UNIVERSITI PUTRA MALAYSIA

EFFECT OF AZADIRACWT INDICA EXTRACT ON HEPATOCAARCINOGENESIS-INDUCED RATS MANAL MOHAMED

MANAL MOHAMED EL HASSAN TAHA

FPSK(M) 2007 3
EFFECT OF AZADIRACHTA INDICA EXTRACT ON HEPATOCARCINOGENESIS-INDUCED RATS

By

MANAL MOHAMED ELHASSAN TAHA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science.

February 2007
DEDICATION

Specially dedicated to,

My beloved parents, husband, sisters Manahil and Sarah, brother Ahmed, daughter Roa, supervisors

For their invaluable support, love, patience and intellectual stimulation.............
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science.

EFFECT OF AZADIRACHTA INDICA EXTRACT ON HEPATOCARCINOGENESIS-INDUCED RATS

By

MANAL MOHAMED ELHASSAN TAHA

February 2007

Chairman: Associate Professor Fauziah Othman, PhD

Faculty: Medicine and Health Sciences

The effects of 5% *A. indica* aqueous extract (AI), or more commonly as Neem, on hepatocarcinogenesis induced *Sprague-Dawley* male rats were investigated. Hepatocarcinogenesis was induced in rats by employing a two carcinogen system: an intraperitoneal injection of 200 mg/kg diethyl nitrosamine (DEN) as initiator; followed by 0.02% of 2-acetylaminofluorene (AAF) in rat chow for two weeks to promote carcinogenesis. The rats were then left for two weeks to allow hepatic preneoplastic lesions to occur. The plant extract was prepared in 5% w/v in distilled water. Fresh leaves were collected, blended and mixed with distilled water. Twenty male rats *Sprague-Dawley* weighing 150-250g, were acclimatized for 1 week before use. The rats were divided into four groups of five rats each.
The groups were: DEN/AAF-induced rats (C), DEN/AAF-induced rats treated with 5% *A. indica* (CAI), normal control rats (N) and normal rats treated with 5% *A. indica* extract group (NAI). The rats in group N and NAI were not induced with cancer however were injected once intraperitoneally with corn oil and act as normal control. The plant extract was fed to CAI and NAI groups to study its effects on both cancer and normal groups, respectively.

In this study several parameters were evaluated as means of determining the effects of AI on DEN/AAF-induced hepatocarcinogenesis in rats. Body and liver weight profiles, foremost, hepatic lesions were scored in rats induced with DEN/AAF carcinogens especially in the portal and lobular regions of the liver sections examined for histology. Loss of normal cell organization was also observed once the hepatocarcinogenesis was induced. In addition to histological observations, the TUNEL Assay, liver antioxidant enzyme Glutathione S-transferase (GS-T), Glutathione Peroxidase (GPx) in the serum and liver, tumor marker alpha-fetoprotein (AFP) in serum and molecular detection of AFP and albumin genes expressions were conducted. The observation of the lesion scoring have shown significant difference (p<0.05) between DEN/AAF and normal control groups (N, NAI). Histologically there were significant changes in the lesion scoring of the liver in portal and lobular region in DEN/AAF induced.
group (C) compared to the DEN/AAF treated with *A. indica* (CAI). TUNEL assay supported that there was more numbers of apoptotic cells in the liver of (CAI) group compared to (C) group. The liver enzymes (GST & GPx) activity was measured and the result for both glutathione S-transferase and glutathione peroxidase were significantly (*p*<0.05) higher in the (C) compared to the other groups (CAI, N, NAI). This result revealed that *A. indica* extract could reduce the activity of liver and serum GPx and GST enzymes of rats during hepatocarcinogenesis. However, the results of body and liver weight profiles showed that the CAI group was not significantly different (*p*>0.05) from N, C and NAI groups.

