UNIVERSITI PUTRA MALAYSIA

ISOLATION, CHARACTERIZATION AND QUANTITATIVE PROTEOMICS ANALYSIS OF CHICKEN DENDRITIC CELLS FOLLOWING INFECTION WITH INFECTIOUS BURSAL DISEASE VIRUS

NOR YASMIN BINTI ABD RAHMAN

IB 2015 22
ISOLATION, CHARACTERIZATION AND QUANTITATIVE PROTEOMICS ANALYSIS OF CHICKEN DENDRITIC CELLS FOLLOWING INFECTION WITH INFECTIOUS BURSAL DISEASE VIRUS

By

NOR YASMIN BINTI ABD RAHAMAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

June 2015
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATED WITH LOVE AND GRATITUDE TO:

MY LOVELY HUSBAND (MOHD HANIFF BIN ABD KADIR),
SON (MOHAMMAD YAZDAN ANIQUE) AND DAUGHTER
(NUR LUTHFIATUS SOLEHAH)
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

ISOLATION, CHARACTERISATION AND QUANTITATIVE PROTEOMICS ANALYSIS OF CHICKEN DENDRITIC CELLS FOLLOWING INFECTION WITH INFECTIOUS BURSAL DISEASE VIRUS

By

NOR YASMIN BINTI ABD RAHAMAN

June 2015

Chairperson: Professor Abdul Rahman Omar, PhD
Faculty: Institute of Bioscience

Infectious bursal disease (IBD) is an extremely contagious and acute disease of young chicken caused by infectious bursal disease virus (IBDV). IBDV can infect B lymphocytes and macrophages. However, study on the involvement of chicken DCs during pathogen infection especially in IBDV infection has not been studied. Hypothesis of this study was chicken DCs are susceptible to IBDV infection and aimed to characterise the interaction between IBDV and chicken DCs as well as the proteomics profiles of chicken DCs during IBDV infections.

DCs were isolated from bone marrow and spleen for in vitro and ex-vivo study, respectively. The isolated DCs were characterized based on morphology, viability and immunophenotyping while IBDV detection were performed based on immunofluorescence antibody test (IFAT), quantitative real-time polymerase chain reaction (qRT-PCR) and flow cytometry. qRT-PCR was also used to detect the expression of selected cytokines from IBDV-infected DCs. Quantitative proteomics using iTRAQ coupled with tandem LC-MS/MS approach and flow cytometry analysis were performed to quantify and validate differentially regulated proteins of BM-DCs.

Morphologically, uninfected BM-DCs were rounded in shape whilst BM-DCs treated with LPS and vvIBDV showed stellate shapes. Both LPS-treated and vvIBDV-infected BM-DCs expressed high levels of CD86 and MHC class II antigens (>20 %) (p<0.05). In addition, vvIBDV-infected BM-DCs showed significantly higher numbers of apoptotic cells compared to LPS. Replication of vvIBDV was detected in the infected BM-DCs as evidenced by the increased in the expression of VP3 and VP4 antigens based on flow cytometry, qRT-PCR and IFAT. LPS was far more potent than vvIBDV in inducing the expression of IL-1β and IL-18, while the expressions of Th1-like cytokines, IFN-γ and IL-12α were significantly increased in vvIBDV treatment group.

iTRAQ analysis coupled with LC-MS/MS analysis, detect the most abundant proteins (~40 %) with a known membranous localization. From the total of 283 proteins that were identified, 55, 47 and 32 proteins were differentially regulated at 3, 6 and 12 hpi, respectively, as a result of vvIBDV infection, with the fold difference ≥ 1.5 or ≤ 0.67 and ProtScore of more than 1.3 at 95 % confidence level. Most of the protein functions that were impaired at 3 hpi were related to signaling, stress response and immune
response, for instance integrin α and β, heat shock proteins (HSPs) especially HSP90α and HSP60. Interestingly, no proteins related to signaling were activated at this time point. These findings give an indication that vvIBDV able to disrupt several important protein functions in order to infect BM-DCs at the early stage.

Control and infected splenic DCs were distinct as infected DCs showed star like shape. In addition, infected splenic DCs in both vaccine strain and vvIBDV strain expressed higher CD86 and MHCII antigens of more than 30 % at day 5 pi. Meanwhile, VP3 and VP4 proteins of IBDV were readily detected in splenic DCs starting from day 3 pi in both vaccine and vvIBDV-infected groups via IFAT, flow cytometry and qRT-PCR, where the expression of these antigens were significantly higher in vvIBDV (p< 0.05). Splenic DCs infected with vaccine and vvIBDV strains also expressed elevated levels of pro-inflammatory cytokines and chemokines such as IL-1β and CXCLi2 as well as Th1-like cytokines such as IL-12α and IFNγ after day 3 onwards.

In conclusion, chicken BM-DCs and splenic DCs are susceptible and permissive to IBDV infection. The virus infects DCs probably via common host proteins that are also found on other cells such as B cells and macrophages.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah

ISOLASI, PENCIRIAN DAN ANALISIS PROTEOMIK KUANTITATIF SEL DENDRITIK AYAM SEMASA JANGKITAN VIRUS PENYAKIT BURSA BERJANGKIT

Oleh

NOR YASMIN BINTI ABD RAHAMAN

Februari 2015

Pengerusi: Profesor Abdul Rahman Omar, PhD
Fakulti: Institut Biosains

Penyakit bursa adalah penyakit yang sangat berjangkit dan akut kepada ayam yang disebabkan oleh virus penyakit berjangkit bursa (IBDV). IBDV boleh menjangkiti sel B dan makrofaj. Walaupun kajian ke atas penglibatan DCs ayam semasa jangkitan patogen termasuk jangkitan IBDV belum dikaji. Hipotesis kajian ini adalah DCs ayam juga terlibat di dalam jangkitan IBDV dan tujuan kajian ini adalah untuk mencirikan interaksi antara IBDV dan DCs serta melibatkan kajian profil proteomik DCs ayam semasa jangkitan IBDV.

