EFFECTS OF *STROBLANTHES CRISPUS* CRUDE AND TEA EXTRACTS IN STREPTOZOTOCIN-INDUCED HYPERGLYCEMIC RATS

MOHD FADZELLY ABU BAKAR

FPSK(M) 2006 28
EFFECTS OF *STROBLANTHES CRISPUS* CRUDE AND TEA EXTRACTS IN STREPTOZOTOCIN-INDUCED HYPERGLYCEMIC RATS

MOHD FADZELLY ABU BAKAR

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA
2005
EFFECTS OF STROBLANTHES CRISPUS CRUDE AND TEA EXTRACTS IN STREPTOZOTOCIN-INDUCED HYPERGLYCEMIC RATS

By

MOHD FADZELLY ABU BAKAR

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master Science

September 2005
To my beloved mom and dad, for their outstanding support and patience
To my lovely siblings; Adik, Ina and Ain
To diabetics and their families, clinicians and researchers
Who are at war fighting this disease

fadjelly
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of
the requirement for the degree of Master of Science

EFFECTS OF STROBLANTHES CRISPUS CRUDE AND TEA EXTRACTS IN
STERPTOZOTOCIN-INDUCED HYPERGLYCEMIC RATS.

By
MOHD FADZELLY ABU BAKAR
September 2005

Chairman: Associate Professor Asmah Rahmat, PhD

Faculty: Medicine and Health Sciences

Strobilanthes crispus leaf has been used ethnomedically to treat diabetes mellitus and
related disorders in Asia. The first part of this study is to develop a tea from leaves of S.
crispus and investigate its antioxidant properties in vitro. Fermented and unfermented
teas from young and old leaves of S. crispus were developed according to Camellia
sinensis and Camellia theifera preparations for black and green tea, respectively. Three
methods were used to determine the antioxidant activities i.e 1) β-carotene bleaching
method 2) DPPH free radical scavenging assay 3) Ferric reducing/antioxidant power
(FRAP) assay. The total phenolic content was also estimated using Folin-Ciocalteu
method. The result showed that unfermented S. crispus tea displayed a higher
antioxidant activity compared to fermented S. crispus tea. Tea developed from old or
matured leaves possessed higher antioxidant activity compared to young leaves.
However, commercial green (Sencha, UK) and black (Boh, Malaysia) tea that were
developed from leaves of C. sinensis exhibited higher antioxidant activity among all
teas tested. The second part of this study was aimed at determining the effect of *S. crispus* crude extract on STZ-induced hyperglycemic rats. *S. crispus* (young and old leaves) were extracted with distilled water and given to normal and hyperglycemic rats at concentrations of 2.5, 5.0 and 7.5% for 21 days. Plasma glucose, lipid profile (total cholesterol, triglyceride, HDL-cholesterol, LDL-cholesterol), total antioxidant status and serum potassium and magnesium contents were determined on baseline (day 0), day 7 and day 21. The results showed that *S. crispus* crude extract at concentrations of 2.5, 5.0 and 7.5% from old or matured leaves reduced glucose level significantly in hyperglycemic rats (p<0.05). Third part of this study evaluated the effect of *S. crispus* fermented and unfermented tea in STZ-induced hyperglycemic rats at a concentration of 2% for 21 days. Plasma glucose, lipid profile (total cholesterol, triglyceride, HDL-cholesterol, LDL-cholesterol), total antioxidant status and serum potassium and magnesium contents were determined during baseline (day 0), day 7 and day 21. The results showed that both fermented and unfermented *S. crispus* tea reduced glucose level in hyperglycemic rats (p<0.05). Fermented and unfermented *S. crispus* tea also improved antioxidant status and lipid profile in hyperglycemic rats by lowering the total cholesterol, triglyceride, and LDL-cholesterol. Total antioxidant status and HDL-cholesterol also increased in hyperglycemic rats treated with fermented or unfermented tea *S. crispus*. Both fermented or unfermented *S. crispus* tea failed to prevent the reduction of serum magnesium in hyperglycemic rats.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KESAN EKSTRAK KASAR DAN EKSTRAK TEH DARI DAUN STROBILANTHES CRISPUS PADA TIKUS YANG DIARUH HIPERGLISEMIA MENGGUNAKAN STREPTOZOTOCIN

Oleh
MOHD FADZELLY ABU BAKAR
September 2005

Pengerusi: Profesor Madya Asmah Rahmat, PhD.