Alpha fetoprotein (AFP), a notable liver tumor marker, level was measured. The DEN/AAF induced group (C) showed the highest increase in AFP levels while in CAI group illustrated significant (*p*<0.05) decrease in AFP level. There was no significant (*p*>0.05) difference between N, NAI and CAI group.

Molecular detection of gene expression was done by RT-PCR for *α*-fetoprotein and albumin specific genes. However, the expression of the AFP gene was observed only in DEN/AAF induced group (C). Albumin gene expression was observed in all the study groups C, N, NAI and CAI proving the hepatic nature
of the studied tissue and used as a housekeeping control gene in the RT-PCR experiments.

As a conclusion, *A. indica* (Neem) has revealed a chemopreventive capability by regressing the hepatacarcinogenesis induced by DEN/AAF carcinogens. This capability can be seen from the modulating effects of the plant in the biological indicators used in this study which can encourage the researchers to consider the *A. indica* (Neem) for further on mechanism and toxicology study.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains.

KESAN EKSTRAK AZADIRACHTA INDICA TERHADAP TIKUS ARUHAN HEPATOKARSINOGENESIS

Oleh

MANAL MOHAMED ELHASSAN TAHA

Februari 2007

Pengerusi: Profesor Madya Fauziah Othman, PhD

Fakulti: Perubatan dan Sains Kesihatan

Kesan 5% larutan ekstrak akuas A. indica (AI) atau lebih di kenali sebagai Neem pada hepatokarsinogenesis terhadap tikus jantan Sprague-Dawley telah dikaji. Hepatokarsinogenesis telah diaruh pada tikus menggunakan dua sistem karcinogen, melalui suntikan 200 mg/kg diethylnitrosamine (DEN) secara intraperitoneal sebagai pencetus hepatocarcinogenesis dan diikuti dengan memberikan makanan yang dicampurkan dengan 2-acetylaminofluorene (0.02% AAF) sebagai 'promoter' hepatokarsinogenesis selama 2 minggu. Ekstrak tumbuhan disediakan di dalam air suling pada kepekatan 5% w/v. Daun tumbuhan tersebut dikumpul, dikisar dan dicampurkan bersama air. 20 tikus jantan Spraque Dawley, 150g–250g diaklimatisaskan selama satu minggu sebelum diujikaji. Tikus tersebut dibahagikan kepada empat kumpulan dengan
lima ekor tifus setiap kumpulan. Kumpulan tersbut ahila: tikus yang diaruh dengan DEN/AAF (C), tikus yang diaruh dengan DEN/AAF dirawat dengan 5% A. indica (AI), tikus kewalan normal (N) dan tikus normal yang dirawat dengan 5% ekstark A. indica (NAI). Tikus kumpulan N dan NAI tidak diaruhkan dengan kanser tetapi disuntik secara intraperitonial dengan minyak jagung dan dijadikan sebagai kawalan. Ekstrak tumbuhan tersebut diberikan kepada kumpulan CAI dan NAI untuk dikaji kesannya terhadap kumpulan kanser dan normal.

