UNIVERSITI PUTRA MALAYSIA

ANTI-AGEING PROPERTIES OF EDIBLE BIRD’S NEST ASCERTAINED BY
IN VITRO AND IN VIVO STUDIES IN ANIMAL MODEL

HOU ZHIPING

IB 2015 18
ANTI-AGEING PROPERTIES OF EDIBLE BIRD'S NEST ASCERTAINED BY
IN VITRO AND IN VIVO STUDIES IN ANIMAL MODEL

By

HOU ZHIPING

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in
Fulfillment of the Requirements for the degree of Doctor of Philosophy

August 2015
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Specially dedicated to,

My parents, husband and daughter

For their invaluable love, dedication, encouragement and patience
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the Doctor of Philosophy

ANTI-AGEING PROPERTIES OF EDIBLE BIRD'S NEST ASCERTAINED BY IN VITRO AND IN VIVO STUDIES IN ANIMAL MODEL

By

HOU ZHIPING

August 2015

Chairman: Maznah binti Ismail, PhD
Faculty: Institute of Bioscience

According to the World Health Organization (WHO), the world average life expectancy as at 2014 is 66.26 years, having an average of 64.30 years for males and 68.35 years for females. However, the onset of menopause for women, usually around 50 years, has not been postponed along with increasing longevity, but rather brought forward due to the impacts of environment, diet, and lifestyle. Most women spend approximately one-third of their life span in the postmenopausal phase. Hormonal imbalance during menopausal stage has been linked to increased risks of the fatal diseases including Alzheimer’s disease, dementia, stroke, diabetes mellitus, and breast cancer. Hormone replacement therapy (HRT) has been used to restore postmenopausal hormonal levels in order to relieve menopausal problems, but its associated side effects including development of cancers and cardiovascular diseases have necessitated the search for other alternatives such as natural food supplementation.

Edible bird’s nest (EBN) from the saliva of swiftlet has been esteemed as a precious food tonic by Chinese people since the Tang dynasty (618AD) because it contains rich amount of bioactive compounds such as water - soluble proteins, carbohydrate, iron, inorganic salt, and fiber, and is reported to traditionally possess anti-ageing, anti - cancer, and immunity - enhancing properties. Evidence-based details of its anti-ageing effects including underlying mechanisms are lacking. In this study, EBN was evaluated for its anti-ageing effects and its potential mechanisms were evaluated. First of all, ovariectomized female Sprague - Dawley rats were fed with EBN (6 %, 3 % and 1.5 % in normal pellet) for 12 weeks, then, cognitive function, metabolic indices (serum estrogen, insulin, liver enzyme, kidney function, lipid profile, and antioxidant markers) and hippocampal sirtuin - 1 protein level were in comparison with non - treated ovariectomized rats were observed, and in some instances it showed better results than estrogen therapy. Additionally, EBN produced better transcriptional regulation of hippocampal anti-oxidant genes and an Alzheimer disease isrelated genes, and hepatic insulin signaling genes. Moreover, EBN and its constituents (lactoferrin and ovotransferrin) attenuated H2O2 - induced cytotoxicity, and decreased radical oxygen species through increased scavenging activity, with corresponding transcriptional changes in anti - oxidant and apoptosis - related genes that tended towards neuroprotection.
These data suggested that EBN reduced the risks of neurodegenerative diseases, and may be used as functional ingredient for the prevention of neurodegenerative and metabolism related diseases associated with estrogen deficient ageing.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

