UNIVERSITI PUTRA MALAYSIA

ANTI-ANGIOGENIC AND ANTI-HEPATOCELLULAR CARCINOMA PROPERTIES OF ZERUMBONE EXTRACTED FROM ZINGIBER ZERUMBET (L.) SMITH

NOZLENA BINTI ABDUL SAMAD

IB 2015 21
ANTI-ANGIOGENIC AND ANTI-HEPATOCELLULAR CARCINOMA PROPERTIES OF ZERUMBONE EXTRACTED FROM ZINGIBER ZERUMBET (L.) SMITH

By

NOZLENA BINTI ABDUL SAMAD

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

April 2015
Abstract of thesis presented to the senate of Universiti Putra Malaysia in fulfillment of the requirements for the degree of Doctor of Philosophy

ANTI-ANGIOGENIC AND ANTI-HEPATOCELLULAR CARCINOMA PROPERTIES OF ZERUMBONE EXTRACTED FROM ZINGIBER ZERUMBET (L.) SMITH

By

NOZLENA BINTI ABDUL SAMAD

April 2015

Chairman: Ahmad Bustamam Abdul, PhD
Faculty: Institute of Bioscience

Zerumbone (ZER) extracted from Zingiber zerumbet is known to have anti-cancer properties; however, its mechanism in curbing liver cancer growth and spread is still not clear. Thus the objective of this study is determine the in vitro anti-cancer effect of ZER towards HepG2 cell line and the in vivo effect on induced rat hepatocellular carcinoma (HCC). The anti-cancer mechanisms investigated were apoptosis, anti-proliferation and anti-angiogenesis. Zerumbone was shown to be toxic towards HepG2 cells with IC\textsubscript{50} of 6.20±0.70 µg/mL and less toxic towards normal liver cells (WRL68) with IC\textsubscript{50} of 61.00±0.40 µg/mL. The study showed that ZER caused cell cycle arrest at the G2/M phase and apoptosis, demonstrated by chromatin condensation, cell shrinkage and formation of apoptotic bodies in the HepG2 cells in a time-dependent manner. Zerumbone also stimulated caspase-3 and -9 activities in the HepG2 cells, suggesting that the induction of apoptosis was via the mitochondrial pathway. The study employed the diethylnitrosamine-induced rat HCC model and the rat aortic ring to determine the effect of ZER treatment. The study showed that ZER significantly (p<0.05) inhibited microvessel outgrowth in the aortic ring model. Zerumbone at 12.5 µg/mL caused the most significant (p<0.05) 98±1.28% blood vessels inhibition compared with the control and inhibited endothelial tube formation at 96.00±0.72%. This study showed that ZER treatment decreases expression of VEGF, MMP-9 and Ki-67 in the rat HCC tissue as well as and inhibits neovascularization in the chick embryo. The treatment had also induced apoptosis in HCC. The ZER-treated liver tissues with HCC showed normal hepatocyte orientation, unlike the untreated livers, which showed pleomorphic hepatocytes and anaplastic appearance typical of HCC. It can be concluded from the study that the anti-cancer effect of ZER on the HepG2 cell line and HCC is multifaceted involving induction of cell cycle arrest, apoptosis, and suppression of VEGFR, VEGF, MMP-9 and Ki-67 proteins, leading to inhibition of angiogenesis. Since ZER was less toxic to the normal liver cells, this compound is a potentially effective anti-HCC agent, without significant side-effects and can be developed as a therapeutic regime either alone or in combination with other chemotherapeutic agents.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah

KANDUNGAN ANTI-ANGIOGENESIS DAN ANTI-KARSINOMA HEPATOSEL BAGI ZERUMBON YANG DI EKSTRAK DARI ZINGIBER ZERUMBET (L.) SMITH

Oleh

NOZLENA BINTI ABDUL SAMAD

April 2015

Pengerusi: Ahmad Bustamam Abdul, PhD
Fakulti: Institut Biosains

Zerumbon (ZER) yang diekstrak daripada Zingiber zerumbet diketahui mempunyai sifat anti-kanser; bagaimanapun mekanisme dalam perencatan pertumbuhan dan perebakkan kanser hati masih belum jelas. Objektif kajian ini ialah untuk menentukan kesan anti-kanser ZER in vitro terhadap titisan sel HepG2 dan kesan in vivo pada karsinoma hepatosel (HCC) tikus. Mekanisme anti-kanser yang diselidik ialah apoptosis, anti-pemproliferatan dan anti-angiogenesis. Perubahan morfologi ditentukan melalui mikroskopi elektron imbasan. Zerumbon didapati toksik terhadap sel HepG2 dengan IC_{50} 6.20±0.40 µg/mL dan kurang toksik kepada sel hati normal (WRL68) dengan IC_{50} 61.00±0.04 µg/mL. Kajian ini menunjukkan ZER menyebabkan sekatan kitaran sel pada fasa G2/M dan apoptosis, yang ternyata sebagai pengenapan kromatin, pengecutan sel dan pembentukan jasad apoptosis pada sel HepG2 yang berlaku secara bersandarkan masa. Zerumbon juga merangsang aktiviti kaspase-3 dan -9 dalam sel HepG2, dimana ini menunjukkan bahawa pengaruh apoptosis adalah melalui arah laluan mitokondrion. Kajian ini telah menunjukkan bahawa ZER pada kepekatan 12.5µg/ml merancat pertumbuhan mikrovesel secara paling ketara (p<0.05) dalam model gegelang aorta serta merancat pembentukan tiub endotelium pada kadar 96.00±0.72%. Apoptosis dalam tisu hati terperlaku ZER ditentukan melalui assai TUNEL. Kajian ini menunjukkan bahawa perencatan ZER telah mengurangkan penyataan protein VEGF, MMP-9 dan Ki-67 pada tisu HCC tikus dan juga merancat neopengvaskulararan pada embrio anak ayam. Perlakuan ini juga telah menunjukkan apoptosis dalam HCC. Tisu hati dengan HCC yang diperlakukan ZER menunjukkan orientasi hepatosit yang normal, bukan seperti pada hati yang tidak terperlaku, yang menunjukkan hepatosit pleomorfik and tampilan anaplasia yang tipikal untuk HCC. Kesimpulan daripada kajian ini ialah, kesan anti-kanser ZER terhadap titisan sel HepG2 dan HCC adalah berperan mengurangkan seketan titisan dan apoptosis serta penindasan protein VEGFR, VEGF, MMP-9 dan Ki-67, yang membawa kepada perencatan angiogenesis. Oleh kerana ZER kurang toksik terhadap titisan sel hati normal, maka sebatian ini adalah berpotensi berkesan sebagai agen anti-HCC, tanpa kesan sampingan yang ketara dan boleh dikembangkan sebagai regim terapeutik sama ada secara bersendirian atau gabungan dengan agen kemoterapi lain.
ACKNOWLEDGEMENTS

First and foremost, I would like to thank God for being my pillar for strength and support for who am I today.

I would like to dedicate my immense gratitude to my distinguished and respectful supervisor, Dr Ahmad Bustamam bin Abdul for his unflagging enthusiasm, valuable guidance and constant encouragement throughout the tenure of my study in UPM. I am also thankful to my co-supervisors, Prof. Dr. Rasedee Bin Abdullah and Prof. Dr. Tengku Azmi Bin Tengku Ibrahim for their constructive suggestions, guidance and comments. Heartfelt thanks and appreciation goes to the Malaysian Government and Universiti Putra Malaysia for providing financial assistance through RU Grant Scheme (Vot:9366300).

Deepest thanks go to the utmost important people in my life, my late father, Abdul Samad Bin Yusof, my mother Noorpishah Binti Hussein, my late stepmother, Tom Binti Chek Doh, my husband, Mazrizal Bin Ahamad and my lovely daughter Fatin Nur Qistiena, my brother, Noor Sany Bin Abdul Samad, my sister, Zarina Binti Abdul Samad. Their prayers, blessings, love and care undoubtedly strengthen days in UPM.