Dalam kajian ini, beberapa parameter telah ditentukan sebagai purata untuk menentukan kesan bagi AI terhadap DEN/AAF yang memyebabkan hepatokarsinogenesis pada tikus. Profil berat dan hati, selain itu, kesan hati telah dikira dalam tifus disuntik dengan bahan karsinogen DEN/AAF terutama dalam kawasan portal dan lobular hati telah dikaji dalam pemeriksaan histologi. Kehilangan organisasi pada sel normal juga telah ditihat apabila karsinogenesis diaruh. Pemeriksaan histologi juga telah dijalankan menggunakan asai TUNEL, enzim antioksida hati Glutathione S-transferase (GST), Glutathione peroxidase (GPx) di dalam serum dan hati, penanda tumor alpha-fetoprotein (AFP) di dalam serum dan pengesananan molekular AFP dan ekspresi gen albumin juga telah dijalankan. Pemerhatian terhadap ujian skor...
kesan menunjukkan perbezaan yang signifikan (p≤0.05) di antara DEN/AAF dan kumpulan kawalan normal (N, NAI). Pemeriksaan histologi menunjukkan perubahan pada ujian skor kesan hati dalam kawasan portal pada kumpulan aruhan DEN/AAF (C) berbanding dengan DEN/AAF yang dirawat dengan A. indica (CAI). Asai TUNEL mengukuhkan bahawa terdapat beberapa sel apoptotic di dalam hati kumpulan CAI berbanding kumpulan C. Aktiviti enzim hati (GST & GPx) diukur dan keputusan bagi kedua glutathione S-transferase and glutathione peroxidase adalah berbeza secara signifikan pada aras keertian (p<0.05) di antara kumpulan kanser (C) dan kumpulan rawatan (CAI, N, NAI). Keputusan ini menunjukkan A.indica mampu mengurangkan aktiviti enzim hati dan serum GST dan GPx pada tikus semasa hepatokarsinogenesis. Walau bagaimanapun keputusan profil berat jisim tubuh dan hati menunjukkan kumpulan CAI tidak memberikan perbezaan yang signifikan pada aras keertian (p > 0.05) daripada kumpulan N, C dan NAI.

Aras alpha fetoprotein (AFP) telah diukur sebagai penanda pertumbuhan sel kanser hati. Kumpulan DEN/AAF (C) menunjukkan peningkatan aras AFP yang tertinggi, manakala kumpulan CAI menunjukkan penurunan yang signifikan pada aras keertian (p < 0.05) pada aras AFP. Namun tiada perbezaan yang signifikan (p > 0.05) di antara kumpulan N, NAI dan CAI.
Pengesahan secara molecular ke atas ekspresi gen telah dilakukan menggunakan RT-PCR ke atas gen spesifik α-fetoprotein dan albumin. Tetapi, ekspresi gen AFP hanya dapat dilihat dalam kumpulan yang diaruh dengan DEN/AAF (C). Ekspresi gen albumin diperhatikan dalam kumpulan kajian C, N, NAI dan CAI yang membuktikan sifat semulajadi hepatic pada organ yang dikaji dan pembersih gene kawalan dalam uji kaji RT-PCR.

Kesimpulannya, *A. indica* (Neem) telah dinyatakan sebagai kemopreventif untuk penyakit hepatokarsinogenesis yang diaruhkan oleh bahan karsinogen DEN/AAF. Keupayaan ini boleh dilihat melalui kesan tumbuhan dalam penunujuk biologi yang digunakan dalam kajian ini dimana akan menggalakkan penyelidik *A. indica* (Neem) untuk mempertimbangkan mekanisma dan toksikologi yang akan datang.
ACKNOWLEDGEMENTS

First my praise to Almighty Allah for giving me the power and will to complete this study and peace be upon his final Prophet and Messenger Mohamed.

I would like to convey sincere gratitude to Associate Professor Dr. Fauziah Othman the Chairman of my Supervisor Committee for her invaluable advice, guidance, constant support and encouragement. I would like to extend my grateful thanks and appreciation to the members of my Supervisory Committee Associate Professor Dr. Patimah Ismail and Dr. Parichehr Hanachi for their constructive suggestion, advice and support throughout the course of this study.

I gratefully acknowledge the "Malaysian Technical Co-operation Programme (MTCP) for giving me this opportunity and for their financial support for my Master programme.

I am gratefully thanking all the staff of Faculty of Medicine and Health Science and Institute of Bioscience for their constant assistance and friendship.