SIFAT ANTI-PENUAAN SARANG BURUNG WALIT DITENTUKAN MELALUI KAJIAN *IN VITRO* DAN MODEL HAIWAN *IN VIVO*

Oleh

HOU ZHIPING

Ogos 2015

Pengerusi: Maznah binti Ismail, PhD
Fakulti: Institut Biosains

Menurut Pertubuhan Kesihatan Sedunia (WHO), purata jangka hayat manusia di dunia pada 2014 adalah 66.26 tahun, di mana lelaki mempunyai purata 64.3 tahun manakala wanita mempunyai 68.35 tahun. Walau bagaimanapun, perluana menopaus bagi wanita, biasanya sekitar 50 tahun, tidak ditangguhkan bersama-sama dengan peningkatan umur, tetapi sebaliknya dipercepatkan oleh kesan persekutuan, diet dan gaya hidup. Kebanyakan wanita menghabiskan kira-kira satu pertiga daripada jangka hayat mereka dalam fasa menopaus. Ketidakseimbangan hormon semasa menopaus telah dikaitkan dengan peningkatan risiko penyakit - penyakit kronik termasuk penyakit Alzheimer, nyanyuk, strok, kencing manis, dan kanser payudara. Terapi penggantian hormon (HRT) telah digunakan untuk mengubati masalah putus haid, tetapi kesan sampingan seperti kanser dan penyakit kardiovaskuler telah mendorong pencarian alternatif lain seperti suplemen makanan semulajadi.

Sarang burung (EBN) daripada air liur burung walit telah digelarkan sebagai tonik makanan yang berharga oleh orang-orang Cina sejak Dinasti Tang (618AD) kerana ia mengandungi jumlah sebatian bioaktif yang kaya seperti protein larut air, karbohidrat, besi, garam bukan organik, dan serat. Ia juga dilaporkan secara tradisi mempunyai anti- penuaan, anti - kanser, dan sifat - sifat meningkatkan imuniti. Maklumat berasaskan bukti saintifik kesan anti - penuaan termasuk mekanisme kefungsiananya adalah amat sedikit. Dalam kajian ini, kesan anti - penuaan daripada EBN telah dikaji dan mekanisme yang berpotensi juga ditentukan. Pertamanya, tikus Sprague-Dawley betina “yang dibuang ovari” yang diberi makan EBN (1.5 %, 3 %, dan 6% dalam normal pelet) selama 12 minggu menunjukkan fungsi kognitif, indeks metabolik (serum estrogen, insulin, hati fungsi buah pinggang enzymesm, profil lipid, dan penanda antioksidan) dan protein sirtuin – 1 pada hippocampus adalah lebih baik berbanding dengan tikus yang dibuang ovari tanpa makanan EBN, dan dalam keadaan tertentu ia menunjukkan keputusan yang lebih baik berbanding dengan terapi estrogen. Di samping itu, EBN menunjukkan pengawalan transkripsi gen yang lebih baik termasuk gen anti-oksidan dan gen berkaitan dengan penyakit Alzheimer pada tisu hippocampus, dan juga gen isyarat insulin hepatik. Tambahan pula, EBN dan sebatian aktif (laktoferin, LF dan ovo transferrin, OVF) melemahkan sitotoksiti yang disebabkan oleh H$_2$O$_2$, dan menurunkan spesies oksigen radikal (ROS) melalui peningkatan aktiviti memerangkap radikal, dengan mengubah transkripsi gen yang berkaitan dengan anti-
oksida dan apoptosis, justeru menunjukkan kecenderungan ke arah perlindungan sistem neuron.

Data mencadangkan bahawa EBN mengurangkan risiko penyakit sistem neuron dan boleh digunakan sebagai bahan nutrasutikal untuk mencegah penyakit neuron dan penyakit metabolik yang dikaitkan dengan kekurangan estrogen.
ACKNOWLEDGEMENTS

I would like to extend my deepest gratitude and appreciation to my supervisor Prof. Dr. Maznah Ismail for her endless support, generous guidance and constructive advice that contributed to the completion of this project.

My sincere gratitude also goes to my co-supervisors Prof. Dr. Rozi Mahmud and Prof. Dr. Aini Ideris, thank you for the her priceless comments and invaluable advice.

I would also like to acknowledge and thank Dr. Mustapha Umar Imam for his careful reviews and constructive criticism throughout the entire course of this research. Not forgetting all the staffs in the Laboratory of Molecularmedicine, my sincere thanks to them, especially Mrs. Norsharina Ismail, Mr. Chan Kimwei, and Mrs Norhayat Yusuf for their assistance in laboratory management. I am grateful to my labmates, especially Mr. Ooi Derjun, Mrs. Foong Lianchee, Mrs. Nur Hanisha Azmi, and Mrs. Nadarajan Sarega for their invaluable help and assistance. As well as, thank to Mr. Zhang Yida on the collaboration of EBN research.