Fakulti: Perubatan dan Sains Kesihatan

Strobilanthes crispus telah digunakan terutamanya di Asia dalam perubatan tradisional untuk merawat diabetes mellitus dan penyakit yang berkaitan. Bahagian pertama kajian ini adalah untuk membuat teh dari daun S. crispus dan mengkaji ciri-ciri antioksidan dalam teh tersebut. Teh yang difermentasi dan yang tidak difermentasi dibentuk menggunakan kaedah membuah teh masing-masing dari daun C. sinensis dan C. theifera. Tiga kaedah digunakan untuk menentukan aktiviti antioksidan iaitu 1) Kaedah pelunturan β-karoten 2) Kaedah penghapusan radikal bebas DPPH 3) Kaedah penurunan ferik/kuasa antioksidan (FRAP). Kandungan fenolik keseluruhan juga ditentukan menggunakan kaedah Folin-Ciocalteu. Keputusannya menunjukkan bahawa teh S. crispus yang tidak difermentasi menunjukkan paras aktiviti antioksidan yang lebih tinggi dari yang difermentasi. Teh yang dibentuk dari daun tua menunjukkan aktiviti antioksidan yang lebih tinggi berbanding dengan daun muda. Walaubagaimanapun, teh hijau (Sencha, UK) dan teh hitam (Boh, Malaysia) yang
dibuat dari daun teh (C. sinensis) menunjukkan tahap aktiviti antioksidan yang paling tinggi dalam semua teh yang dikaji. Bahagian kedua kajian ini adalah untuk menentukan kesan ekstrak kasar pada tikus yang diaruh hiperglisemia menggunakan STZ. Ekstrak kasar daun S. crispus (daun muda dan tua) disediakan dengan menggunakan air suling dan diberi pada tikus normal and tikus hiperglisemia pada kepekatan 2.5%, 5.0% dan 7.5% selama 21 hari. Paras glukosa, profil lipid (kolesterol keseluruh, trigliserida, HDL-kolesterol, LDL-kolesterol) plasma, status antioksidan keseluruh dan kalium serta magnesium ditentukan pada hari 0, 7 dan 21. Keputusannya menunjukkan ekstrak kasar daun tua S. crispus pada kepekatan 2.5%, 5.0% dan 7.5% menurunkan paras glukosa secara signifikan pada tikus yang diaruh hiperglisemia (p<0.05). Bahagian ketiga kajian ini adalah untuk menilai kesan pengambilan teh S. crispus (difermentasi atau tidak difermentasi) pada tikus normal and tikus hiperglisemia pada kepekatan 2.0% selama 21 hari. Paras glukosa, profil lipid (kolesterol keseluruh, trigliserida, HDL-kolesterol, LDL-kolesterol) plasma, status antioksidan keseluruh dan kalium serta magnesium ditentukan pada hari 0, 7 dan 21. Keputusannya menunjukkan bahawa ke dua-dua teh S. crispus yang difermentasi atau tidak difermentasi menurunkan secara berkesan paras glukosa plasma pada tikus yang diaruh hiperglisemia (p<0.05). Kedua-dua teh S. crispus yang difermentasi atau yang tidak difermentasi juga mampu membaiki paras antioksidan keseluruh dan juga membaiki profil lipid dalam tikus yang diaruh hiperglisemia dengan menurunkan paras kolesterol keseluruh, trigliserida dan LDL-kolesterol. Status antioksidan keseluruh dan HDL-kolesterol juga meningkat pada tikus hiperglisemia yang dirawat dengan teh S. crispus yang difermentasi atau yang tidak difermentasi. Walaubagaimanapun, ke dua-
dua teh tersebut gagal menghalang penurunan magnesium serum dalam tikus hiperglisemia.
ACKNOWLEDGEMENT

“In the name of Allah, The Most Gracious, The Most Merciful”