Last but not least, my sincere thanks to my friends and staff of UPM-MAKNA Cancer Research Laboratory who had rendered hours of unceasing help and unconditional hospitality. Finally, this thesis would not be completed without the help and companion of all kind-hearted and wonderful God’s creation. Thank you all.
I certify that a Thesis Examination Committee has met on 27 April 2015 to conduct the final examination of Nozlena binti Abdul Samad on his thesis entitled “Anti-Angiogenic and Anti-Hepatocellular Carcinoma Properties of Zerumbone Extracted from *Zingiber zerumbet* (L.) Smith” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Md Zuki bin Abu Bakar @ Zakaria, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Noorjahan Banu binti Mohammed Alitheen, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Cheah Yoke Kqueen, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Fang-Rong Chang, PhD
Professor
Kaohsiung Medical University
Taiwan
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 17 June 2015
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirements for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Ahmad Bustamam Bin Abdul, PhD
Senior Lecturer
Institute of Bioscience
Universiti Putra Malaysia
(Chairman)

Rasedee Bin Abdullah, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Tengku Azmi Bin Tengku Ibrahim, PhD
Professor
Faculty of Veterinary Medicine
University Malaya
(Member)

BUJANG KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: _____________

Name and Matric No.: Nozlena Binti Abdul Samad, GS30579
Declaration by Members of Supervisory committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as slated in Rule 41 in Rules 2003 (Revision 2012-2013) were adhered to.

Signature:

Name of Chairman of Supervisory Committee:

Dr. Ahmad Bustamam Bin Abdul

Signature:

Name of Chairman of Supervisory Committee:

Prof. Dr. Rasedee Bin Abdullah

Signature:

Name of Chairman of Supervisory Committee:

Prof. Dr. Tengku Azmi Bin Tengku Ibrahim
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>iv</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xv</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Introduction 1
1.2 Aim and Objectives 3
1.3 Hypothesis of The Study 3

2 LITERATURE REVIEW

2.1 Natural Product of Medicinal Value 5
2.2 Zingiberacea Family 6
 2.2.1 Botanical aspects of *Zingiber zerumbet* 6
 2.2.2 Traditional use of *Zingiber zerumbet* 8
2.3 Zerumbone 8
2.4 Synthetic Anti-Cancer Drugs Currently Used for Hepatocarcinoma Treatment
 2.4.1 Paclitaxel 9
 2.4.2 Doxorubicin 9
2.5 Natural Compound Currently Used for Hepatocarcinoma Treatment
 2.5.1 Curcumin 10
 2.5.2 Resveratrol 10
 2.5.3 Silibinin 11
 2.5.4 Tanshinone IIA 11
2.6 Cancer Biology 13
2.7 The Cell Cycle 13
2.8 Cell Death and Apoptosis 15
2.9 Autophagy 17
2.10 Liver Cancer 17
 2.10.1 Liver Cancer in Malaysia 17
2.11 Cancer Treatment Method 18
 2.11.1 Surgery 18
 2.11.2 Radiation Theraphy 18
 2.11.3 Hormonal Therapy 19
 2.11.5 Anti-angiogenesis Theraphy 20
2.12 Angiogenesis 20
 2.12.1 Types of Angiogenesis 22
 2.12.1.1 Sprouting Angiogenesis 22
 2.12.1.2 Intussusceptive Angiogenesis 22
 2.12.2 Angiogenesis Mediator 24
2.12.3 The Role of Angiogenesis in Solid tumor 24
2.12.4 Anti-angiogenesis Agents 26
2.12.5 Natural Anti-angiogenic Inhibitors 26
2.12.6 Suramin 28

2.13 Review Summary 28

3 ANTI-PROLIFERATIVE AND APOPTOTIC ACTIVITIES OF ZERUMBONE ON LIVER CANCER CELLS
3.1 Introduction 29
3.2 Materials and Methods 29
3.2.1 ZER Preparation 29
3.2.2 Cell Culture 30
3.2.3 Growth Inhibition of Human Hepatocellular Carcinoma Cells 30
3.2.4 Cellular Morphology 31
3.2.5 Quantification of Apoptosis 31
3.2.6 Ultrastructure of HepG2 Cells 31
3.2.7 Cell Cycle 32
3.2.8 Annexin V-FITC Assay 32
3.2.9 DNA Content 32
3.2.10 Caspase Assays 33
3.2.11 Statistical Analysis 33