DCs diambil daripada sumsum tulang dan limpa untuk kajian in vitro dan ex vivo, masing-masing. DCs yang dijangkiti dicirikan berdasarkan morfologi, peratusan sel hidup, imunofenotip manakala pengesan IBDV dilaksanakan dengan menggunakan ujian antibodi imunopendarfluor (IFAT), reaksi rantai polymerase waktu nyata kuantitatif (qRT-PCR) dan aliran sitometri. qRT-PCR juga digunakan untuk mengesan ekspresi sitokin terpilih daripada DCs yang dijangkiti IBDV. Kajian kuantitatif proteomik yang menggunakan iTRAQ berserta pendekatan LC-MS/MS dan analisis aliran sitometri dilakukan untuk mengukur dan mengesahkan protein BM-DCs.

Secara morfologi, BM-DCs yang tidak dijangkiti menunjukkan bentuk bulat, manakala BM-DCs yang dirawat dengan LPS and vvIBDV menunjukkan bentuk bintang. Kedua-dua BM-DCs yang dirawat dengan LPS dan vvIBDV menunjukkan secara signifikan tahap antigen CD86 dan MHC kelas II yang tinggi (>20 %) (p<0.05). Tambahan pula, BM-DCs yang dijangkiti dengan vvIBDV menunjukkan peningkatan ekspresi antigen VP3 dan VP4 menerusi analisis aliran sitometri, qRT-PCR dan IFAT. vvIBDV dilihat lebih berkesan daripada LPS dalam mendorong ekspresi IL-1β dan IL-18, manakala ekspresi sitokin Th1 iaitu IFN-γ dan IL-12α meningkat secara signifikan di dalam kumpulan rawatan vvIBDV.

Analisis iTRAQ bersama LC-MS/MS mengesahkan kebanyakan protein (~40 %) yang diketahui terletak di membran. Daripada keseluruhan jumlah protein iaitu sebanyak 283 protein yang dikenal pasti, 55, 47 dan 32 ekspresi protein yang diatur secara berbeza selepas 3, 6 dan 12 jam jangkitan, masing-masing, disebabkan jangkitan vvIBDV, dengan perbezaan kali ganda ≥ 1.5 atau ≤ 0.67 dan ProtScore lebih daripada...
1.3 pada 95% tahap keyakinan. Kebanyakan fungsi protein yang terjejas pada 3 jam selepas jangkitan adalah melibatkan fungsi pengisyaratan, respon kepada stress dan tindak balas imun, sebagai contohnya protein integrin α dan β, *heat shock proteins* (HSPs) terutama sekali HSP90α dan HSP60. Menariknya tiada ekspresi protein yang terlibat di dalam fungsi pengisyaratan yang diaktifkan pada masa ini. Penemuan ini menunjukkan yang vvIBDV mampu untuk menjejaskan beberapa fungsi protein yang penting untuk menjangkiti BM-DCs pada peringkat awal.

DCs limpa daripada kumpulan yang tidak dijangkiti dan dijangkiti IBDV adalah berbeza kerana DCs yang dijangkiti menunjukkan bentuk bintang. Tambahan pula, DCs limpa yang dijangkiti dengan kedua-dua strain iaitu strain vaksin dan strain vvIBDV mengekspresi antigen CD86 dan MHCII dengan tinggi iaitu lebih daripada 30% pada hari ke-5 selepas jangkitan. Sementara itu, protein IBDV iaitu VP3 dan VP4 dapat dikesan di dalam DCs limpa bermula dari hari ke -3 selepas dijangkiti strain vaksin dan vvIBDV menerusi IFAT, aliran sitometri and qPCR, dimana ekspresi antigen ini adalah lebih tinggi didalam ayam yang dijangkiti vvIBDV (p< 0.05). DCs limpa yang dijangkiti strain vaksin dan vvIBDV juga mengekspresi peningkatan kadar sitokin dan kemokin yang berkait rapat dengan tindak balas keradangan seperti IL-1β dan CXCLi2 serta sitokin Th1 seperti IL-12α dan IFNγ selepas 3 hari dijangkiti.

Sebagai kesimpulan, BM-DCs dan DCs limpa ayam adalah rentan kepada jangkitan IBDV. Virus ini menjangkiti DCs mungkin melalui protein perumah yang umum yang juga ditemui di dalam sel lain seperti sel B dan makrofaj.
ACKNOWLEDGEMENTS

Bismillahirrahmanirrahim.
First and foremost, praise be to Allah, Lord of the world, the beneficent, the gracious and the most merciful for his endless blessings and gifts throughout my life and during my study. Not to forget, the messenger of Allah that conveys excellent model to us, may Allah honor him and grant him peace.

I would like to express my deepest gratitude for my supervisor, Professor Dr. Abdul Rahman Omar for granting me an excellent opportunity to work in his team. His excellent research idea, his advice and support, patience, untiring assistance, thorough guidance and calm demeanor steered my research towards success. Without his helps, this thesis will not be completed. I would like to give special thanks to Dr. Yeap Swee Keong for mentoring me in every part of my research as well as for his excellent ideas and contributions during my research project. The PhD supervisory committee members, Professor Dr. Pete Kaiser, Professor Dr. Mohd Hair Bin Bejo and Professor Madya Datin Dr. Hjh. Sharida Fakurazi, without your continual advise and support, my PhD would not have been materialized.

The role of Universiti Putra Malaysia and SLAB/SLAI under Ministry of Education were also critical for my PhD work mainly in provision of the scholarship, allowances and other expenses during my four years study and as a tutor in Faculty of Veterinary Medicine. My very heartfelt acknowledgment directly goes to Institute of Bioscience for providing all the necessary facilities during my PhD study.

My very special thanks to every single member of my laboratory mates, Haryati Shila, Farah, Farhana, Amanda, Dr. Parvaneh, Kristine, Sue, Daniel, Dilan, Hamidah, Aimi, Kavitha, Mehdi, Kiarash, Zaraein, Mostaffa, Dr. Farouk, Dr. Hassan, Khanh and of course so many name I might be forgot to mention who contributed directly or indirectly and played a crucial part in my research. I do not have words to express my thanks.

