UNIVERSITI PUTRA MALAYSIA

PROTEIN PROFILE AND ANTIGENICITY OF REPRESENTATIVE LEPTOSPIRAL SEROVARs REPORTED IN MALAYSIA AND EXPERIMENTAL \textit{LEPTOSPIRA INTERROGANS}

INFECTION IN DOGS

CHENG KIM SING

FPV 2007 5
PROTEIN PROFILE AND ANTIGENICITY OF REPRESENTATIVE
LEPTOSPIRAL SEROVAR S REPORTED IN MALAYSIA AND
EXPERIMENTAL *LEPTOSPIRA INTERROGANS*
INFECTION IN DOGS

By

CHENG KIM SING

Thesis Submitted to the School of Graduates Studies, Universiti Putra
Malaysia, In Fulfilment of the Requirements for the Degree of
Master of Science

March 2007
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirements for the degree of Masters of Science

PROTEIN PROFILE AND ANTIGENICITY OF REPRESENTATIVE LEPTOSPIRAL SEROVARs REPORTED IN MALAYSIA AND EXPERIMENTAL LEPTOSPIRA INTERROGANS INFECTION IN DOGS

By

CHENG KIM SING

March 2007

Chairman: Professor Abdul Rani Bahaman, PhD

Faculty: Veterinary Medicine

Wide distribution of leptospires in the world has caused tremendous economic losses in agricultural sector due to decrease in animal production, quality of animal products and increased cost of treatments and also one of the public health concerns as this zoonosis has caused fatalities in human beings.

In the study, immunoprobing experiments with rabbit antisera against serovars canicola, icterohaemorrhagiae, hardjobovis, pomona and australis, band with molecular weight 137.6 kDa is unique in serovar canicola 35 kDa in icterohaemorrhagiae, 10.5 kDa and 71.4 kDa in hardjobovis, 48.1 kDa in pomona while 20.9 kDa and 25.0kDa in australis. These distinct bands could
have explained the selectiveness of different serovars on the target hosts, organs or perhaps tissues. In the experiment, *Leptospira interrogans* serovar *canicola* caused interstitial nephritis while serovar *icterohaemorrhagiae* caused liver damage in local stray dogs.

Two dimensional SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) on both serovars *canicola* and *icterohaemorrhagiae* have revealed differences in the protein distributions. Three different protein spots sharing the same molecular weights at 42.1kDa, 126kDa and 136 kDa while at 60.9kDa, 65.2kDa and 89.6kDa, two proteins spots sharing the same molecular weight were detected in serovar *canicola*. Serovar *icterohaemorrhagiae* on the other hand has three protein spots at 31kDa, 36kDa and 45kDa while 5 protein spots at 32 kDa were detected.

Antibody titres peaked between 6 to 11 post inoculation day (P.I.D) with the highest titre at 1:1,600 in dogs infected with *Leptospira canicola* through intravenous route (Group 1). While dogs infected with serovar *icterohaemorrhagiae* through intravenous route had peak antibody titre between 9 to 11 (Group 2) P.I.D, with the highest titre at 1:1,600. Dogs infected with serovar *icterohaemorrhagiae* through oculonasal route (Group 3), the peak titre of antibody production was much delayed, at between 19 to 23 P.I.D but with much higher than the two previous tests (Group 1 and Group 2) at the highest titre reached was 1:3,200. The study also shows that
dogs once infected with leptospiral serovar, especially through oculonasal route, would shed the organism in its urine for a long period of time up till the end of study (nine months). This reflects the oculonasal route to be the actual route which dogs are most likely to be infected by leptospires in natural environment.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PROFIL PROTEIN DAN ANTIGENIK TERHADAP SEROVAR-SEROVAR LEPTOSPIRA CONTOH YANG DILAPORKAN DI MALAYSIA DAN JANGKITAN UJIKAJI LEPTOSPIRA INTERROGANS PADA ANJING

Oleh

CHENG KIM SING

Mac 2007

Pengerusi: Profesor Abdul Rani Bahaman, PhD

Fakulti: Perubatan Veterinar

Kadar taburan kuman leptospira yang tinggi di dunia ini telah mengakibatkan kerugian-kerugian yang amat tinggi di dalam sektor pertanian, kerana menyebabkan pengeluaran hasil yang semakin rendah, mutu kualiti yang semakin merosot dan kos rawatan yang tinggi serta ia juga merupakan salah satu kebimbangan kesihatan umum kerana berpotensi untuk menyebabkan kematian di kalangan manusia.