3.3 Results 34
3.3.1 Anti-proliferative Activity of ZER on HepG2 and WRL68 Cell Line 34
3.3.2 Effects of ZER on Hepatocellular Carcinoma Cell Line 40
3.3.3 Quantification of Apoptosis using AO/PI Double Staining 42
3.3.4 Ultrastructural of Hepatocellular Carcinoma Cell line treated with Zerumbone 45
3.3.5 Zerumbone Treatment on Cycle of Hepatocellular Cell Line 47
3.3.6 Induction of Apoptosis Hepatocellular carcinoma (HepG2) Cell Line by Zerumbone 49
3.3.7 Caspase Activity of Hepatocellular Carcinoma (HepG2) Cells Treated with Zerumbone 51

3.4 Discussion 53

4 ZERUMBONE SUPPRESSES ANGIOGENESIS AND METASTASIS VIA INHIBITION OF NF-κB, MMP AND VEGF EXPRESSIONS IN HEPG2 CELLS AND VEGFR IN ENDOTHELIAL CELLS
4.1 Introduction 57
4.2 Materials and Methods 58
4.2.1 Animal Preparation 58
4.2.2 Ex vivo Rat Aortic Ring Assay 58
4.2.3 Cell Proliferation Inhibition Assay 58
4.2.4 Endothelial Cell Tube Formation Assay 59
4.2.5 Effect of Zerumbone on VEGF-Induced Tyrosine Phosphorylation of VEGFR-
4.2.6 Chorioallantoic Membrane Assay 59
4.2.7 Cell Migration Assay 60
4.2.8 Human Cytokine Array 60
4.2.9 Western Blot 60
4.2.10 Statistical Analysis 61
4.3 Results 62
4.3.1 Ex vivo Rat Aortic Ring Assay 62
4.3.2 Cell Proliferation Inhibition 65
4.3.3 Endothelial Cell Tube formation Assay 67
4.3.4 Effect of Zerumbone on VEGF-Induced Tyrosine Phosphorylation of VEGFR-2 70
4.3.5 Cell Migration Assay 71
4.3.6 Chorioallantoic Membrane Assay 73
4.3.7 Human Cytokine Array 75
4.3.8 Western Blot 77
4.4 Discussion 78

5 ANTI-ANGIOGENIC AND ANTI-PROLIFERATIVE EFFECT OF ZERUMBONE ON HEPATOCARCINOGENESIS IN RATS

5.1 Introduction 81
5.2 Materials and Methods 83
5.2.1 Animals 83
5.2.2 Ethical Approval 83
5.2.3 Zerumbone 83
5.2.4 Preparation of Diethylnitrosamine 83
5.2.5 Carcinogen Treatment 84
5.2.6 Experimental Design 84
5.2.7 Serum vascular endothelia growth factor 84
5.2.8 Histopathology 84
5.2.9 TUNEL Assay 85
5.2.10 Immunohistochemistry of Liver Tissue 85
5.2.11 Statistical analysis 86
5.3 Results 87
5.3.1 Body and liver weight 87
5.3.2 Serum Vascular Endothelial Growth Factor 88
5.3.3 Histopathology 89
5.3.4 TUNEL Assay 93
5.3.5 Expression of Vascular endothelial Growth Factor and Matrix Metalloproteinase 97
5.3.6 Expression of K-i67 100
5.4 Discussion 102

6 GENERAL DISCUSSION, CONCLUSION AND FUTURE RESEARCH AND RECOMMENDATION

6.1 General Discussion 105
6.1.1 Anti-proliferative and Apoptosis Effects of Zerumbone 105
6.1.2 Anti-angiogenesis Effect of Zerumbone 106
6.2 General Conclusion 108
6.3 Future Research and Recommendations 109
6.4 Limitation of The Studies 109