Finally yet importantly, I would to express my heartiest appreciation and thanks to all my family members for their understanding and support throughout my studies.
I certify that a Thesis Examination Committee has met on 17 August 2015 to conduct the final examination of Hou Zhiping on her thesis entitled "Anti-Ageing Properties of Edible Bird's Nest Ascertained by In Vitro and In Vivo Studies in Animal Model" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Md Zuki bin Abu Bakar, PhD
Professor
Institute of Bioscience
Universiti Putra Malaysia
(Chairman)

Hairuzshah binti Ithnin, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Saleha binti Abdul Aziz, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Zaheed Husain, PhD
Senior Lecturer
Harvard Medical School
United States of America
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 22 September 2015
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy.

The members of the Supervisory Committee were as follows:

Maznah Ismail, PhD
Professor
Institute of Bioscience
Universiti Putra Malaysia
(Chairman)

Aini Ideris, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Rozi Mahmud, PhD
Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Member)

BUJANG KIM. HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:
• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
• intellectual property from the thesis and copyright of thesis are fully owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
• written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: __________________

Name and Matric No.: Hou Zhiping GS34203
Declaration by members of supervisory committee

This is to confirm that:
- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ______________________________
Chairman of Supervisory Committee: Prof. Dr. Maznah Ismail

Signature: ______________________________
Member of Supervisory Committee: Prof. Dr. Aini Ideris

Signature: ______________________________
Member of Supervisory Committee: Prof. Dr. Rozi Mahmud
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1

2 LITERATURE REVIEW

2.1. Ageing and ageing-related diseases

- 2.1.1. Physiological and pathological ageing
- 2.1.2. Ageing theory
- 2.1.3. Traditional medicine with anti-ageing and neurodegenerative properties
- 2.1.4. Advantages and disadvantages in different ageing model

2.2. Menopause and ageing

- 2.2.1. Effects on brain
- 2.2.2. Cardiovascular effects and diabetes
- 2.2.3. Bone density and osteoporosis
- 2.2.4. Oestrogen therapy in menopausal women
- 2.2.5. Hormone replacement treatment

2.3. Edible bird’s nest

- 2.3.1. Authentication and adulteration of EBN
- 2.3.2. Component and properties of EBN
- 2.3.3. Biological functions of EBN

3. Edible bird’s nest increases expression of hippocampal SIRT1 and prevents menopause-related memory and cognitive decline in ovariectomized rats

3.1 Introduction

3.2 Methods and Materials

- 3.2.1. Animal handling and feeding
- 3.2.2. Morris water maze (MWM) behavioural test
- 3.2.3. Preparation of tissue samples
- 3.2.4. Serum urea and creatinine, and liver enzymes
- 3.2.5. Serum oestrogen detection
- 3.2.6. Sirtuin - 1 immunohistochemistry
- 3.2.7. Statistical analysis

3.3 Results

- 3.3.1. Food intake, body weight and hormone determination
- 3.3.2. Morris Water Maze
- 3.3.3. Toxicity detection
- 3.3.4. SIRT1 expression in hippocampus