I thank Allah for His blessings and guidance in my life as a human, a Muslim, a son, a brother and what I have achieved so far. I wish to express my sincere appreciation and gratitude to Assoc. Prof. Dr. Asmah Rahmat, chairperson of my supervisory committee. Her keen interest, effort, advice and concern on my research project are much valued. I would also like to thank the other members of my supervisory committee: Assoc. Prof. Dr. Fauziah Othman for her insightful advice and interest, and Dr. Sharida Fakurazi. Their enthusiastic support, invaluable advice and constructive criticism are valuable. Special thanks to the entire technical staff of the Department of Nutrition and Health Sciences and Department of Clinical Laboratory Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, for their help and technical assistance. My deep gratitude and many thanks to all my friends and postgraduate students at UPM, for their encouragement, technical assistance and advice as well as friendly cooperation during my study. The most important, my special love and gratitude to my beloved family: My father, Abu Bakar Hj Isa; My mother, Salmah Hj Din; my siblings, Nurul Azreen, Nurul Raihana and Nurul Ain, for their love and continuous support, which has made this possible.
I certify that an Examination Committee met on 30 September 2005 to conduct the final examination of Mohd Fadzelly Abu Bakar on his Master of Science thesis entitled "The Effects of Strobilanthes crispus crude and tea extracts in streptozotocin-induced hyperglycemic rats" in Accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulation 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination committee are as follows:

Mary Huang Soo Lee, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Norhaizan Mohd Esa, PhD
Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Muhajir Hamid, PhD
Lecturer
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Musalmah Mazlan, PhD
Professor
Faculty of Medicine
Universiti Kebangsaan Malaysia
(External Examiner)

\[Signature\]

HASANAH MOHD GHAZALI, PhD
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
16 FEB 2006
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master Science. The members of the Supervisory Committee are as follows:

Asmah Rahmat, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Fauziah Othman, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Sharida Fakurazi, PhD
Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 09 MAR 2006
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

MOHD FADZELLY ABU BAKAR

Date: 15/2/2006
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>DEDICATION</th>
<th>ii</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>ix</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xi</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER

I INTRODUCTION

1.1 Background
1.2 Problem Statement
1.3 Objectives

1.3 Objectives

1.3.1 General Objective
1.3.2 Specific Objectives

II LITERATURE REVIEW

2.1 Introduction
2.2 Overview of Diabetes

2.2 Overview of Diabetes

2.2.1 Type 1 Diabetes Mellitus
2.2.1.1 Definition
2.2.1.2 Etiology
2.2.1.3 Current Treatment of type 1 diabetes

2.2.2 Type 2 Diabetes Mellitus
2.2.2.1 Definition
2.2.2.2 Etiology
2.2.2.3 Current Treatment of type 2 diabetes

2.3 Complication of diabetes and related disorder
2.4 Minerals and diabetes

2.4 Minerals and diabetes

2.4.1 Magnesium
2.4.2 Potassium

2.5 Streptozotocin
2.6 The Integrated Antioxidant System
2.7 Total antioxidant status (FRAP assay)
2.8 Lipid peroxidation process

|xii|
2.9 Phenolic Phytochemical as Antioxidant 28
2.10 Free Radical, Antioxidant and Diabetes 29
2.11 Diabetes and Medicinal Plants/Herbs 30
2.12 Tea 31
2.13 *Pecah beling (Strobilanthes crispus)* 33

III METHODOLOGY

3.1 Plant Material 37
3.2 Preparation of *S. crispus* tea 38
 3.2.1 Fermented 38
 3.2.2 Unfermented 40
3.3 Determination of Antioxidant Activity 41
 3.3.1 Extraction 41
 3.3.2 β-carotene Bleaching Method 41
 3.3.3 DPPH Free Radical Scavenging Activity 43
 3.3.4 Ferric reducing / Antioxidant power (FRAP assay) 43
 3.3.5 Determination of Total Phenolic Content 45
3.4 *In vivo* study 46
 3.4.1 Types of leaves 46
 3.4.2 Preparation of *S. Crispus* Crude Extract 46
 3.4.3 Nutritional composition of basal diet 46
 3.4.4 Preparation of *S. Crispus* tea Extract 47
 3.4.5 Study protocol
 3.4.5.1 Experimental Rats 48
 3.4.5.2 Induction of Hyperglycemic Rats 48
 3.4.5.3 Study Design 49
 3.4.6 Biochemical Analysis
 3.4.6.1 Lipid profile analysis 52
 3.4.6.1.1 Total cholesterol 52
 3.4.6.1.2 Triglyceride 54
 3.4.6.1.3 HDL-cholesterol 54
 3.4.6.1.4 LDL-cholesterol 56
 3.4.6.2 Glucose 56
 3.4.6.3 FRAP assay 57
 3.4.6.4 Serum Mineral Content (Potassium and Magnesium) 57
3.5 Statistical Analysis 58