REFERENCES 110
APPENDICES 130
HPLC Result of ZER 130
Anti Proliferative Activity of ZER on HUVECs Cell Line 131
VEGF Standard Curve 132
Histopathology of Tissues 133
Cell Cycle Buffers 134
TUNEL Assay Solutions 135
Western Blot Buffers 136
Immunohistochemistry Solutions 138

BIODATA OF STUDENT 139
LIST OF PUBLICATIONS 140
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Zingiber zerumbet plant.</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>The Cell Cycle.</td>
<td>23</td>
</tr>
<tr>
<td>2.3</td>
<td>Angiogenesis.</td>
<td>35</td>
</tr>
<tr>
<td>2.4</td>
<td>Sprouting and Intussusceptive Angiogenesis.</td>
<td>37</td>
</tr>
<tr>
<td>2.5</td>
<td>The Role of Angiogenesis in Solid Tumor Formation.</td>
<td>40</td>
</tr>
<tr>
<td>2.6</td>
<td>The Angiogenesis Pathways and the Examples of Its Inhibition.</td>
<td>43</td>
</tr>
<tr>
<td>3.1</td>
<td>Cell Proliferation Inhibition Activity of Zerumbone on Hepatocellular Carcinoma (HepG2) Cell Line.</td>
<td>58</td>
</tr>
<tr>
<td>3.2</td>
<td>Cell Proliferation Inhibition Activity of Zerumbone on Normal Liver (WRL68) Cell Line.</td>
<td>59</td>
</tr>
<tr>
<td>3.3</td>
<td>Cell Proliferation Inhibition Activity of Doxorubicin Hepatocellular Carcinoma (HepG2) Cell Line.</td>
<td>60</td>
</tr>
<tr>
<td>3.4</td>
<td>Cell Proliferation Inhibition Activity of Doxorubicin on Normal Liver (WRL68) Cell Line.</td>
<td>61</td>
</tr>
<tr>
<td>3.5</td>
<td>Hepatocellular Carcinoma (HepG2) Cell Line Treated Zerumbone at its IC\textsubscript{50} Concentration (6.20 µg/mL).</td>
<td>64</td>
</tr>
<tr>
<td>3.6</td>
<td>Acridine orange/Propidium iodide-stained zerumbone-treated HepG2 cells after 72 h</td>
<td>67</td>
</tr>
<tr>
<td>3.7</td>
<td>Quantitative Analysis of AO/PI stained cells of untreated cells and ZER treated HepG2 cells</td>
<td>68</td>
</tr>
<tr>
<td>3.8</td>
<td>Morphology of Untreated and Zerumbone-treated Hepatocellular Carcinoma (HepG2) Cell Line.</td>
<td>70</td>
</tr>
<tr>
<td>3.9</td>
<td>Flow Cytometric Analysis of Zerumbone-treated Hepatocellular Carcinoma (HepG2) Cells After Staining with FITC-Conjugated Annexin-V and Propidium Iodide.</td>
<td>74</td>
</tr>
<tr>
<td>3.10</td>
<td>Caspases Activity in Hepatocellular Carcinoma (HepG2) Cells Treated with ZER after 12, 24, 48 and 72 H.</td>
<td>76</td>
</tr>
<tr>
<td>4.1</td>
<td>Rat Aorta Angiogenesis Assay.</td>
<td>94</td>
</tr>
</tbody>
</table>
4.2 Dose -Response Curve of Zerumbone on Rat Aortic Ring Assay.

4.3 Human Umbilical Vein Endothelial Cell (HUVEC) Tube Formation Inhibition by Zerumbone (ZER)

4.4 Dose Response Relationships of ZER on Tube Formation Assay

4.5 Phosphorylation of VEGFR-2 in Human Umbilical Vein Endothelial Cells treated with Zerumbone (ZER).

4.6 Effect of Zerumbone (ZER) on HepG2 Cells Migration.

4.7 Effects of Zerumbone (ZER) on Neovascularisation in Chick Chorioallantoic Membrane.

4.8 Differential Expression of Cytokines in Hepatocellular Carcinoma (HepG2) Cells treated with Zerumbone.

4.9 Expression of VEGF, MMP-9 and NF-κB Proteins in Zerumbone-treated Hepatocellular (HepG2) Cells.

5.1 Serum Vascular Endothelial Growth Factor (VEGF) Concentration of Rats with Hepatocellular Carcinoma and treated with Zerumbone (ZER) and Suramin.