Di dalam kajian ini, pengesanan immuno dengan antisera-antisera arnab terhadap serovar-serovar canicola, icterohaemorrhagiae, hardjobovis, pomona serta australis telah dikaji dan didapati jalur protein dengan berat molekul 137.6 sangat unik bagi serovar canicola, 35 kDa bagi icterohaemorrhagiae, 10.5 kDa dan 71.4 kDa dalam hardjo –bovis, 48.1 kDa
dalam *pomona* dan akhir sekali 20.9 kDa serta 25.0 kDa dalam *australis*. Jalur-jalur yang nyata ini mungkin boleh menjelaskan tentang cirri-ciri pemilihan terhadap sasaran pembawa-pembawa, organ-organ serta tisu-tisu tertentu oleh pelbagai serovar. Di dalam kajian ini juga, didapati serovar *canicola* telah menyebabkan berlakunya nefritis interstisial (interstitial nephritis), manakala serovar *icterohaemorrhagiae* pula menyebabkan berlakunya kerosakan hati pada anjing-anjing liar yang dijangkitkan dengan kuman-kuman leptospira.

Elektroforesis gel SDS Poliakrilamida (SDS-PAGE) dua dimensi yang telah dijalankan terhadap kedua-dua serovar *canicola* dan *icterohaemorrhagiae* telah menunjukkan beberapa perbezaan dari segi taburan protin-protin. Tiga tompok protin yang berbeza tetapi mempunyai berat molekul yang sama telah dikesan pada berat molekul 42.1 kDa, 126 kDa dan 136 kDa manakala pada berat molekul 60.9 kDa, 65.2 kDa dan 89.6 kDa, dua tompok protin telah dikesan pada serovar *canicola*. Serovar *icterohaemorrhagiae* pula mempunyai tiga tompok protin pada kedudukan berat molekul pada 31 kDa, 36 kDa dan 45 kDa, manakala dikedudukan berat molekul 32 kDa, lima tompok protin dikesan.

Kemuncak antibodi telah dicapai dalam lingkungan enam hingga sebelas hari pasca-inokulasi dengan titer maksima pada 1:1,600 dalam anjing-anjing yang dijangkitkan dengan kuman *Leptospira canicola* melalui injeksi.
ACKNOWLEDGEMENTS

I am sincerely thankful to my Supervisory Committee, Professor Abdul Rani Bahaman, Professor Mohd Azmi Mohd Lila and Professor Aini Ideris for their guidance, advice, encouragement and especially their patience throughout the course of study. Special thanks to Professor Dato Sheikh who help me in the pathology section, Dr Siti Khairani, Dr Rahim, Dr Phong, Dr Fairuz and Ayu from IMR who support me, Kak Zu, Nong, Tam, Chan, Dr Sandy, Dr Lai, Pong for being my great peers.

En Arif, En Kamaruddin, En Fauzi, En Din, En. Saiful and Mr Balan kind assistantships are very much appreciated.

Finally, I would like to express my greatest gratitude to my parents for bringing me up with unlimited loves, sisters and my dearest wife Su Teng who are always there for me through my up and down moments. To my beloved pets, Skinny and Brownie, cheer up and have fun out there!
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follow:

Abdul Rani Bahaman, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Mohd Azmi Mohd Lila, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Aini Ideris, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 9th August 2007
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any degree at UPM or other institutions.