IV RESULTS & DISCUSSIONS

4.1 Total phenolic content and antioxidant properties of *S. crispus* tea 59
 4.1.1 Total Phenolic Content 61
 4.1.2 DPPH Free Radical Scavenging Activity 64
 4.1.3 β-carotene Bleaching Method 67
 4.1.4 Ferric reducing / Antioxidant power (FRAP assay) 69
4.2 Effects of *Strobilanthes crispus* crude extracts on

4.2.1 Body and Liver weight
4.2.2 Glucose
4.2.3 Total cholesterol
4.2.4 Triglyceride
4.2.5 LDL-cholesterol
4.2.6 HDL-cholesterol
4.2.7 Total Antioxidant Status
4.2.8 Potassium
4.2.9 Magnesium

4.3 Effects of *Strobilanthes crispus* tea extracts on

4.3.1 Body and Liver weight
4.3.2 Glucose
4.3.3 Total cholesterol
4.3.4 Triglyceride
4.3.5 HDL-cholesterol
4.3.6 LDL-cholesterol
4.3.7 Total Antioxidant Status
4.3.8 Potassium
4.3.9 Magnesium

VI CONCLUSION AND RECOMMENDATION

5.1 Conclusions
5.2 Recommendations

BIBLIOGRAPHY

AWARDS AND PUBLICATIONS

BIODATA OF THE AUTHOR
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Reactive oxygen species (ROS)</td>
</tr>
<tr>
<td>2.2</td>
<td>Conditions associated with oxidative damage</td>
</tr>
<tr>
<td>2.3</td>
<td>Components of antioxidant protection</td>
</tr>
<tr>
<td>2.4</td>
<td>Free radical scavenging enzymes</td>
</tr>
<tr>
<td>2.5</td>
<td>The comparison of the nutritional composition of S. crispus leaves, fermented S. crispus tea (young and old leaves), unfermented S. crispus tea (young and old leaves) as well as green and black teas</td>
</tr>
<tr>
<td>3.1</td>
<td>Percentage of main nutrient in basal diet</td>
</tr>
<tr>
<td>3.2</td>
<td>Treatment groups for the effect of S. crispus crude extracts</td>
</tr>
<tr>
<td>3.3</td>
<td>Condition of AAS in determination of minerals</td>
</tr>
<tr>
<td>4.1</td>
<td>Total phenolic content of the hot water extract of S. crispus teas.</td>
</tr>
<tr>
<td>4.2</td>
<td>DPPH free radical scavenging activity of hot water extract of S. crispus teas, commercial green and black tea as well as synthetic antioxidant (BHT)</td>
</tr>
<tr>
<td>4.3</td>
<td>Antioxidant activity using β-carotene bleaching method of hot water extract of S. crispus teas, commercial green and black tea as well as synthetic antioxidant (BHT)</td>
</tr>
<tr>
<td>4.4</td>
<td>Antioxidant activity using FRAP (Ferric Reducing/Antioxidant Power) of hot water extract of S. crispus tea, commercial green and black tea.</td>
</tr>
<tr>
<td>4.5</td>
<td>Abbreviations for each treatment group (S. crispus crude extracts)</td>
</tr>
</tbody>
</table>
4.6 Effects of *S. crispus* crude extract on body weight (g) in normal and hyperglycemic rats

4.7 Effects of *S. crispus* crude extract on liver weight (g) in normal and hyperglycemic rats

4.8 Effects of *S. crispus* crude extract on glucose level (mmol/l) in normal and hyperglycemic rats

4.9 Effects of *S. crispus* crude extract on total cholesterol (mmol/l) in normal and hyperglycemic rats

4.10 Effects of *S. crispus* crude extract on triglyceride (mmol/l) in normal and hyperglycemic rats

4.11 Effects of *S. crispus* crude extract on LDL-cholesterol (mmol/l) in normal and hyperglycemic rats

4.12 Effects of *S. crispus* crude extract on HDL-cholesterol (mmol/l) in normal and hyperglycemic rats

4.13 Effects of *S. crispus* crude extract on total antioxidant status (FRAP value) (µmol/l) in normal and hyperglycemic rats