I am very pleased and would like to take this opportunity to pay tribute to every single member of the staff in Laboratory of Vaccines and Immunotherapeutics, Dr. Tan Sheau Wei, Puan Norhafiza Azwa Ghozali, Puan Nancy Liew Woan Charn, Puan Norhaszalina Md. Isa and En. Abdul Rahman Jaafar as well as IBS staff (Pn. Zarina, Pn. Nurul, Pn. Ayuni, Pn. Ayu and En. Tarmizi) for their kindness and assistance while working in the laboratory and as an IBS student.

I would like to express my sincerest gratitude to my lovely husband for his unconditional love and encouragement. Without his unwavering support and patience, I could not have done this. Special tribute to my two blessings, fortitude of my life and who decorated my days more meaningful and wonderful, I love both of you so much dear. I would like also to thank my family (my mom, my dad, my mother in law, Kalsom and her husband, Muhammad, my siblings, my sisters-in law, cousins and my relatives) for their sincere dua’, encouragement and supports.
I certify that a Thesis Examination Committee has met on 25 June 2015 to conduct the final examination of Nor Yasmin Binti Abd Rahaman on her thesis entitled “Isolation, Characterisation and Quantitative Proteomics Analysis of Chicken Dendritic Cells following Infection with Infectious Bursal Disease Virus” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Md Zuki bin Abu Bakar @ Zakaria, PhD
Professor
Institute of Bioscience
Universiti Putra Malaysia
(Chairman)

Siti Suri binti Arshad, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Noorjahan Banu binti Mohammed Alitheen, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Md. Rafiqul Islam, PhD
Professor
Bangladesh Agricultural University,
Bangladesh
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean,
School of Graduate Studies
Universiti Putra Malaysia

Date: 12 August 2015
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Abdul Rahman Omar, PhD
Professor
Institute of Bioscience
Universiti Putra Malaysia
(Chairman)

Mohd Hair Bejo, PhD
Professor
Faculty of Veterinary Medicine
University Putra Malaysia
(Member)

Sharida Fakurazi
Associated Professor
Institute of Bioscience
University Putra Malaysia
(Member)

Pete Kaiser, PhD
Professor
The Roslin Institute
University of Edinburgh
(Member)

BUJANG KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 12 August 2015
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ________________________ Date: __________________

Name and Matric No.: Nor Yasmin Binti Abd. Rahaman/ GS29784
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ________________________________
Name of Chairman of Supervisory Committee: ________________________________

Signature: ________________________________
Name of Member of Supervisory Committee: ________________________________

Signature: ________________________________
Name of Member of Supervisory Committee: ________________________________
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>ABSTRAK</th>
<th>ACKNOWLEDGEMENTS</th>
<th>APPROVAL</th>
<th>DECLARATION</th>
<th>LIST OF TABLES</th>
<th>LIST OF FIGURES</th>
<th>LIST OF ABBREVIATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>iii</td>
<td>v</td>
<td>vii</td>
<td>viii</td>
<td>xv</td>
<td>xvi</td>
<td>xviii</td>
</tr>
</tbody>
</table>

CHAPTER

1. **INTRODUCTION**

2. **LITERATURE REVIEW**

 2.1 Infectious Bursal Disease Virus
 2.1.1 Etiology of IBDV
 2.1.2 History of Infectious Bursal Disease
 2.1.3 Chemical Composition of IBDV
 2.1.4 IBDV Proteins
 2.1.5 Immune Responses to IBDV
 2.1.6 Clinical Signs and Pathology of IBD
 2.1.7 Replication Process of IBDV
 2.1.8 Diagnosis of IBDV
 2.1.8.1 Embryo Inoculation
 2.1.8.2 *In Vitro* Virus Propagation
 2.1.8.3 Serological Methods
 2.1.8.4 Molecular Characterization
 2.1.9 Prevention and Control of IBDV
 2.1.10 IBDV Cellular Receptors

 2.2 Dendritic Cells
 2.2.1 Nature of Dendritic Cells
 2.2.2 Anatomical and Functional Classification of Dendritic Cells
 2.2.3 Dendritic Cells Plasticity
 2.2.4 Dendritic Cells and Pathogen
 2.2.5 Chicken Dendritic Cells

 2.3 Proteomics
 2.3.1 Overview of Proteomics
 2.3.2 Quantitative Proteomics
 2.3.3 iTRAQ LC-MS/MS based Proteomics
 2.3.4 Mass spectrometry: A Tool to Analyze Proteomics Analysis
 2.3.5 Proteomics of Dendritic Cells during Viral Infection
 2.3.6 Chicken Proteomics Research

3 IN VITRO CHARACTERISATION OF CHICKEN BONE MARROW DERIVED DENDRITIC CELLS FOLLOWING INFECTION WITH VERY VIRULENT INFECTIOUS BURSAL DISEASE VIRUS

3.1 Introduction

3.2 Materials and Methods
 3.2.1 Chickens
 3.2.2 In vitro Generation of Chicken BM-DCs
 3.2.2.1 In vitro Primary Culture of Chicken BM-DCs
 3.2.2.2 Preparation of Recombinant GM-CSF and IL-4
 3.2.3 Infection with IBDV and Treatment with LPS
 3.2.4 Morphological Examination of BM-DCs
 3.2.5 Immunophenotyping of BM-DCs using Flow Cytometry
 3.2.6 Apoptosis Study using Flow Cytometry
 3.2.7 Detection of IBDV using Absolute Quantification Real Time Quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR)
 3.2.7.1 Total RNA Extraction of BM-DCs following Treatment of LPS and vvIBDV Infection
 3.2.7.2 Assessment of RNA Quantity
 3.2.7.3 Reverse Transcription (cDNA Synthesis)
 3.2.7.4 VP4 Primer Design, Optimization and Melt Curve Analysis
 3.2.7.5 Preparation of Standard Curve for qRT-PCR
 3.2.7.6 qRT-PCR
 3.2.8 Detection of IBDV Antigens using Flow Cytometer and IFAT
 3.2.9 Gene Expression Study using Relative Quantification Real Time Quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR)
 3.2.9.1 Total RNA Extraction, Reverse Transcription (cDNA Synthesis) and Primers
 3.2.9.2 Generation of Standard Curve
 3.2.9.3 qRT-PCR
 3.2.9.4 Data Analysis for Quantification of Gene Expression
 3.2.10 Statistical Analysis