CHENG KIM SING

Date: 18th July 2007
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENTS</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>APPROVAL</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>DECLARATION</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>2.1 Introduction</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>2.2 Taxonomy and Classification</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>2.3 Prevalence</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>2.4 Transmissions</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>2.4.1 Direct Transmission</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>2.4.2 Indirect Transmission</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>2.5 Leptospirosis in human and animals</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>2.5.1 Hosts</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>2.6 Pathogenesis of Leptospiral Infection</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>2.6.1 Attachment to Cells</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>2.6.2 Immune Mechanisms</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>2.6.3 Surface Proteins</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>2.6.4 Toxin Production</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>2.7 Clinical Manifestations and Symptoms</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>2.8 Protection</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>2.9 Diagnostic Methods for Leptospirosis in Laboratory</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>2.9.1 Direct Dark-field Microscopy</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>2.9.2 Isolation of Leptospires</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>2.9.3 Direct Immunofluorescence</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>2.9.4 Serological Diagnosis</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>2.9.4.1 Microscopic agglutination test (MAT)</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>2.9.5 Molecular Diagnosis</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>2.9.5.1 Polymerase chain reaction (PCR)</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>assay</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.10 Electrophoretic Characterization of Leptospiral Serovars</td>
<td>53</td>
</tr>
</tbody>
</table>
3 ELECTROPHORECTIC CHARACTERIZATION OF
LEPTOSPIRAL’S PROTEINS FROM SEROVARs THAT
HAVE BEEN REPORTED IN MALAYSIA

3.1 Introduction 55
3.2 Materials and Methods 57
3.2.1 Sodium Dodecyl Sulphate – Polyacrylamide Gel
Electrophoresis (SDS-PAGE) 57
3.2.1.1 Preparation of Leptospira spp. culture 57
3.2.1.2 Preparation of Protein Samples for
Single Dimensional SDS-PAGE 57
3.2.1.3 Preparation of Lipopolysaccharide
(LPS) Samples for Single Dimensional
SDS-PAGE 60
3.2.1.4 Preparation of Protein Samples for Two
Dimensional SDS-PAGE 60
3.2.1.5 Preparation of Rehydration Solution for
IPG Strip 61
3.2.1.6 Preparation of SDS Equilibration Buffer 61
3.2.1.7 Polyacrylamide Gel Electrophoresis 62
3.2.1.8 Staining of Polyacrylamide Gel 62
3.2.2 Immunoblotting 64
3.2.2.1 Leptospiral Protein Samples for
Immunoblotting 64
3.2.2.2 Preparation of Rabbit Hyperimmune
Serum 64
3.2.3 Microscopic Agglutination Test (MAT) 65
3.2.4 Protein Transfers and Immunoprobing With
Hyperimmune Serum 66
3.3 Results 69
3.3.1 Electrophorectic characterization of 37
leptospiral serovars that have been reported in
Malaysia 69
3.3.2 Western Blotting and Immunoprobing with rabbit
hyperimmune serum against specific serovar 70
3.4 Discussion 90