5.2 Liver Tissues of Rats with Hepatocellular Carcinoma and treated with Zerumbone (ZER) and Suramin.

5.3 Liver Tissues of Rats with Hepatocellular Carcinoma Treated with Zerumbone (ZER) and Suramin.

5.4 Rat Liver Tissue Stained for Vascular Endothelial Growth Factor (VEGF).

5.5 Rat Liver Tissue Stained for Matrix Metalloproteinase-9 (MMP-9).

5.6 Rat Liver Tissue Stained for Ki-67.
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Anti-hepatocarcinogenic effect of herbal compounds</td>
</tr>
<tr>
<td>2.2</td>
<td>Comparison between apoptosis and necrosis</td>
</tr>
<tr>
<td>3.1</td>
<td>Therapeutic Index</td>
</tr>
<tr>
<td>3.2</td>
<td>Cell cycle distribution of hepatocellular carcinoma (HepG2) cell line treated with zerumbone</td>
</tr>
<tr>
<td>4.1</td>
<td>Cytotoxic effect of zerumbone</td>
</tr>
<tr>
<td>5.1</td>
<td>Body and liver weights of zerumbone-treated diethylnitrosamine-induced hepatocellular carcinoma in rats.</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>h</td>
<td>Hour/s</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>ML</td>
<td>Milliliter</td>
</tr>
<tr>
<td>Mg</td>
<td>Microgram</td>
</tr>
<tr>
<td>μL</td>
<td>Microliter</td>
</tr>
<tr>
<td>mM</td>
<td>Micromolar</td>
</tr>
<tr>
<td>Pg/ml</td>
<td>Pikogram/milliliter</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolution per minute</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume per volume</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>AO</td>
<td>Acridine orange</td>
</tr>
<tr>
<td>ATCC</td>
<td>American tissue culture collection</td>
</tr>
<tr>
<td>Bax</td>
<td>Bcl-2 associated X protein</td>
</tr>
<tr>
<td>Bcl-2</td>
<td>B cell lymphoma 2</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>CaCo₂</td>
<td>Calcium carbonate</td>
</tr>
<tr>
<td>CAM</td>
<td>Chick chorioallantoic membrane</td>
</tr>
<tr>
<td>CDK-2</td>
<td>Cyclin-dependent kinase 2</td>
</tr>
<tr>
<td>CDK-4</td>
<td>Cyclin-dependent kinase 4</td>
</tr>
<tr>
<td>DEN</td>
<td>Diethylnitrosamine</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
</tbody>
</table>
EGF Epidermal growth factor
eNOS Endothelial nitric oxide synthase
FBS Fetal bovine serum
FITC Fluorescein isothiocyanate
FFPE Formalin-fixed paraffin-embedded
G₀ Gap 0 at cell cycle
G₁ Gap 1 at cell cycle
G₂/M Gap 2/mitosis at cell cycle
H3 Histone 3
H4 Histone 4
HCC Human hepatocellular carcinoma
HepG2 Human hepatocellular carcinoma cells
HIFCS Heat inactivated fetal calf serum
HRP Horseradish peroxidase
HT29 Human colorectal adenocarcinoma cell
HUVEC Human umbilical vein endothelial cells
IC₅₀ Half maximal (50%) inhibitory concentration
IL2 Interleukin 2
IL6 Interleukin 6
IL8 Interleukin 8
iNOS Inducible nitric oxide synthase
IUPAC International Union of Pure and Applied Chemistry
KI67 Protein associated with cell proliferation
LC₅₀ Lethal concentration, 50%
MCF-7 Human breast cancer cell
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMP</td>
<td>Matrix metalloproteinase</td>
</tr>
<tr>
<td>MMP-9</td>
<td>Matrix metalloproteinase 9</td>
</tr>
<tr>
<td>MTT</td>
<td>3-(4, 5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide</td>
</tr>
<tr>
<td>Nacl</td>
<td>Sodium chloride</td>
</tr>
<tr>
<td>NF-κB</td>
<td>Nuclear factor kappa B</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffer saline</td>
</tr>
<tr>
<td>PCNA</td>
<td>Proliferating cell nuclear antigen</td>
</tr>
<tr>
<td>pH</td>
<td>A scale that measures how acidic or basic a substance</td>
</tr>
<tr>
<td>PI</td>
<td>Propidium iodide</td>
</tr>
<tr>
<td>PMSF</td>
<td>Phenylmethanesulfonylfluoride</td>
</tr>
<tr>
<td>PO₂</td>
<td>Oxygen partial pressure</td>
</tr>
<tr>
<td>PVDF</td>
<td>Polyvinylidene fluoride</td>
</tr>
<tr>
<td>PI</td>
<td>Propidium iodide</td>
</tr>
<tr>
<td>PS</td>
<td>Phosphotidylserine</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>RPMI</td>
<td>Roswell park memorial institute medium</td>
</tr>
<tr>
<td>Rtdt</td>
<td>Terminal deoxynucleotidyl transferase recombinant</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscope</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumor necrosis factor</td>
</tr>
<tr>
<td>TBST</td>
<td>Tris buffered saline tween</td>
</tr>
<tr>
<td>VEGF</td>
<td>Vascular endothelial growth factor</td>
</tr>
<tr>
<td>VEGFR</td>
<td>Vascular endothelial growth factor receptor</td>
</tr>
<tr>
<td>WAF1</td>
<td>Cyclin dependant kinase interacting protein 1</td>
</tr>
<tr>
<td>WRL68</td>
<td>Human normal hepatic cells</td>
</tr>
<tr>
<td>ZER</td>
<td>Zerumbone</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