3.4. Discussion

37
4. EFFECTS OF EDIBLE BIRD’S NEST ON HIPPOCAMPAL AND CORTICAL NEURODEGENERATION IN OVARIECTOMIZED RATS

4.1. Introduction

4.2. Materials and methods

4.2.1. Materials

4.2.2. Animal treatment and operation procedure

4.2.3. Observation of estrous cycle

4.2.4. Fasting blood glucose and serum insulin levels

4.2.5. Serum oestrogen and advanced glycation end-products (AGEs)

4.2.6. Superoxide dismutase (SOD) and catalase (CAT) activity assay

4.2.7. Thiobarbituric acid reactive substances (TBARS) assay

4.2.8. Ribonucleic acid (RNA) extraction, reverse transcription and multiplex polymerase chain reaction (PCR) analyses

4.2.9. Hippocampal and frontal cortical caspase 3 western blotting

4.2.10. Statistical analysis

4.3. Results

4.3.1. Food intake, body weight and biochemical level determination

4.3.2. EBN lowered serum AGEs

4.3.3. Hippocampal and frontal cortical antioxidant enzyme activities

4.3.4. Hippocampal and frontal cortical TBARs

4.3.5. mRNA levels of antioxidant and neurodegeneration-related genes

4.3.6. EBN attenuated caspase 3 protein level

4.4. Discussion

4.5. Conclusion

5. NUTRIGENOMICS EFFECTS OF EDIBLE BIRD’S NEST ON INSULIN SIGNALLING IN OVARIECTOMISED RATS

5.1. Introduction

5.2. Materials and Method

5.2.1. Materials

5.2.2. EBN samples

5.2.3. Animal handling and feeding

5.2.4. Oral glucose tolerance test and lipid profile

5.2.5. Determination of serum oestrogen and insulin

5.2.6. Hepatic anti-oxidative markers

5.2.7. RNA extraction, reverse transcription and multiplex PCR analyses

5.2.8. Statistical analysis

5.3. Results and discussion

5.3.1. Food intake and body weight

5.3.2. Serum lipid profile

5.3.3. OGTT, serum insulin and HOMA - IR

5.3.4. Hepatic antioxidant capacity of EBN

5.3.5. mRNA levels of hepatic insulin signalling genes

5.4 Conclusions
6. LACTOFERRIN AND OVOTRANSFERRIN CONTRIBUTE TOWARD ANTIOXIDATIVE EFFECTS OF EDIBLE BIRD’S NEST AGAINST HYDROGEN PEROXIDE - INDUCED OXIDATIVE STRESS IN HUMAN SH - SY5Y CELLS

6.1. Introduction
6.2. Materials and Method
6.2.1. Materials
6.2.2. Preparation of EBN water-soluble protein
6.2.3. LF and OVF detection
6.2.5. Oxygen radical absorbance capacity (ORAC) assay
6.2.6. Cell culture
6.2.7. MTT assay
6.2.8. Morphological analysis using inverted light microscope
6.2.9. Acridine orange and propidium iodide staining
6.2.10. SOD and ROS Elisa assay
6.2.11. Annexin V - FITC and propidium iodide double - staining assay
6.2.12. Measurement of mitochondrial membrane potential (MMP)
6.2.13. RNA extraction, reverse transcription and Multiplex PCR analysis
6.2.14. Statistical Analysis
6.3. Results and Discussion
6.3.1. LF and OVF detection in EBN water extraction
6.3.2. EBN, LF and OVF attenuate H2O2 - induced cytotoxicity on SH - SY5Y cells
6.3.3. ABTS radical cation scavenging activities and ORAC assay
6.3.4. Morphological analysis using inverted light microscope
6.3.5. AO / PI staining
6.3.6. ROS and SOD assay
6.3.7. EBN and the biomarkers attenuated H2O2 - induced apoptosis in SH - SY5Y cells
6.3.8. EBN and its biomarkers prevented H2O2 - induced reduction of MMP in SH - SY5Y Cells
6.3.9. Effects of EBN, LF and OVF on mRNA levels of antioxidant and apoptosis genes
6.4. Conclusions