4 EXPERIMENTAL INFECTION OF DOGS WITH
LEPTOSPIRA INTERROGANs SEROVARs CANICOLA
AND ICTEROHAEMORRHAGIAE 94

4.1 Introduction 94
4.2 Materials and Methods 97
4.2.1 Experimental Animals 97
4.2.2 Specimens Collections 98
4.2.2.1 Whole Blood Sample 98
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Classification between genomic species and serogroup. (Postic et al., 2000)</td>
<td>35</td>
</tr>
<tr>
<td>3.1</td>
<td>Leptospiral serovars used in the experiment</td>
<td>58</td>
</tr>
<tr>
<td>3.2</td>
<td>Immunoblotting using L. interrogans serovar canicola as antigen. Refer to Figure 3.11</td>
<td>72</td>
</tr>
<tr>
<td>3.3</td>
<td>Immunoblotting using L. interrogans serovar icterohaemorrhagiae as antigen. Refer to Figure 3.12</td>
<td>72</td>
</tr>
<tr>
<td>3.4</td>
<td>Immunoblotting using Leptospira borgpetersenii serovar hardjobovis as antigen. Refer to Figure 3.13</td>
<td>73</td>
</tr>
<tr>
<td>3.5</td>
<td>Immunoblotting using Leptospira interrogans serovar pomona as antigen Refer to Figure 3.14.</td>
<td>73</td>
</tr>
<tr>
<td>3.6</td>
<td>Immunoblotting using Leptospira interrogans serovar australis as antigen. Refer to Figure 3.15</td>
<td>74</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Typical morphology of Leptospira spp. X 20, 000, E.M (Faine et al., 2000)</td>
<td>33</td>
</tr>
<tr>
<td>2.2</td>
<td>Factors affecting the transmission of leptospirosis (Faine et al., 2000)</td>
<td>39</td>
</tr>
<tr>
<td>3.1</td>
<td>Protein profiles of pathogenic serovars reported Malaysia. Lane 1: Protein marker (Novagen, Germany), 2: L. interrogans serovar jonsis strain Jones, 3: L. interrogans serovar gurungi strain Gurung, 4: L. interrogans serovar birkini strain Birkin, 5: L. interrogans serovar icterohaemorrhagiae strain RGA, 6: L. borgpetersenii serovar javanica strain Veldrat Batavia 46, 7: L. interrogans serovar mooris strain Moores, 8: L. interrogans serovar hebdomadis strain Hebdomadis, 9: L. interrogans serovar abramis strain Abraham, 10: L. interrogans serovar hamptoni strain Hampton, 11: L. interrogans serovar haemolytica strain Marsh, and 12: L. interrogans serovar ricardi strain Richardson. 13: Protein marker (Fermentas, U.S.A) Type of staining used is Coomassie blue staining.</td>
<td>75</td>
</tr>
<tr>
<td>3.2</td>
<td>Protein profiles of pathogenic serovars reported in Malaysia. Lane 1, protein marker (Novagen, Germany), 2 L. interrogans serovar hardjo strain Hardjoprajitno, 3 L. inadai serovar malaya strain Malaya, 4 L. interrogans serovar icterohaemorrhagiae strain RGA, 5 L. interrogans serovar sumneri strain Sumner, 6 L. interrogans serovar paidjan strain Paidjan, and 7 L. interrogans serovar benjami strain Benjamin. Type of staining used is Coomassie staining.</td>
<td>76</td>
</tr>
<tr>
<td>3.3</td>
<td>Protein profiles of pathogenic serovars reported in Malaysia. Lane 1: Fermentas, U.S.A Protein marker, 2: L. borgpetersenii serovar grippotyphosa strain Moskva V, 3: L. interrogans serovar australis strain Ballico, 4: L. borgpetersenii serovar worsfoldi strain Worsfold, 5: L. interrogans serovar bataviae strain Swart, 6: L. borgpetersenii serovar Tarassovi strain Perepelican, 7: L. borgpetersenii serovar hardjobovis strain Sponselee, 8: L. weillii serovar coxi strain Cox, 9: L. interrogans serovar mankarso strain Mankanro, 10: L. interrogans serovar sentot strain Sentot, 11: L. borgpetersenii serovar whitcombi strain Whitcomb, 12: L. interrogans</td>
<td>77</td>
</tr>
</tbody>
</table>
serovar *fugis* strain Fudge, and 13: *L. interrogans* serovar *bangkinang* strain Bangkinang I. Type of staining used is silver staining.

3.4 Protein profiles of pathogenic serovars reported in Malaysia

Lanes: 5 and 16. Fermentas, U.S.A Protein marker (descending in size kDa; 166.0, 66.2, 45.0, 35.0 and 25.0), 1: *L. interrogans* serovar *canicola* strain Hond Utrecht IV, 2: *L. interrogans* serovar *pomona* strain Pomona, 3: *L. weili* serovar *celledoni* strain Celledoni, 4: *L. interrogans* serovar *pyrogenes* strain Salinem, 6: *L. interrogans* serovar *autumnalis* strain Akiyami A, 7: *L. interrogans* serovar *djasiman* strain Djasiman, 8: *L. interrogans* serovar *birkin* strain Birkin, 9: *L. interrogans* serovar *icterohaemorrhagiae* strain RGA, 10: *L. interrogans* serovar *smithii* strain Smith, 11: *L. interrogans* serovar *biggis* strain Biggs, 12: *L. interrogans* serovar *haemolytica* strain Marsh, 13: *L. interrogans* serovar *ricardi* strain Richardson, 14: *L. interrogans* serovar *wolffi* strain 3705, 15: *L. borgpetersenii* serovar *javanica* strain Veldrat Batavia. Type of staining used is silver staining.