It is worth to mention my colleagues and friends from Sudanese community in UPM and Serdang area for their friendship and companion. Finally yet
importantly, I would like to extend my sincere appreciation to my husband Siddig Ibrahim and my daughter Roa for their patience, sacrifices and moral support during the course of the study.
I certify that an Examination Committee has met on 26th February 2007 to conduct the final examination of Manal Mohamed Elhassan Taha on her Master of Science thesis entitled "Effect of *Azadirachta indica* Extract on Hepatocarcinogenesis-Induced Rats" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Abdul Hamid Abdul Rashid, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Chong Pei Pei, PhD
Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Abdah Md. Akim, PhD
Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Azimatol Hawariah Lope Pihie, PhD
Professor
Faculty of Science and Technology
Universiti Kebangsan Malaysia
(External Examiner)

HASANAH MOHD. GHAZALI, PhD
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia
Date: 17 MAY 2007
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Fauziah Othman, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Patimah Ismail, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Parichehr Hanachi, PhD
Department of Biomedical Sciences
Alzahra Research Centre
Tehran, Iran
(Member)

AINI IDERIS, PhD
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 14 JUNE 2007
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

MANAL MOHAMED ELHASSAN TAHA

Date: 17 July 2006
TABLE OF CONTENTS

DEDICATION ii
ABSTRACT iii
ABSTRACT vii
ACKNOWLEDGEMENTS xi
APPROVAL xiii
DECLARATION xv
TABLE OF CONTENTS xvi
LIST OF TABLES xvii
LIST OF FIGURES xx
LIST OF ABBREVIATIONS xxii

CHAPTER

1 INTRODUCTION 12

2 LITRETURE REVIEW 19
 2.1 A. indica (Neem) 19
 2.1.1 Elements in A.indica Leaves 26
 2.1.2 A. indica as an Anti-cancer Agent 28
 2.1.3 Limonoids as Anti-cancer Agent 29
 2.2 Cancer 32
 2.3 Liver 36
 2.3.1 Histology of the Liver 37
 2.4 Liver Cancer 38
 2.4.1 Causes of Liver Cancer 39
 2.4.2 Hepatocellular Carcinoma (HCC) 41
 2.4.3 Hepatocarcinogenesis 42
 2.4.4 Modeling Hepatocarcinogenesis 43
 2.4.5 Introduction of Hepatocarcinogenesis 44
 2.5 Chemical Carcinogens 46
 2.5.1 Diethylnitrosamine (DEN) 49
 2.5.2 Acetylaminoflourine AAF 52
 2.6 Biotransformation Enzymes 55
 2.6.1 Glutathione S-transferase (GST) 55
 2.6.2 Glutathione Peroxidase (GPx) 57
 2.7 Lesion Scoring 58
 2.8 Apoptosis 59

xvi
3 MATERIAL AND METHODS

3.1 Materials and chemicals: 72
3.2 Preparation of 5% Neem leaves aqueous extract 74
3.3 DiethylNitrosamine (DEN) preparation 76
3.3 Acetylaminofluorene (AAF) preparation: 76
3.4 Animals 76
 3.4.1 Pre-treatment 76
 3.4.2 Treatment 77
 3.4.3 Post treatment 78
3.5 Preparation of the cytosol 81
3.6 Enzyme assay 81
 3.6.1 Glutathione S-transferase (GST) Assay 81
 3.6.2 Glutathione Peroxidase Assay 82
 3.6.3 Protein determination 84
3.7 Histological study 84
 3.7.1 Light microscope 84
 3.7.2 Mean lesion scoring 88
3.8 Alpha-feto protein Assay 89
 3.8.1 The principle of the alpha fetoprotein (AFP) kit 89
3.9 Detection of Apoptotic Cells (TUNEL Assay) 90
3.10 Reverse Transcriptase Polymerase Chain Reaction 92
 3.10.1 RNA Isolation 92
 3.10.2 RT-PCR 93
 3.11 Statistical Analysis 95

4 RESULTS 96
4.1 Body Weight Profile 96
4.2 Liver Weight and Relative Liver Weight 97
4.3 Biotransformation Enzymes 98
 4.3.1 Glutathione -S-Transferase (GST) Assay 98
 4.3.2 Glutathione Peroxidase (GPx) Assay 100
4.4 Histology 103
4.5 Lesion Scoring 106
4.6 The Assay of Alpha-fetoprotein 107
4.7 Expression of AFP and albumin gene 109
4.8 The Detection of Apoptosis (TUNEL assay) 112