7. GENERAL DISCUSSION

8. SUMMARY, GENERAL CONCLUSION AND RECOMMENDATION FOR FUTURE RESEARCH

REFERENCES
APPENDICES
BIODATA OF STUDENT
LIST OF PUBLICATIONS

LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.</td>
<td>Main theory of ageing</td>
</tr>
<tr>
<td>2.2.</td>
<td>Characteristics of animal models used for the research of human disease</td>
</tr>
<tr>
<td>2.3.</td>
<td>Composition of the edible bird’s nest</td>
</tr>
<tr>
<td>3.1.</td>
<td>Body weights and serum estrogen concentrations of ovariectomized rats.</td>
</tr>
<tr>
<td>4.1.</td>
<td>Food composition and animal groups</td>
</tr>
<tr>
<td>4.2.</td>
<td>Names, accession number and primer sequences used in the study</td>
</tr>
<tr>
<td>4.3.</td>
<td>Body weight, tissue weight and length, and serum biochemical parameters in ovariectomized rats</td>
</tr>
<tr>
<td>5.1.</td>
<td>Nutritional values for Edible Bird’s Nest</td>
</tr>
<tr>
<td>5.2.</td>
<td>Names, accession number and primer sequences used in the study</td>
</tr>
<tr>
<td>5.3.</td>
<td>Body weights, food intake and serum estrogen in ovariectomized rats after 12 weeks intervention</td>
</tr>
<tr>
<td>5.4.</td>
<td>Serum lipid profiles after 12 weeks of intervention</td>
</tr>
<tr>
<td>6.1.</td>
<td>Gene name, accession number, reverse and forward primer sequences used in GeXP multiplex gene expression analyze</td>
</tr>
<tr>
<td>6.2.A.</td>
<td>Lactoferrin and ovotransferrin expression in different types of Edible Bird’s Nest</td>
</tr>
<tr>
<td>6.2.B.</td>
<td>Lactoferrin and ovotransferrin expression in different species</td>
</tr>
<tr>
<td>S.1.</td>
<td>Morris water maze spatial (hidden platform) start position</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The stage of reproductive ageing workshop staging system</td>
<td>23</td>
</tr>
<tr>
<td>2.2</td>
<td>A: bone mass changes by ages in male and female; B: description</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>of standing posture and osteoporosis;</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Female Sprague – Dawley rats growing in the in vivo anti – aging model</td>
<td>53</td>
</tr>
<tr>
<td>3.2</td>
<td>Representative path tracings of the Morris Water Maze.</td>
<td>61</td>
</tr>
<tr>
<td>3.3</td>
<td>Morris Water Maze (MWM) behavioral test results showing effect</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>of Edible Bird’s Nest (EBN) on (A) spatial memory acquisition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>during MWM; (B) latency to first entry target quadrant; (C) time spent in</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the target quadrant in the probe trial.</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>Toxicity profiles of Edible Bird’s Nest treatment in ovariectomized rats</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>in comparison with estrogen. (A) serum alanine transaminase (ALT); (B)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>serum alkaline phosphatase (ALP) activities; (C) serum creatinine (CREA);</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(D) serum urea activity.</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>Sirtuin - 1 (SIRT1) immunoreactivity in the Cornus Ammonis (CA) area 2 of</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>the hippocampus. A) Representative micrographs of SIRT1 immunoreactivity;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B) Histograms showing the optical density (OD) of SIRT1 immunoreactive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>neurons.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sirtuin - 1 (SIRT1) immunoreactivity in the Cornus Ammonis (CA) area 4 of</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>the hippocampus. A) Representative micrographs of SIRT1 immunoreactivity;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B) Histograms showing the optical density (OD) of SIRT1 immunoreactive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>neurons.</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Serum advanced glycation end-products (AGEs) in ovariectomized rats after</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>12 weeks of intervention with edible birds’ nest (EBN) or estrogen.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ovariectomy group (OVX) had their ovaries surgically removed while sham</td>
<td></td>
</tr>
<tr>
<td></td>
<td>control group had the same surgical procedure as ovariectomized rats but</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ovaries were left intact.</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Hippocampal and frontal cortical tissue A. superoxide dismutase (SOD), and</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>B. Catalase (CAT) in ovariectomized rats after 12 weeks of intervention</td>
<td></td>
</tr>
<tr>
<td></td>
<td>with edible birds’ nest (EBN) or estrogen.</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Hippocampal and frontal cortical tissue malondialdehyde (MDA) in</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>ovariectomized rats after 12 weeks of intervention with edible birds’</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nest (EBN) or estrogen.</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>mRNA levels of superoxide dismutase (SOD) 1, SOD 2, SOD 3 and catalase</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>(CAT) in hippocampal and frontal cortical tissue of ovariectomized rats</td>
<td></td>
</tr>
<tr>
<td></td>
<td>after 12 weeks of intervention with edible birds’ nest (EBN) or estrogen.</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>mRNA levels of presenilin (PSEN) 1, PSEN 2 and amyloid precursor protein</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>(APP) in hippocampal and frontal cortical tissue of ovariectomized rats</td>
<td></td>
</tr>
<tr>
<td></td>
<td>after 12 weeks of intervention with edible birds’ nest (EBN) or estrogen.</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>mRNA levels of insulin degrading enzyme (IDE) and low density lipoprotein</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>receptor-related protein (LRP) 1 in hippocampal and frontal cortical tissue</td>
<td></td>
</tr>
<tr>
<td></td>
<td>of ovariectomized rats after 12 weeks of intervention with edible birds’</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nest (EBN) or estrogen.</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>Cleaved caspase 3 protein levels shown as A. representative</td>
<td>92</td>
</tr>
</tbody>
</table>
western blot assay and B. relative optical density in hippocampal and frontal cortical tissue of ovariec
tomized rats after 12 weeks of intervention with edible birds’ nest (EBN) or estrogen.