3.5 Lipopolysaccharide (LPS) profiles of leptospiral serovars

1: *L. interrogans* serovar *canicola* strain Hond Utrecht IV, 2: *L. interrogans* serovar *pomona* strain Pomona, 3: *L. weili* serovar *celledoni* strain Celledoni, 4: *L. interrogans* serovar *pyrogenes* strain Salinem, 5: *L. interrogans* serovar *autumnalis* strain Akiyami A, 6: *L. interrogans* serovar *djasiman* strain Djasiman, 7: *L. interrogans* serovar *birkin* strain Birkin, 8: *L. interrogans* serovar *icterohaemorrhagiae* strain RGA, 9: *L. interrogans* serovar *smithii* strain Smith, 10: *L. interrogans* serovar *biggis* strain Biggs, 11: *L. interrogans* serovar *haemolytica* strain Marsh, 12: *L. interrogans* serovar *ricardi* strain Richardson, 13: *L. interrogans* serovar *wolffi* strain 3705, 14: *L. borgpetersenii* serovar *javanica* strain Veldrat Batavia. 15: protein marker (10 kDa). Type of staining used is silver staining.

3.6 Two-dimensional SDS PAGE of *Leptospira interrogans* serovar *icterohaemorrhagiae*

showing the proteins distribution between pH3 to 10. Type of staining used is silver staining. Fermentas, U.S.A as protein marker.
3.7 Two-dimensional SDS PAGE of *Leptospira interrogans* serovar canicola showing the proteins distribution between pH3 to 10. Type of staining used is silver staining. Perfect Protein™ Markers, Novagen, Germany as protein marker.

3.9 Crossreactivity between *Leptospira interrogans* serovar hardjoprajitno and *Leptospira interrogans* serovar smithii probed with rabbit hyperimmune serum against *Leptospira interrogans* serovar hardjoprajitno. Lane 1 *Leptospira interrogans* serovar hardjoprajitno, 2 *Leptospira interrogans* serovar smithii (soluble proteins), 3 *Leptospira interrogans* serovar smithii (cell debris extract) 4 Protein marker

3.10 Crossreactivity between *Leptospira interrogans* serovar hardjoprajitno and *Leptospira interrogans* serovar icterohaemorrhagiae probed with rabbit hyperimmune serum against *Leptospira interrogans* serovar icterohaemorrhagiae. Lane 1 *Leptospira interrogans* serovar hardjoprajitno, 2 *Leptospira interrogans* serovar icterohaemorrhagiae, 3 protein marker

3.11 Crossreactivity of five anti leptosiral sera by using *Leptospira interrogans* serovar canicola as Antigen. Lane 1 Novagen, Germany, Protein marker, 2 Rabbit’s antiserum against *Leptospira interrogans* serovar australis, 3 Rabbit’s antiserum against *Leptospira interrogans* serovar pomona, 4 Rabbit’s antiserum against *Leptospira interrogans* serovar canicola, 5 Rabbit’s antiserum against *Leptospira interrogans* serovar icterohaemorrhagiae, 6 Rabbit’s antiserum against *Leptospira interrogans* serovar hardjobovis

3.12 Crossreactivity of five anti leptosiral sera by using *Leptospira interrogans* serovar serovars icterohaemorrhagiae as antigen. Lane 1 Protein marker, 2 Rabbit’s antiserum against *Leptospira borgpetersenii*
serovar hardjobovis, 3 Rabbit’s antiserum against Leptospira interrogans serovar australis, 4 Rabbit’s antiserum against Leptospira interrogans serovar canicola, 5 Rabbit’s antiserum against Leptospira interrogans serovar icterohaemorrhagiae, 6 Rabbit’s antiserum against Leptospira interrogans serovar pomona

3.13 Crossreactivity of five anti leptospiral sera by using Leptospira borgpetersenii serovar hardjobovis as antigen. Lane 1 Protein marker, 2 Rabbit’s antiserum against Leptospira borgpetersenii serovar hardjobovis, 3 Rabbit’s antiserum against Leptospira interrogans serovar pomona, 4 Rabbit’s antiserum against Leptospira interrogans serovar canicola, 5 Rabbit’s antiserum against Leptospira interrogans serovar icterohaemorrhagiae, 6 Rabbit’s antiserum against Leptospira interrogans serovar australis