3.3 Results
 3.3.1 Morphology of BM-DCs following Treatment with LPS and vvIBDV
 3.3.2 Phenotypic Analysis of BM-DCs following LPS and vvIBDV Treatment
 3.3.3 Immunofluorescent Antibody Test of BM-DCs
3.3.4 Annexin V Apoptosis Study 33
3.3.5 Standard Curve for IBDV qRT-PCR 37
3.3.6 Detection of IBDV Antigen using Flow Cytometry and qRT-PCR 39
3.3.7 Standard Curve for Gene Expression Study 39
3.3.8 Gene Expression Analysis 40

3.4 Discussion 43
3.5 Conclusion 45

4 QUANTITATIVE PROTEOMICS ANALYSIS OF CHICKEN BONE MARROW DERIVED DENDRITICS CELLS FOLLOWING VERY VIRULENT INFECTIOUS BURSAL DISEASE VIRUS INFECTION 46
4.1 Introduction 46
4.2 Materials and Methods 47
 4.2.1 In vitro Generation and Infection of Chicken BM-DCs 47
 4.2.2 Extraction of BM-DCs Membrane Proteins 47
 4.2.3 Bradford Protein Assay 49
 4.2.4 Sample Preparation for LC-MS/MS Analysis 50
 4.2.4.1 Isobaric Tag for Relative and Absolute Quantitation (iTRAQ) Method 50
 4.2.4.1 Reduction and Blocking 50
 4.2.4.2 Digesting the Proteins with Trypsin 50
 4.2.4.3 Labelling the Protein Digests with the iTRAQ™ Reagents 50
 4.2.5 LC-MS/MS Analysis 50
 4.2.6 Statistical Analysis 51
 4.2.7 Validation using Flow Cytometry 51
4.3 Results 52
 4.3.1 Bradford Protein Assay 52
 4.3.2 Subcellular Classification of BM-DCs Proteins Identified using LC-MS/MS 52
 4.3.3 Quantitative Membrane Protein Analysis 54
 4.3.4 Differentially Expressed Proteins upon vvIBDV Infection using iTRAQ Analysis Coupled with LC-MS/MS 55
 4.3.5 Biological Function of Differentially Expressed BM-DCs Proteins upon vvIBDV Infection 65
 4.3.6 Validation of Differentially Expressed BM-DCs Membrane Proteins following vvIBDV Infection 71
4.4 Discussion 75
4.5 Conclusion 77

5 CHARACTERISATION OF CHICKEN SPLenic DENDRITIC CELLS FOLLOWING INFECTION WITH VACCINE AND VERY VIRULENT STRAINS OF INFECTIOUS BURSAL DISEASE VIRUS 78
5.1 Introduction 78
5.3 Materials and Methods 79
5.2.1 Propagation of IBDV Strains in SPF Embryonated Chicken Eggs
5.2.1.1 IBDV Strains
5.2.1.2 Inoculation of IBDV via The Chorioallantoic Membrane
5.2.1.3 Harvesting of CAM
5.2.1.4 Titration of Virus
5.2.2 RT-PCR Detection of IBDV in CAM
5.2.2.1 Viral RNA Extraction
5.2.2.2 Assessment of RNA Quantity and Quality
5.2.2.3 Reverse Transcription (cDNA Synthesis)
5.2.2.4 Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR)
5.2.2.5 Separation of PCR Products by Agarose Gel Electrophoresis
5.2.3 Virus Inoculation in SPF Chickens
5.2.3.1 SPF Chickens
5.2.3.2 Inoculation with Vaccine and vvIBDV Strains
5.2.4 Characterisation of IBDV Infected SPF Chickens
5.2.4.1 Clinical Signs, Mortality and Post Mortem
5.2.4.2 Quantification of Viral Load
5.2.4.3 Histopathology of Bursal Tissue
5.2.4.4 Immunohistochemistry Staining of Paraffin-embedded Splenic Tissue
5.2.5 Ex vivo Isolation and Characterisation of Splenic Dendritic Cells
5.2.5.1 Preparation of Splenic DCs
5.2.5.2 Negative Selection Methods by Magnetic Activated Cell Sorting of Splenic DCs
5.2.5.3 Morphology and Ultrastructure Study of Splenic DCs
5.2.5.4 Immunophenotyping Study using Flow Cytometry
5.2.5.5 Surface Expression Analysis of IBDV VP3 using Flow Cytometry
5.2.5.6 BrdU Proliferation Study of Splenic DCs
5.2.5.7 Immunofluorescent Antibody Test of Splenic DCs
5.2.5.8 Quantification of IBDV Load of Splenic DCs using qRT-PCR
5.2.5.9 Quantification of Cytokine Levels of Splenic DCs Using qRT-PCR
5.2.6 Statistical Analysis
5.3 Results
5.3.1 Determination of Median Embryo Infectious Dose (EID50) of IBDV
5.3.2 RT-PCR Detection of IBDV
Clinical Signs and Post Mortem Findings of Chickens Infected with IBDV
Bursal Lesion Score
Detection of Viral Load of Spleen and Bursa of Infected Chickens
Immunohistochemistry Analysis of Paraffin-embedded Splenic Tissue
Morphology Study of Splenic DCs and Macrophages
Immunophenotyping of Splenic DCs of IBDV Infected Chickens
BrdU Proliferation of Splenic DCs Following IBDV Infection
Surface Expression of VP3 on Splenic DCs Following IBDV Infection
Immunofluorescence Antibody Test of Splenic DCs Following IBDV Infection
Quantification of Viral Copy Number of Splenic DCs following IBDV Infection
Cytokine Expression Profiling of Splenic DCs Infected with Vaccine Strain and vvIBDV Strain