5 DISCUSSION 118
5.1 The Effect of Hepatocarcinogens and Supplementation of A. indica on Body Weight, Liver Weight and the Ratio Liver/Body Weight 120
5.2 Detoxification Enzyme 121
 5.2.1 The Effect Of A. Indica On Glutathione-S-Transferase Activities In DEN/AAF Induced Liver Cancer And Control Rats Groups. 122
 5.2.2 The Influence of A. indica Oral Administration on Glutathione Peroxidase (GPx) Activity in Liver and Serum of DEN/AAF Induced Liver Cancer. 124
5.3 Histology 127
 5.3.1 Light Microscopy 127
 5.3.2 Mean Lesion scoring 129
5.4 Alpha-fetoprotein 130
5.5 The Effect of A. indica on the Expression of AFP mRNA. 132
5.6 Apoptogenic Effects of A. indica 134

6 CONCLUSION 138
REFERENCES 144
APPENDICES 168
BIODATA OF THE AUTHOR 172
LIST OF PUBLICATIONS 173
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Causes of death due to cancer among medically certified deaths in Malaysia.</td>
<td>36</td>
</tr>
<tr>
<td>2</td>
<td>Tissue Dehydration in the tissue processing</td>
<td>86</td>
</tr>
<tr>
<td>3</td>
<td>Colorization with Hematoxylin and Eosin (H&E) According to McManus (1960).</td>
<td>87</td>
</tr>
<tr>
<td>4</td>
<td>The effect of A. indica on the mean lesion scoring of rats treated with DEN and AAF and normal control groups.</td>
<td>107</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>70</td>
</tr>
<tr>
<td>3</td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td>79</td>
</tr>
<tr>
<td>5</td>
<td>80</td>
</tr>
<tr>
<td>6</td>
<td>97</td>
</tr>
<tr>
<td>7</td>
<td>98</td>
</tr>
<tr>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>9</td>
<td>102</td>
</tr>
<tr>
<td>10</td>
<td>104</td>
</tr>
<tr>
<td>11</td>
<td>104</td>
</tr>
</tbody>
</table>