3.14 Crossreactivity of five anti leptospiral sera by using Leptospira interrogans serovar australis as antigen. Lane 1 Protein marker, 2 Rabbit’s antiserum against Leptospira borgpetersenii serovar hardjobovis, 3 Rabbit’s antiserum against Leptospira interrogans serovar australis, 4 Rabbit’s antiserum against Leptospira interrogans serovar icterohaemorrhagiae, 5 Rabbit’s antiserum against Leptospira interrogans serovar canicola, 6 Rabbit’s antiserum against Leptospira interrogans serovar pomona

3.15 Crossreactivity of five anti leptospiral sera by using serovars Leptospira interrogans serovar pomona as antigen. Lane 1 Protein marker, 2 Rabbit’s antiserum against Leptospira interrogans serovar pomona, 3 Rabbit’s antiserum against Leptospira interrogans serovar canicola, 4 Rabbit’s antiserum against Leptospira borgpetersenii serovar hardjobovis, 5 Rabbit’s antiserum against Leptospira interrogans serovar australis, 6 Rabbit’s antiserum against Leptospira interrogans serovar icterohaemorrhagiae

4.1 (a) and (b) Pictures of Leptospira interrogans serovar canicola and Leptospira interrogans serovar icterohaemorrhagiae, respectively (X 400)

4.2 Ethidium bromide stained 2% agarose gel showing no specific PCR products amplifield with G1/G2 in Group 1 urine samples prior to the injection. Individual dogs’ urine
samples, (Lane 1 to 3), Positive control (Lane 4), negative control (Lane 5) and 100 bp marker (Lane M)

4.3 Ethidium bromide stained 2% agarose gel showing specific PCR products amplified with G1/G2 in Group 1 blood samples at day 1, 2 and 3 post-injection. Positive control (Lane 1), negative control (Lane 2) and 100 bp marker (Lane 3). Blood samples from Group 4 (Lane 4-6). Individual dogs' urine samples at day 1, 2 and 3 (Lane 7 to 15)

4.4 Ethidium bromide stained 2% agarose gel showing specific PCR products amplified with G1/G2 in Group 1 urine samples at day 1, 2, 3 and 4 post-injection. Urine samples from Dog 1 (Lane 3-6), Dog 2 (Lane 7-10) and Dog 3 (Lane 11-14). Positive control (Lane 15), negative control (Lane 1) and 100 bp marker (Lane 2)

4.5 Ethidium bromide stained 2% agarose gel showing specific PCR products amplified with G1/G2 in Group 1 urine samples, post-injection. Urine samples from Dog 1 at day 69, 76, 83 and 90 (Lane 2-5), Dog 2 at day 69, 76, 83 and 90 (Lane 6-9) and Dog 3 at day 69, 76, 83 and 90 (Lane 10-13). 100 bp marker (Lane 1)

4.6 Ethidium bromide stained 2% agarose gel showing specific PCR products amplified with G1/G2 in Group 2 urine samples, post-injection. Urine samples from Dog 1 at day 69, 76, 83 and 90 (Lane 2-5), Dog 2 at day 69, 76, 83 and 90 (Lane 6-9) and Dog 3 at day 69, 76, 83 and 90 (Lane 10-13). 100 bp marker (Lane 1)

4.7 Ethidium bromide stained 2% agarose gel showing specific PCR products amplified with G1/G2 in Group 3 urine samples, post-injection. Urine samples from Dog 1 at day 225, 240, 255 and 270 (Lane 2-5), Dog 2 at day 225, 240, 255 and 270 (Lane 6-9) and Dog 3 at day 225, 240, 255 and 270 (Lane 10-13). 100 bp marker (Lane 1) and positive control (Lane 14)

4.8 Group 1 dogs anti-leptospiral antibodies against *Leptospira interrogans* serovar *canicola* in MAT
4.9 Group 2 dogs anti-leptospiral antibodies against *Leptospira interrogans* serovar *icterohaemorrhagiae* in MAT

4.10 Group 3 dogs anti-leptospiral antibodies against *Leptospira interrogans* serovar *icterohaemorrhagiae* in MAT

4.11 Dog’s kidney with white focal areas consistent with accumulation of lymphocytes in the interstitial tissues. Cortex was pale