Discussion
Conclusion

GENERAL DISCUSSION, CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH

BIBLIOGRAPHY
APPENDICES
BIODATA OF STUDENT
LIST OF PUBLICATIONS
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Real-time Quantitative RT-PCR Probes and Primers</td>
</tr>
<tr>
<td>3.2</td>
<td>Percentage of CD 86 and MHC II Double Positive Cells Following LPS Treatment and vvIBDV Infection at Different Time Points</td>
</tr>
<tr>
<td>3.3</td>
<td>Statistical Differences between Group</td>
</tr>
<tr>
<td>3.4</td>
<td>Expression of IBDV VP3 and VP4 Protein on BM-DCs Following vvIBDV Infection</td>
</tr>
<tr>
<td>3.5</td>
<td>Reference Gene and Target Gene PCR Efficiency and R2 Value from Standard Curve</td>
</tr>
<tr>
<td>4.1</td>
<td>Preparation of Test Samples for Bradford Protein Assay</td>
</tr>
<tr>
<td>4.2</td>
<td>BM-DCs Quantitative Membrane Protein Analysis Following vvIBDV Infection</td>
</tr>
<tr>
<td>4.3</td>
<td>Up Regulated Proteins of BM-DCs at 3 hpi Following vvIBDV Infection</td>
</tr>
<tr>
<td>4.4</td>
<td>Down Regulated Protein of BM-DCs at 3 hpi Following vvIBDV Infection</td>
</tr>
<tr>
<td>4.5</td>
<td>Up Regulated Protein of BM-DCs at 6 hpi Following vvIBDV Infection</td>
</tr>
<tr>
<td>4.6</td>
<td>Down Regulated Protein of BM-DCs at 6 hpi Following vvIBDV Infection</td>
</tr>
<tr>
<td>4.7</td>
<td>Up Regulated Protein of BM-DCs at 12 hpi Following vvIBDV Infection</td>
</tr>
<tr>
<td>4.8</td>
<td>Down Regulated Protein of BM-DCs at 12 hpi Following vvIBDV Infection</td>
</tr>
<tr>
<td>4.9</td>
<td>Functional classification of BM-DCs Proteins Following vvIBDV Infection</td>
</tr>
<tr>
<td>5.1</td>
<td>Viral Load of Spleen and Bursa from Vaccine Strain and vvIBDV Strain Inoculated SPF Chickens</td>
</tr>
<tr>
<td>5.2</td>
<td>Quantification of Viral Load from Splenic DCs</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Structure of IBDV Capsid and Inner Surface</td>
</tr>
<tr>
<td>2.2</td>
<td>Structure of IBDV Viral Protein in Segment A and Segment B of IBDV</td>
</tr>
<tr>
<td>2.3</td>
<td>Classification of Human DCs Subset from Progenitor to Mature Cells</td>
</tr>
<tr>
<td>2.4</td>
<td>Overview of Techniques in Quantitative Proteomics</td>
</tr>
<tr>
<td>2.5</td>
<td>Isotope Tagged Relative and Absolute Quantitation (iTRAQ)</td>
</tr>
<tr>
<td>3.1</td>
<td>Morphology of BM-DCs</td>
</tr>
<tr>
<td>3.2</td>
<td>Immunofluorescence Detection of IBDV VP3 Protein and DCs CD86 Surface Marker in BM-DCs</td>
</tr>
<tr>
<td>3.3</td>
<td>Annexin V/PI Apoptotic Analysis of BM-DCs Following LPS Treatment and vvIBDV Infection at 3, 6, 12 and 24 hpi</td>
</tr>
<tr>
<td>3.4</td>
<td>Standard Curve of Linear Relationship of 10-fold Serially Diluted RNA of Positive Control and Quantification Cycle (Cq)</td>
</tr>
<tr>
<td>3.5</td>
<td>Amplification Curve of vvIBDV using Absolute Quantification SYBR Green QRT-PCR from 10 Fold Serial Dilution of Total RNA</td>
</tr>
<tr>
<td>3.6</td>
<td>Melt Peak Curve Analysis of vvIBDV using Absolute Quantification SYBR Green QRT-PCR</td>
</tr>
<tr>
<td>3.7</td>
<td>Quantification of mRNA Levels of Th1-like Cytokines Namely IL-12α and IFN-γ in LPS treated BM-DCs and IBDV infected BM-DCs</td>
</tr>
<tr>
<td>3.8</td>
<td>Quantification of mRNA Levels of Pro-Inflammatory Cytokines Namely IL-1β and IL-18, and Chemokines CXCLi2 in LPS Treated BM-DCs and IBDV Infected BM-DCs</td>
</tr>
<tr>
<td>4.1</td>
<td>Workflow of iTRAQ Proteomics Experiment</td>
</tr>
<tr>
<td>4.2</td>
<td>The Linear Graph of Bradford Protein Quantification</td>
</tr>
<tr>
<td>4.3</td>
<td>Total Identified Proteins: Subcellular classification Based on Gene Ontology (GO) Annotation Identified by LC-MS/MS</td>
</tr>
<tr>
<td>4.4</td>
<td>Total Number of Differentially Expressed BM-DCs Proteins in Comparison to Control</td>
</tr>
<tr>
<td>4.5</td>
<td>Functional Classification of Differentially Expressed BM-DCs</td>
</tr>
</tbody>
</table>
Proteins upon vvIBDV Infection at 3 hpi based on GO Annotation

4.6 Functional Classification of Differentially Expressed BM-DCs Proteins upon vvIBDV Infection at 6 hpi based on GO Annotation

4.7 Functional Classification of Differentially Expressed BM-DCs Proteins upon vvIBDV Infection at 12 hpi based on GO Annotation

4.8 Validation of Differentially Expressed Membrane Protein of BM-DCs upon vvIBDV Infection.

5.1 Workflow on Isolation and Characterizations of DCs from Spleen Following Infection with IBDV

5.2 RT-PCR Detection of VP2 Gene of IBDV from CAM Homogenate

5.3a Bursa of Fabricius from Control Chickens

5.3b Microscopic Examination of Vaccine Strain Infected Bursa

5.3c Microscopic Examination of vvIBDV Strain Infected Bursa

5.4 Immunohistochemistry Detection of IBDV VP3 Protein and CD86 Positive on Spleen.

5.5 Morphology of Uninfected Splenocytes and Splenic DCs Inoculated with Vaccine and vvIBDV Strain at Day 3 pi

5.6 Morphology of Splenic Macrophages Inoculated with Vaccine Strain and VvIBDV strain at Day 3 pi.

5.7 Percentage of MHC II and CD86 Double Positive on Splenic DCs following Vaccine Strain and VvIBDV Inoculation

5.8 Splenic DCs Viability Assessment via BrdU Assay

5.9 Surface expression of VP3 and CD86 Antigen on the Surface of Splenic DCs following Vaccine Strain and VvIBDV Inoculation

