lignocellulosic materials as feedstock for bioethanol 
production (Tye et al., 2011). The bioethanol generated from these lignocellulosic 
feedstocks is known as second-generation bioethanol (SGB) (Goh et al., 2010b).  
The use of these feedstock has been currently extended to several countries 
worldwide, such as China, India, Australia, Canada and many others (Balat, 2011). 
 
Since the beginning of 1970, palm oil industry has been  one of the most important 
industries in Malaysia (Alam and Ainuddin, 2007). Malaysia has emerged as one of 
the top producers and exporters of palm oil, which account for 89% of global exports 
and 47% of the current global palm oil production (Sabiha-Hanim et al., 2011). In 
Malaysia, major proportions of agriculture waste come from oil palm cultivation, in 
the form of chopped trunks, shell and fibres, empty fruit bunch (EFB) and oil palm 
fronds (OPF) (Sumathi et al., 2008). Oil palm frond amounts to 70% of the total oil 
palm cultivations waste in Malaysia (Alam and Ainuddin, 2007). It is reported that 
each hectare of oil palm plantation generates 10.88 tons of dead fronds as a by-
product. These wastes constitute biomass in the form of lignocelluloses, celluloses 
and hemicellulose which are suitable for bioethanol production (Kelly-Yong et al., 
2007) 
 
Lignocellulose biomass is composed of cellulose, hemicellulose and lignin. This 
complex is  resistant against many chemical and microbial attacks (Balat et al., 
2008). Typically, oil palm fronds contain a high portion of cellulose and the lower 
percentage of lignin (Kim et al., 2003). There are four main process steps in the 
production of bioethanol from lignocellulosic biomass: pre-treatment, hydrolysis, 
fermentation and distillation (Balat, 2011). A cost effective bioethanol production is 
highly dependent on the availability of cheap feedstock and plant operability 
(Alvarado-Morales et al., 2010). Lignocellulosic feedstock is considered as the 
cheapest raw material for bioethanol production (Goh et al., 2010a). 
 
Currently, acid hydrolysis and enzymatic hydrolysis are the most common 
hydrolysis processes for lignocellulosic biomass (Balat, 2011). Dilute acid 
hydrolysis is a simple and fast process in which acid recovery is not needed after this 
process(Conde-Mejía et al., 2012; Hu et al., 2010) .However, dilute acid hydrolysis 
is recommended to be carried out in two stages in order to avoid sugar degradation 
and generation of inhibitors, at high temperature. In the first stage, hemicellulose in 
relatively mild condition is converted to 5-carbon sugars, which is sometimes 
considered as the pre-treatment step. In the second stage, cellulose in the residual 
solid is hydrolyzed under more harsh condition to 6-carbon sugar. (Karimi et al., 
2006; Taherzadeh and Karimi, 2007a) 
 
1.2 Problem Statement 
 
Currently, a large amount of OPF is mainly disposed by burning or direct decaying 
in the environment. Only a small amount is converted into compost. These activities 
lead to serious environmental problems(Sheh et al., 2013). Production of bioethanol 
from this low cost biomass is a promising alternative to convert the waste into useful 
products (Goh et al., 2010b). However, the hydrolysis of lignocellulosic biomass to 
fermentable sugar prior to converting to bioethanol has been the major hurdles.  
Many attempts have been made by researchers to improve the hydrolysis of 
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lignocellulosic materials such as OPF. Hence different hydrolysis techniques have 
been proposed in order to combat this problem. Based on the literature, there is little 
information on the hydrolysis of OPF via dilute acid hydrolysis. However, 
Amirkhani et al.(2014) have successfully developed the optimum process for the first 
stage of the two-stage dilute acid hydrolysis of OPF.  They managed to convert 
almost 94% of potential xylose in the OPF at 120°C using 2% acid.  Nevertheless, 
their study only optimized the conversion of OPF to xylose and only a small 
percentage of glucose was present in the sugar solution.  Hence, a large percentage 
of lignocellulosic components in OPF namely cellulose has yet to be hydrolyzed.  
This process will only can take place at higher acid concentration and higher 
temperature. In this study, the processing conditions for the second stage of the two-
stage dilute acid hydrolysis of OPF will be explored for optimum glucose recovery. 
 
1.3 Research Objective 
 
Among the chemical hydrolysis techniques dilute acid hydrolysis is considered as 
the most widely utilized process in the hydrolysis of lignocellulosic wastes.  Oil 
Palm Frond (OPF) fibre contains high cellulose and hemicellulose content, thus a 
potential feedstock for simple sugars production. The overall objective of this study 
is to evaluate the two-stage dilute-acid hydrolysis process to convert the cellulose 
portion of OPF fibre to simple sugars predominantly glucose. 
 
The specific objectives of this thesis are listed below. 

1) To optimize the second-stage dilute acid hydrolysis for maximum glucose 
recovery. 

2) To perform the kinetics study of the second stage hydrolysis.  
 

Two-stage dilute acid hydrolysis is an effective method for hydrolysis of 
lignocellulosic material. The scope of this research emphasizes on the hydrolysis of 
cellulose fraction of OPF into glucose in the second-stage of two-stage dilute acid 
hydrolysis using a pressurized-batch reactor. The second stage reactions were carried 
out above 150 °C.  In this study, the acid concentration, temperature, time and liquid 
to solid ration are process parameters investigated in the second stage of two-stage 
dilute acid hydrolysis. 
 
1.4 Thesis Outline 
 
This thesis consists of five chapters. Chapter one introduces the research 
background, problem statement and objectives of the study. Chapter two presents the 
detailed literature review associated with bioethanol, lignocellulosic biomass, and 
different technologies for hydrolysis process. Chapter three describes the materials 
and the methodology involved in this study. The analytical methods, including 
characterization and testing procedures for the determination of sample composition, 
the design and analysis of experiments and the experiments of hydrolysis procedures 
are discussed in this chapter. Discussions on data analysis and interpretation are 
presented in chapter four. Finally, the conclusion for the objectives, 
recommendations and suggestions for further work is presented in chapter five. 
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