Natural products refer to compounds that are derived from animals, plants or microorganisms. Since early civilization, natural products have played important roles in health care and prevention of diseases in humans and animals. Before the 19th century, natural products were the sole mean in the treatment diseases and injuries. Our ancestors chewed herbs to relieve pain and wrapped the leaves around the wound to facilitate healing. By the 19th century, the natural products in its original form began playing a secondary role in therapy when active therapeutic elements were isolated from medicinal plants. In 1806, morphine was isolated from *Papaver somniferum* (Wetzel *et al.*, 2010), atropine from *Atropa belladonna*, ziconotide from a cone snail and Taxol from the bark of the Pacific yew tree (Cragg and Newman, 2013). This was the beginning of evolution of natural products in modern medicine. Based on recent data (WHO), 80% of the world’s population depend on traditional medicine (Koehn and Carter, 2005; Newman *et al.*, 2003). Approximately, 25% of the drugs prescribed today are derived from natural products (Zhang *et al.*, 2013). Natural products have also significantly contributed to the development of vaccines and anticancer drugs. Between 1981 to 2006 more than 100 anticancer drugs were developed and 47% of these were derived from natural products (Newman *et al.*, 2003).

Cancer is a complex disease that develops from single damaged cell, subsequent to the accumulation of errors to its genes (Loeb, 2000). Manifestation of these genetic errors may possibly be the result of exposure of chemicals, viruses and physical assault to the cell (Karpinets and Foy, 2004). These noxious factors can influence or damage cellular pathways. Signaling pathways leading to cancer are numerous; therefore the biological profile of this disease would differ from one cancer patient to another depending on which pathway is affected by the cancer-causing agents (Chin and Gray, 2008).