5.10 Immunofluorescence Detection of IBDV VP3 and CD86 Antigen on Splenic DCs

5.11 Quantification of mRNA Levels of Pro-inflammatory Cytokines, IL-1β and CXCLi2 (IL-8) in Splenic DCs following Vaccine Strain and VvIBDV Strain Inoculation

5.12 Quantification of mRNA Levels of Th1-like Cytokines IL-12α and IFN-γ in Splenic DCs following Vaccine Strain and VvIBDV strain Inoculation
LIST OF ABBREVIATIONS

A Absorbance
AC-ELISA Antigen capture-Enzyme-linked immunoabsorbent assay
AI Avian Influenza
ANOVA Analysis of variance
APC Allophycocyanin
APC Antigen presenting cells
ATP Adenosine triphosphate
B Base
BGM-70 Buffalo green monkey kidney
BM Bone marrow
BM-DCs Bone marrow derived dendritic cells
Bp Base pair
BrdU Bromodeoxyuridine
BSA Bovine serum albumin
CAM Chorioallantoic membrane
CAV Chicken anemia virus
CD Cluster of differentiation
cDNA Complementary deoxyribonucleic acid
CEE Chicken embryonated eggs
CEF Chicken embryo fibroblasts
CEK Chicken embryo kidney
cIBDV Classical strain of infectious bursal disease virus
CMI Cell mediated immunity
CMV Cytomegalovirus
CO₂ Carbon dioxide
COS-7 Transformed African green monkey kidney fibroblast cells
Cq Quantification cycle
CXCLi Chemokine (C-X-C motif) ligand
DAMPs Danger associated membrane proteins
DAPI 4',6-diamidino-2-phenylindole
DC Dendritic cells
ddH₂O Double distilled water
DIGE Difference gel electrophoresis
DMEM Dulbecco's Modified Eagle's Medium
DMSO Dimethyl sulfoxide
DNA Deoxyribonucleic acid
dNTP Deoxyribonucleotide triphosphate
Dpi Day post-infection
ds Double stranded
EDTA Ethylene-diamine-tetraacetic-acid
EID₅₀ 50% Egg Infectious Dose
ELISA Enzyme-linked immunoabsorbent assay
ERK Extracellular-signal-regulated kinases
ESI Electrospray ionization
FACS Fluorescence activated cell sorter
FAM 6-carboxyfluorescein
FBS Fetal bovine serum
FDC Follicular dendritic cells
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDR</td>
<td>False discovery rate</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluorescein isothiocyanate</td>
</tr>
<tr>
<td>G</td>
<td>Gauge</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>g</td>
<td>Gravitational force</td>
</tr>
<tr>
<td>GAPDH</td>
<td>Glyceraldehyde-3-phosphate dehydrogenase</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>Granulocyte monocyte-colony stimulating factor</td>
</tr>
<tr>
<td>GO</td>
<td>Gene Ontology</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>HIV</td>
<td>Human immunodeficiency virus</td>
</tr>
<tr>
<td>HPAI</td>
<td>High pathogenic avian influenza</td>
</tr>
<tr>
<td>hpi</td>
<td>hours post infection</td>
</tr>
<tr>
<td>HPLC</td>
<td>High-performance liquid chromatography</td>
</tr>
<tr>
<td>HPV</td>
<td>Human papillomavirus HSP</td>
</tr>
<tr>
<td>HSP</td>
<td>Herpes simplex virus</td>
</tr>
<tr>
<td>IBD</td>
<td>Infectious bursal disease</td>
</tr>
<tr>
<td>IBD-ICX</td>
<td>IBD-immune complex</td>
</tr>
<tr>
<td>IBDV</td>
<td>Infectious bursal disease virus</td>
</tr>
<tr>
<td>IBV</td>
<td>Infectious bronchitis virus</td>
</tr>
<tr>
<td>ICAT</td>
<td>Isotope-coded affinity tag</td>
</tr>
<tr>
<td>IDC</td>
<td>Interdigitating dendritic cells</td>
</tr>
<tr>
<td>IFAT</td>
<td>Immunoflorescent antibody test</td>
</tr>
<tr>
<td>IFN</td>
<td>Interferon</td>
</tr>
<tr>
<td>Ig</td>
<td>Immunoglobulin</td>
</tr>
<tr>
<td>IgG</td>
<td>Immunoglobulin G</td>
</tr>
<tr>
<td>IgM</td>
<td>Immunoglobulin M</td>
</tr>
<tr>
<td>IHC</td>
<td>Immunohistochemistry</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>iNOS</td>
<td>Inducible nitric oxide synthases</td>
</tr>
<tr>
<td>iTRAQ</td>
<td>Isobaric tag for relative and absolute quantitation</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilo Dalton</td>
</tr>
<tr>
<td>KH2PO4</td>
<td>Potassium chloride</td>
</tr>
<tr>
<td>KH2PO4</td>
<td>Monopotassium phosphate</td>
</tr>
<tr>
<td>LAMP</td>
<td>Lysosomal-associated membrane protein</td>
</tr>
<tr>
<td>LC-MS/MS</td>
<td>Liquid chromatography tandem mass spectrometry</td>
</tr>
<tr>
<td>LL</td>
<td>Lymphoid leucosis</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharides</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>m/z</td>
<td>Mass-to-charge ratio</td>
</tr>
<tr>
<td>mAb</td>
<td>Monoclonal antibody</td>
</tr>
<tr>
<td>MACS</td>
<td>Magnetic activated cell sorting</td>
</tr>
<tr>
<td>MALDI</td>
<td>Matrix-assisted laser desorption/ionization</td>
</tr>
<tr>
<td>MD</td>
<td>Marek’s disease</td>
</tr>
<tr>
<td>MDA5</td>
<td>Melanoma differentiation-associated gene 5 -like receptors</td>
</tr>
<tr>
<td>MHC</td>
<td>Major Histocompatibility complex</td>
</tr>
<tr>
<td>MIP</td>
<td>Major intrinsic protein</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mM</td>
<td>Mili Molar</td>
</tr>
<tr>
<td>MOI</td>
<td>Multiplicity of infection</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger ribonucleic acid</td>
</tr>
<tr>
<td>MS</td>
<td>Mass spectrometry</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>MYD88</td>
<td>Myeloid differentiation primary response 88</td>
</tr>
<tr>
<td>n</td>
<td>Sample size</td>
</tr>
<tr>
<td>NaoH</td>
<td>Sodium hydroxide</td>