4.14 Effects of *S. crispus* crude extract on serum potassium (K) level (µg/ml) in normal and hyperglycemic rats

4.15 Effects of *S. crispus* crude extract on serum magnesium (Mg) level (µg/ml) in normal and hyperglycemic rats

4.16 Effect of *S. crispus* tea on body weight (g) in normal and STZ-induced hyperglycemic rats

4.17 Effect of *S. crispus* tea on liver weight (g) in normal and STZ-induced hyperglycemic rats

4.18 Effect of *S. crispus* tea on plasma glucose level (mmol/l) in normal and STZ-induced hyperglycemic rats

4.19 Effect of *S. crispus* tea on total cholesterol level (mmol/l) in normal and STZ-induced hyperglycemic rats

4.20 Effect of *S. crispus* tea on triglyceride level (mmol/l) in normal and STZ-induced hyperglycemic rats
4.21	Effect of *S. crispus* tea on HDL-cholesterol level (mmol/l) in normal and STZ-induced hyperglycemic rats	118
4.22	Effect of *S. crispus* tea on LDL-cholesterol level (mmol/l) in normal and STZ-induced hyperglycemic rats	120
4.23	Effect of *S. crispus* tea on total antioxidant status (μmol/l) in normal and STZ-induced hyperglycemic rats	122
4.24	Effect of *S. crispus* tea on serum level potassium (K) (μmol/L) in normal and STZ-induced hyperglycemic rats	125
4.25	Effect of *S. crispus* tea on serum magnesium level (Mg) (μmol/L) in normal and STZ-induced hyperglycemic rats	126
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Strobilanthes crispus ZII 109 (L) Bremek or Saricocalix crispus ZII 109 (L) Bremek (Acanthaceae)</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>Pathogenesis of type 1 diabetes mellitus</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Molecular structure of streptozotocin</td>
<td>22</td>
</tr>
<tr>
<td>3.1</td>
<td>S. crispus young leaves (the apex to the 5th leaf)</td>
<td>37</td>
</tr>
<tr>
<td>3.2</td>
<td>S. crispus old leaves (8th leaf to the 12 leaf).</td>
<td>38</td>
</tr>
<tr>
<td>3.3</td>
<td>Fermented S. crispus tea (young leaves)</td>
<td>39</td>
</tr>
<tr>
<td>3.4</td>
<td>Fermented S. crispus tea (old leaves)</td>
<td>40</td>
</tr>
<tr>
<td>3.5</td>
<td>Unfermented S. crispus tea (young leaves)</td>
<td>40</td>
</tr>
<tr>
<td>3.6</td>
<td>Unfermented S. crispus tea (old leaves)</td>
<td>41</td>
</tr>
</tbody>
</table>

xviii
LIST OF ABBREVIATIONS

AAS = atomic absorption spectrometer
FRAP = ferric reducing ability of plasma or ferric reducing / antioxidant power
HDL-cholesterol = high density lipoprotein cholesterol
LDL-cholesterol = low density lipoprotein cholesterol
VLDL-cholesterol = very low density lipoprotein cholesterol
Min = minute
Hr = hour
Temp = temperature
TBA = thiobarbituric acid
TCA = trichloroacetic acid
DPPH = 1,1-diphenyl-2-picrylhydrazyl
HSDA = N-(2-hydroxy-3-sulfopropyl)-3, 5- dimethoxyaniline
STZ = streptozotocin
GOD = glucose oxidase
POD = peroxidase
TPTZ = 2,4,6-tripyridyl-s-triazine
CHAPTER I

INTRODUCTION

1.1 Background

Prevalence of diabetes in adults worldwide was estimated to be 4.0% in 1995 and this figure was estimated to rise to 5.4% by the year 2025. The prevalence is higher in developed than in developing countries. The number of adults with diabetes in the world will rise from 135 million in 1995 to 300 million in the year 2025. The major part of this numerical increase will occur in developing countries including Malaysia. There will be a 42% increase, from 51 to 72 million, in the developed countries and a 170% increase, from 84 to 228 million, in developing countries. Thus, by the year 2025, more than 75% of people with diabetes will reside in developing countries, as compared with 62% in 1995 (King et al., 1998).