4.12 Immunoperoxidase staining of dog’s kidney; positive. Leptospires presence in tubular epithelial cells (arrow A) and in the infiltrate (arrow B). Presence of lymphocytes in interstitial tissue indicating non-suppurative interstitial nephritis consistent with leptospirosis

4.13 H and E staining of dog’s kidney: tubule necrosis and lymphocytes infiltration in interstitial tissues indicating non-suppurative interstitial nephritis consistent with leptospirosis. X 20

4.14 Jaundice observed due to the retention of bile in canaliculi

4.15 Immunoperoxidase staining of dog’s liver: positive of leptospires presence, necrotic. Clumping of nuclei chromatin showing pyknosis (evidence of necrosis) found in Kupffer cells surrounded or accumulation of lymphocytes. X100

4.16 H and E staining of Dog’s liver: necrosis and degeneration of hepatocytes, Kupffer cell. Retention of bile in canaliculi was observed (arrows). Normal areas were indicated as N. X 20

4.17 Dog liver, normal

4.18 PCR on kidney and liver of infected dogs and control. Lane 1 100 bp DNA marker; 2 infected kidney, 3 infected liver (Group 1); 4 infected kidney, 5 infected liver (Group 2); 6 infected kidney, 7 infected liver (Group 3); 8 non-infected kidney, 9 non-infected liver (Group 4); 10 positive control and 11 negative control
LIST OF ABBREVIATIONS

% percentage
x g gravity
°C Degree Celsius
2D PAGE Two-Dimensional-Polyacrylamide Gel Electrophoresis
5-FU 5-Fluorouracil
μg microgramme
μl microliter
μm micrometer
bp base pair
BRENDA Bacterial Restriction Endonuclease
BSA Bovine Serum Albumin
cm centimeter
CSF Fluid
DBKL Dewan Bandaraya Kuala Lumpur
ddH₂O double distilled water
DNA Deoxyribonucleic acid
DTT Dithiothreitol
EDTA ethylenediamine tetraacetic acid
ELISA Enzyme-linked Immunosorbent Assay
H & E haematoxylin and eosin
HCl hydrochloric acid
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIS</td>
<td>hyperimmune serum</td>
</tr>
<tr>
<td>IEF</td>
<td>isoelectric focusing</td>
</tr>
<tr>
<td>IPG</td>
<td>immobilized pH gradient</td>
</tr>
<tr>
<td>JS</td>
<td>Johnson and Seiter</td>
</tr>
<tr>
<td>KCl</td>
<td>kalium chloride</td>
</tr>
<tr>
<td>kDa</td>
<td>kilo Dalton</td>
</tr>
<tr>
<td>LipL</td>
<td>Lipoprotein</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>mA</td>
<td>milliampere</td>
</tr>
<tr>
<td>MAT</td>
<td>microscopic agglutination test</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>ml</td>
<td>milliliter</td>
</tr>
<tr>
<td>mm</td>
<td>millimeter</td>
</tr>
<tr>
<td>mM</td>
<td>millimolar</td>
</tr>
<tr>
<td>N.C</td>
<td>nitrocellulose</td>
</tr>
<tr>
<td>NaCl</td>
<td>Natrium chloride</td>
</tr>
<tr>
<td>nm</td>
<td>nanometer</td>
</tr>
<tr>
<td>OMP</td>
<td>outer membrane protein</td>
</tr>
<tr>
<td>P</td>
<td>pico</td>
</tr>
<tr>
<td>P.I.D</td>
<td>post inoculation day</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
</tbody>
</table>
PBS-T phosphate buffered saline with Tween
PCR polymerase chain reaction
PFGE pulsed field gel electrophoresis
pH hydrogen ion exponent
PVDF polyvinylidene difluoride
rpm revolution per minute
SDS-PAGE Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoreis
spp. species
T.B transfer buffer
TBE Tris-borate-EDTA electrophoresis buffer
TEMED N,N,N',N'-tetramethylethylenediamine
TMB 3,3',5,5'-tetramethylbenzidine
Tris-HCl Tris (hydroxymethyl) aminomethane hydrochloride
U.K. United Kingdom
v/v volume per volume
W.H.O. World Health Organization
w/v weight per volume