</tr>
<tr>
<td>ND</td>
<td>Not detected</td>
</tr>
<tr>
<td>NDV</td>
<td>Newcastle disease virus</td>
</tr>
<tr>
<td>NF-kB</td>
<td>Kappa-light-chain-enhancer of activated B cells</td>
</tr>
<tr>
<td>NFQ</td>
<td>3' nonfluorescent quencher</td>
</tr>
<tr>
<td>ng</td>
<td>Nanogram</td>
</tr>
<tr>
<td>NK</td>
<td>Natural killer</td>
</tr>
<tr>
<td>OD</td>
<td>Optical density</td>
</tr>
<tr>
<td>OK</td>
<td>Ovine kidney</td>
</tr>
<tr>
<td>ORF</td>
<td>Open reading frame</td>
</tr>
<tr>
<td>P</td>
<td>Projection</td>
</tr>
<tr>
<td>p</td>
<td>Sample Proportion</td>
</tr>
<tr>
<td>PAMPS</td>
<td>Pathogen-associated molecular patterns</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffer saline</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>pDCs</td>
<td>Plasmacytoid dendritic cells</td>
</tr>
<tr>
<td>PerCp</td>
<td>Peridinin chlorophyll A protein</td>
</tr>
<tr>
<td>PI</td>
<td>Propidium iodide</td>
</tr>
<tr>
<td>pi</td>
<td>Post infection</td>
</tr>
<tr>
<td>PI</td>
<td>Propium iodide</td>
</tr>
<tr>
<td>PRRs</td>
<td>Pathogen recognition receptors</td>
</tr>
<tr>
<td>PSPEP</td>
<td>Proteomics System Performance Evaluation Pipeline</td>
</tr>
<tr>
<td>qRT-PCR</td>
<td>Real-time reverse transcription PCR</td>
</tr>
<tr>
<td>R²</td>
<td>Coefficient of correlation</td>
</tr>
<tr>
<td>RFLP</td>
<td>Restriction fragment length polymorphism</td>
</tr>
<tr>
<td>RK-13</td>
<td>Rabbit kidney-13</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>Rpm</td>
<td>Revolution per minute</td>
</tr>
<tr>
<td>RPMI</td>
<td>Roswell Park Memorial Institute</td>
</tr>
<tr>
<td>RSV</td>
<td>Respiratory syncytial virus</td>
</tr>
<tr>
<td>RT</td>
<td>Room temperature</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Reverse transcription polymerase chain reaction</td>
</tr>
<tr>
<td>SCX</td>
<td>Strong cation exchange liquid chromatography</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscope</td>
</tr>
<tr>
<td>sIgM</td>
<td>Surface immunoglobulin M</td>
</tr>
<tr>
<td>SILAC</td>
<td>Stable isotope labeling by amino acids in cell culture</td>
</tr>
<tr>
<td>sp</td>
<td>Species</td>
</tr>
<tr>
<td>SPF</td>
<td>Specific pathogen free</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical program for social science</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris-acetate-EDTA</td>
</tr>
<tr>
<td>Th-1</td>
<td>T helper-1</td>
</tr>
<tr>
<td>TLR</td>
<td>Toll-like receptors</td>
</tr>
<tr>
<td>Tm</td>
<td>Melting temperature</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumor necrosis factor</td>
</tr>
<tr>
<td>TOF</td>
<td>Time of flight</td>
</tr>
<tr>
<td>tRNAs</td>
<td>Transfer ribonucleic acid</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>UPM</td>
<td>Universiti Putra Malaysia</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>UPR</td>
<td>Unfolded protein response</td>
</tr>
<tr>
<td>USA</td>
<td>United State of America</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume per volume</td>
</tr>
<tr>
<td>Vero</td>
<td>African green monkey kidney</td>
</tr>
<tr>
<td>VNT</td>
<td>Virus neutralization test</td>
</tr>
<tr>
<td>VOPBA</td>
<td>Virus overlay protein blotting assay</td>
</tr>
<tr>
<td>VP</td>
<td>Viral protein</td>
</tr>
<tr>
<td>VRI</td>
<td>Veterinary Research Institute</td>
</tr>
<tr>
<td>VSV</td>
<td>Vesicular stomatitis virus</td>
</tr>
<tr>
<td>vv</td>
<td>Very virulent</td>
</tr>
<tr>
<td>vvIBDV</td>
<td>Very virulent strain of infectious bursal disease virus</td>
</tr>
<tr>
<td>w/v</td>
<td>Weight per volume</td>
</tr>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>ºC</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>µg</td>
<td>Microgram</td>
</tr>
<tr>
<td>µl</td>
<td>Microliter</td>
</tr>
<tr>
<td>1D-LCMS</td>
<td>One Dimensional Liquid chromatography–mass spectrometry</td>
</tr>
<tr>
<td>2-DE</td>
<td>Two-dimensional electrophoresis</td>
</tr>
<tr>
<td>α</td>
<td>Alpha</td>
</tr>
<tr>
<td>β</td>
<td>Beta</td>
</tr>
<tr>
<td>γ</td>
<td>Gamma</td>
</tr>
</tbody>
</table>
Poultry industry in Malaysia is an important livestock sector which represents a major proportion of the industry besides aquaculture and pig productions. Malaysia has been self-sufficient in the poultry meat and eggs production since 2002 with the percentage of self-sufficient for 2011 at 132% (Mohamed et al., 2013). However, the industry is facing constant threat and challenges. Infectious diseases are major threat that cause significant economic losses in terms of mortality, condemnation of carcass, poor performance parameters and increased in the cost of medication (Omar, 2013). In addition, viral infections such as Marek’s disease virus (MDV), retrovirus causing lymphoid leucosis (LL), chicken anemia virus (CAV) and infectious bursal disease virus (IBDV) can impair the host immune responses, hence, causing immunosuppression (Hoerr, 2010). Viral induced immunosuppression is a problematic issue that is challenging to manage in poultry flocks due to its significance impact to the health status of the chickens and can lead to vaccination failure against various diseases.