Diabetes is a costly disease and is associated with major long-term implications, not only for the health and well being of the affected individuals, but also for the government. WHO (2002) reported that the direct health costs of treating diabetic patients range from 2.5% to 15% of annual budget, depending on local diabetes prevalence and effectiveness of the treatment available. WHO estimated that there are over 171 million people worldwide who are afflicted with diabetes mellitus (WHO, 2004). These complications contribute to the enormous cost, both economic and
personal, that are associated with this disease. Generally, symptoms of diabetes complications develop years after this disease has occurred (Foster, 1991).

In Malaysia, the high demand for herbs has caused some herbs to be imported from other countries in high quantities. Based on estimated by the Director of Pusat Sumber Genetik Tumbuhan, Institut Biosains, UPM, Dr. Mohd Saad found that value of imported medicinal plants in Malaysia has increased from RM 167 million (1990) to RM 401 million (1997). Meanwhile, the value of medicinal plants exports have also increased from RM 17 million in 1990 to 58 million in 1997. In Berita Minggu Newspaper (1998), he also said that research from their institute found that 80% of the world’s population still depend on traditional medicine, including herb. World Health Organization (WHO), as reported in the Berita Minggu Newspaper estimated that approximately 75 to 95% of world population still depend on traditional medicine for health care.

Malaysia is a country blessed with many kinds of herbs or plants which is frequently used in traditional medicine. In Malaysia, over 15 000 species of higher plants were found and about 1200 of these plant species have been reported to have potential pharmaceutical value some of which are being used as herbal medicine (Soepadmo, 1991). Furthermore, throughout the development of human culture, the use of natural products (especially from medicinal plants) has had magical-religious significance and different points of view regarding the concepts of health and disease existed within each culture (Rates, 2001)
One of the herbs that have great potential and is believed to have health-giving properties is “pecah beling” or *Strobilanthes crispus* (Figure 1.1). It is commonly known as “daun pecah beling” in Jakarta or “enyoh kilo”, “kecibeling” or “kejibeling” in Java (Sunarto, 1977). It is also locally known as “pecah kaca” or “jin batu”.

Figure 1.1: *Strobilanthes crispus* ZII 109 (L) Bremek or *Saricocalix crispus* ZII 109 (L) Bremek (Acanthaceae)
Traditionally, the leaves of pecah beling are boiled with water and the filtrates used in traditional medicine in Malaysia and Indonesia as antidiabetic, diuretic, antilytic and laxative agents. This plant has many cystoliths of calcium carbonate and an infusion is mildly alkaline (Perry & Metzger, 1980). A recent study indicated that the water extract of *S. crispus* contained compounds that inhibits the proliferation of retrovirus; an agent in viral disease such as acquired immune deficiency syndrome (AIDS) and adult T-cell Leukemia (Kusumoto *et al.*, 1992). This plant also possesses antimicrobial properties (Soediro *et al.*, 1983), high antioxidant activity (Ismail *et al.*, 2000), anticancer properties (Endrini, 2003) and antihepatocarcinogenesis (Jaksa *et al.*, 2004).

1.2 Problem statement

Until today, there is no treatment that can completely cure diabetes mellitus. Presently, insulin is used to treat diabetes mellitus type 1. On the other hand, the pharmacological agents currently used for the treatment of type 2 diabetes include sulphonylureas, biguanide, thiazolidinedione and acarbose. These agents however have restricted usage due to several undesirable side effects and failure to significantly alter the course of diabetic complications. Current insulin regimens (in type 1 diabetes mellitus) are problematic in maintaining physiological blood glucose profile (Groop *et al.*, 1985). Hypoglycemic agent such as glibenclamide can cause acidosis and impair cardiac function (Legtenberg *et al.*, 2002) and is not effective in long-term treatment (Gerich *et al.*, 1985). In addition, hypoglycemic drug such as sulphonylurea, leads to a higher risk