1. *A. indica* A. Juss
2. Structure of the AFP gene regulatory region.
3. Flow chart on the method of preparing the 5% aqueous Neem leaves extract.
5. Schematic representation of the animal treatment of normal group.
6. The effect of 5% *A. indica* aqueous extract on body weight profile in control and cancer groups.
7. The effect of 5% Neem on liver weight and relative liver weight in control and cancer groups.
8. The effect of 5% Neem on GST activity in the liver and serum of DEN and AAF-induced cancer rats.
9. The effect of 5% Neem on GPx activity in the liver and serum of DEN and AAF-induced cancer rats.
10. Light micrograph of normal rat liver from the normal control group.
11. Light micrograph of 5% Neem treated rat liver from normal group (NAI) over a period of 10 weeks.
<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Light Micrograph of liver cancer control group rats induced by DEN/AAF.</td>
<td>105</td>
</tr>
<tr>
<td>13</td>
<td>Light micrograph of liver section from DEN/AAF induced hepatocarcinogenesis rat supplemented with 5% Neem aqueous leaves extract.</td>
<td>105</td>
</tr>
<tr>
<td>14</td>
<td>Blood AFP concentration in the different group of rats.</td>
<td>108</td>
</tr>
<tr>
<td>15</td>
<td>Effect of A. indica aqueous extract on the expression of AFP gene of DEN/AAF induced rats.</td>
<td>110</td>
</tr>
<tr>
<td>16</td>
<td>Effect of A. indica aqueous extract on the expression hepatocyte-specific gene for albumins.</td>
<td>111</td>
</tr>
<tr>
<td>17</td>
<td>Confocal micrograph of TUNEL assay of rat liver tissue section of normal group.</td>
<td>113</td>
</tr>
<tr>
<td>18</td>
<td>Confocal micrograph illustrating liver of normal rats treated with A.indica extract (NAI).</td>
<td>114</td>
</tr>
<tr>
<td>19</td>
<td>Confocal Micrographs of TUNEL assay done for liver sections from DEN/AAF induced hepatocarcinogenesis rats.</td>
<td>115</td>
</tr>
<tr>
<td>20</td>
<td>Confocal micrographs of TUNEL assay done for liver sections from DEN/AAF induced hepatocarcinogenesis rats treated with 5% aqueous extract of A. indica leaves.</td>
<td>116</td>
</tr>
<tr>
<td>21</td>
<td>Graph showing the effect of 5% A.indica aqueous extract on DEN/AAF induced cancer in rats using TUNEL assay.</td>
<td>117</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFP</td>
<td>Alpha-fetoprotein</td>
</tr>
<tr>
<td>A. indica</td>
<td>A. indica</td>
</tr>
<tr>
<td>Abs</td>
<td>Absorbance</td>
</tr>
<tr>
<td>°C</td>
<td>Centigrade</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary DNA</td>
</tr>
<tr>
<td>cm</td>
<td>Centimeter</td>
</tr>
<tr>
<td>CDNB</td>
<td>1-chloro-2,4-dinitrobenzene</td>
</tr>
<tr>
<td>DEN</td>
<td>Diethylnitrosamine</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>EDTA</td>
<td>Disodium Ethylene Diaminetetraacetate</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluorescin isothiocyanate</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>GSH</td>
<td>Glutathione</td>
</tr>
<tr>
<td>GST</td>
<td>Glutathione S-transferase</td>
</tr>
<tr>
<td>GPx</td>
<td>Glutathione Peroxidase</td>
</tr>
<tr>
<td>GSSG reductase</td>
<td>Glutathione reductase</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>Hydrogen peroxide</td>
</tr>
<tr>
<td>H₃PO₄</td>
<td>Phosphoric acid</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>H&E</td>
<td>Hematoxylin and eosin</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>Potassium dihydrogen orthophosphate</td>
</tr>
<tr>
<td>K H₃PO₄</td>
<td>Potassium dihydrogen orthophosphate</td>
</tr>
<tr>
<td>Kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>KCL</td>
<td>Potassium chloride</td>
</tr>
<tr>
<td>mL</td>
<td>Millilitre</td>
</tr>
<tr>
<td>Mn</td>
<td>Minute</td>
</tr>
<tr>
<td>μl</td>
<td>Microlitre</td>
</tr>
<tr>
<td>mg</td>
<td>Miligram</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium hydroxide</td>
</tr>
<tr>
<td>NADPH</td>
<td>Nicotinamide Adenine Dinucleotide Phosphate</td>
</tr>
<tr>
<td>NMDA</td>
<td>N-dimethylnitrosamine</td>
</tr>
<tr>
<td>Neem</td>
<td>A. indica</td>
</tr>
<tr>
<td>NaN₃</td>
<td>Sodium nitrate</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffer saline</td>
</tr>
<tr>
<td>Bp</td>
<td>Basepair</td>
</tr>
<tr>
<td>pH</td>
<td>Hydrogen ion concentration</td>
</tr>
<tr>
<td>PI</td>
<td>Propidium iodide</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Reverse Transcriptase Polymerase Chain Reaction</td>
</tr>
<tr>
<td>Term</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>RLUs</td>
<td>Relative light units</td>
</tr>
<tr>
<td>S.D</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>TdT</td>
<td>Terminal deoxynucleotidyl transferase</td>
</tr>
<tr>
<td>TUNEL</td>
<td>Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling</td>
</tr>
<tr>
<td>TBE</td>
<td>Tris base EDTA</td>
</tr>
<tr>
<td>UPM</td>
<td>Universiti Putra Malaysia</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
</tbody>
</table>