Infectious bursal disease virus (IBDV) is classified under the family Birnaviridae (Dobos, 1979), a bi-segmented and double-stranded RNA (dsRNA) virus with a single-shelled, non-enveloped virions (MacDonald, 1980; Müller et al., 1979). Serotype I IBDV strains can be grouped into different subtypes/strains namely classical strains, variant strains and very virulent strains (van den Berg, 2000). Among these strains, the vvIBDV strain have been reported in several countries and have caused serious problem in commercial poultry industry due to the inability of maternal antibody from classical IBDV vaccine in inducing complete protection (Williams & Davidson, 2005). The virus cause a disease known as infectious bursal disease (IBD) (Gumboro disease), which is difficult to control in commercial flocks since it able to resist many disinfectants and capable of causing high mortality and inducing immunosuppression in susceptible chickens (Van Den Berg et al., 2004).

Infectious bursal disease virus (IBDV) is a lymphotropic virus which known to target IgM+ B cells (Withers et al., 2006; Rodenberg et al., 1994) and macrophage (Palmquist et al., 2006; Khatri et al., 2005). Moreover, IBDV infection promotes infiltration of T cells in infected organ such as bursa of Fabricus (Rautenschlein et al., 2002; Kim et al., 2000). However, T cells are refractory to IBDV infection (Mahgoub, 2012). Hence, chicken infected with the virus develop immunosuppression due to the depletion of IgM bearing B-lymphocytes and disturbance in the innate and cell-mediated immunity responses due to direct activation of macrophage and indirect activation of T cells which subsequently lead to massive production of proinflammatory cytokines (Ingrao et al., 2013). In contrary, the involvement of other immune cells such as dendritic cells (DCs) during IBDV infection has not been characterized.

In mammals, dendritic cells (DCs) are well known as professional antigen presenting cells (APC) linking the innate and acquired immunity during combating infectious diseases (Steinman et al., 2003). DCs progenitors are originated from bone marrow and further differentiated into circulating immature DCs with high ability to capture antigen (Granucci et al., 2003). Once exposed to pathogens, immature DCs migrated to T cell regions of different lymphoid organs and undergo maturation with high antigen presenting capabilities particularly to CD4 helper T cells for the activation of immune responses (Liu, 2001). The activated helper T cells play an important role in activating
other cells such as natural killer cells (NK), eosinophils and macrophages as well as antigen specific cells such as B cells and CD8 cytotoxic T cells. As a result, these cells are recruited to migrate to the damage or infected site in order to prevent the infection from continue to harm the host (Rescigno & Borrow, 2001).

Currently, majority of the studies on the interaction between viruses and DCs are on human virus infection. DCs infected with respiratory syncytial virus (RSV) associated with virus replication and DCs maturation (González et al., 2008). Meanwhile, viruses such as dengue virus, influenza virus and herpesvirus are able to replicate inside DCs but impede the maturation process (Boonnak et al., 2008; Fernandez-Sesma et al., 2006; Novak and Peng, 2005). On the other hand, viruses such as human papilloma virus able to present antigen without replicating inside DCs (García-Piñeres et al., 2006). Hence, characterisation of the interplay between viruses with chicken DCs will provide valuable information in the role of DCs during infection and immunity.

In addition, chicken lack of lymph node as a defense mechanism against infection, yet, chicken also exposed to various kind of pathogen akin to mammals (Wu & Kaiser, 2011). Hence, the involvement of APC are utmost crucial in immune system of chicken. In chicken, DCs progenitor from bone marrow; follicular DCs from secondary lymphoid organs namely spleen, Harderian glands, Payer’s patches and cecal tonsils; as well as Langerhans cells have been studied (Ly et al., 2010; Wu et al., 2010; del Cacho et al., 2008; Igyarto et al., 2006). However, the involvements of chicken DCs during viral infection and immune responses are not well characterized. Thus far, no studies have investigated the role of chicken DCs during IBDV infection. Fundamental study on the interaction of DCs and IBDV will provide valuable information in understanding the role of professional APCs in chickens and their molecular interactions during IBDV infection and vaccination. Since, B cells and macrophages are also APC and are the target of IBDV infection, the hypotheses of this study are:

a) chicken DCs are susceptible to IBDV infection
b) IBDV infected DCs will secrete cytokines resemble other APC such as B cells and macrophages
c) proteomics profiling of IBDV infected DCs will identify differentially regulated DCs proteins that are important during IBDV infection

Hence, in order to address these hypotheses, the specific objectives of this study were:

a) to isolate and compare the bone marrow derived dendritic cells (BM-DCs) response following in vitro stimulation with vvIBDV and lipopolysaccharides (LPS)
b) to determine the expression levels of IBDV, DC activation markers and cytokines production of BM-DCs following in vitro vvIBDV infection
c) to identify the proteome of BM-DCs following in vitro vvIBDV infection based on iTRAQ and LC/MS-MS analysis
d) to characterize in silico and validate the expressions of differentially regulated proteins of BM-DCs following in vitro vvIBDV infection
e) to isolate and compare the splenic DCs responses based on expression levels of IBDV, DC activation markers and cytokines production following vaccine strain and very virulent strain of IBDV inoculation in SPF chickens
BIBLIOGRAPHY

serology with protection of progeny chickens against IBD virus strains of varying virulence. Avian Pathology, 30, 345-354.

Meir, R., Jackwood, D.J. & Weisman, Y. (2001). Molecular typing of infectious bursal disease virus of Israeli field and vaccine strains by the reverse
transcription/polymerase chain reaction/restriction fragment length polymorphism assay. Avian Diseases, 45, 223-228.