Liver is a complex organ in the human body, performing approximately 500 functions daily for the maintenance of the organism (Maton *et al.*, 1993). The liver is quite often affected by cancers and these diseases can originate in the liver itself or the result of metastasis. Liver cancer is the fifth most common type of cancers and the third leading cause of cancer-related death (Davis *et al.*, 2008). The majority (80%) of reported liver cancer cases occur in developing countries. Among the countries with highest rates of liver cancers include central and Western Africa, Southeast Asia, China and Mongolia (Mokdad *et al.*, 2014). Liver cancers are typically hypervascular tumours or carcinomas. Treatment of this type of carcinoma is difficult because most patients, especially those in less-developed countries, are diagnosed when the disease is already at an advanced stage (El-Serag and Rudolph, 2007). Furthermore, there is high incidence of recurrence, possibly metastasis after hepatic resection, with the disease becoming non-amenable towards therapy (Davis *et al.*, 2008).
The failure and various side-effects of conventional medicine in treating cancers have led to the growing interest in the search for drugs from natural resources. Among advantages of drugs from natural products are that they are affordable and accessible to the majority of the world population that does not have access to modern conventional pharmacological treatments. Natural products are also claimed to be harmless and have minimal or no side-effect in comparison to synthetic drugs (Rates, 2001).

Angiogenesis is a process of new blood vessel formation. Inhibition of angiogenesis is considered one of the most promising strategies in treating a variety of illnesses including cancers (Adair, 2010). The inhibition of angiogenesis may potentially be a very effective way to treat and inhibit progression and spread of cancers. Angiogenesis is controlled through the balance between pro-angiogenesis and anti-angiogenesis factors, which are vital to the triggering of angiogenesis switch (Keshet and Ben-Sasson, 1999). Several signals that can trigger this switch include low partial oxygen pressure, pH and glucose levels (Kizaka et al., 2003). Anti-angiogenesis drugs are proven to boost anti-tumor activities of several conventional cytotoxic chemotherapeutic drugs (Folkman, 2002). However, different organs and tissues may express different angiogenesis receptors, which pose a great challenge in the development of effective anti-angiogenesis therapy, particularly with receptor-specific compounds, such as monoclonal antibodies. Moreover, the microenvironment of tumor site, for example the endothelium that is phenotypically distinctive for the organ, may influence the efficacy anti-angiogenesis. This phenomenon makes an agent that is therapeutically effective in one organ may not be effective in another (Kerbel, 2000).

Zerumbone (ZER) is a sesquiterpene phytochemical from a type of edible ginger known as *Zingiber zerumbet* (L.) Smith found abundantly in Southeast Asia (Murakami et al., 2002). Zerumbone is currently being explored for its effects on cancers to include leukemia, cervical, colon and breast cancers. To date, there has been no report on the effect of ZER on anti-angiogenesis in liver cancers.

The current study was undertaken to determine the anti-angiogenesis properties as well as the anti-cancer effect of ZER in hepatocellular carcinoma. Previous studies in our laboratory showed that ZER retards cervical intraepithelial neoplasia (CIN) in cervical tissues of female BALB/C, induced prenatally with diethylstilbestrol to develop the cancer (Abdelwahab et al., 2010). The anti-cancer properties of ZER were found to be equivalent to that of cisplatin, a commercial anticancer drug preferentially used in treating cervical cancer in humans (Abdelwahab et al., 2010). Zerumbone also possesses anti-inflammatory activities (Sulaiman et al., 2009), which is beneficial in the inhibition of angiogenesis. Zerumbone was also chosen for this study because of its traditional use in the treatment of several illnesses while possessing high anti-oxidant activities (Yob et al., 2011). This study was conducted *in vitro* on HepG2 cells, *ex vivo* on isolated liver tissue and *in vivo* in a rat hepatocellular carcinoma model.
1.2 **Aims and objective**

General Objectives
To ascertain the anti-angiogenic and anti-cancer effects of ZER in rat hepatocellular carcinoma.

Specific Objectives
To determine the

- anti-proliferative and apoptotic activity of ZER on a liver cancer (HepG2) cell line.
- anti-angiogenesis mechanism of ZER using *in vitro, ex vivo* and *in vivo* assays
- anti-angiogenesis and anti-proliferative effects of ZER in the rat hepatocellular carcinoma model.

1.3 **Hypothesis of the Study**

Zerumbone has anti-cancer effect through inhibition of angiogenesis.
References