4.8. Proposed schematic showing how edible birds’ nest (EBN) may prevent estrogen deficiency-associated neurodegeneration.

5.1. Effects of 12 weeks supplementation with Edible Bird’s Nest (EBN) on A. oral glucose tolerance test and B. Area under the curve for glucose in ovariec
tomized rats.

5.2. Effects of 12 weeks supplementation with Edible Bird’s Nest (EBN) on A. serum insulin and B. homeostatic model assessment of insulin resistance (HOMA-IR) in ovariec
tomized rats.

5.3. Effects of 12 weeks supplementation with Edible Bird’s Nest (EBN) on A. serum superoxide dismutase (SOD) levels and B. malondyaldehyde (MDA) levels in ovariec
tomized rats.

5.4. Hepatic mRNA levels of A. insulin receptor (Insr), B. insulin receptor substrate (Ir2) and C. Phosphoinosotide-3 - kinase (PI3K) in ovariec
tomized rats fed with Edible Bird’s Nest (EBN) for 12 weeks.

5.5. Hepatic mRNA levels of A. Glucose transporter (GLUT) 4, B. Inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase beta (IKBKB) and C. mitogen-activated protein kinase (MAPK) 1 in ovariec
tomized rats fed with Edible Bird’s Nest (EBN) for 12 weeks.

5.6. Hepatic mRNA levels of A. Glucokinase (Gck), B. Potassium inwardly rectifying channel, subfamily J, member 11 (KCNJ11) and C. Pyruvate kinase - liver isoform (L - Pk) in ovariec
tomized rats fed with Edible Bird’s Nest (EBN) for 12 weeks.

5.7. Proposed schematic showing targets of Edible Bird’s Nest (EBN) action in the insulin signaling pathway.

6.1. Effects of edible birds’ nest (EBN), lactoferrin (LF) and ovotransferrin (OVF) on H2O2 - induced cytotoxicity in SH - SY5Y cells determined by MTT assay.

6.2. ABTS radical cation scavenging activities and oxygen radical absorbance capacity of edible bird’s nest, lactoferrin (LF) and ovotransferrin (OVF).

6.3. SH-SY5Y cells were captured under inverted light microscope.

6.4. AO (acridine orange, green) / PI (propidium iodide, red) double staining on SH - SY5Y human cells under fluorescent microscope.

6.5. Superoxide dismutase (SOD) activity (A) and reactive oxygen species (ROS) generation (B) in SH - SY5Y cells, following treatment with 1000 μg / ml EBN water extract, 5 μg / ml LF, or 10 μg / ml OVF, and subsequent treatment with or without 250 μM H2O2, in comparison with untreated control.

6.6. (A) Flow cytometry determination of apoptosis on 250 μM H2O2 - induced SH - SY5Y cells by Annexin V - FITC and PI staining assay. (B) Effects of EBN, LF and OVF on H2O2 - induced reduction in Mitochondrial Membrane Potential.

6.7. mRNA levels of NF - κB, P53, P38MAPK and Akt genes in SH- SY5Y cells, following treatment with 1000 μg / ml EBN water extract, 5 μg / ml LF, 10 μg / ml OVF and subsequent treatment with 250 μM H2O2, in comparison to untreated control and
treatment with 250 μM H₂O₂.

6.8. mRNA levels of SOD1, SOD2, and PARP1 genes in SH-SY5Y cells, following treatment with 1000 μg / ml EBN water extract, 5 μg / ml LF, 10 μg / ml OVF and subsequent treatment with 250 μM H₂O₂, in comparison to untreated control and treatment with 250 μM H₂O₂.

The neuroprotection of EBN in SH-SY5Y cell line was possibly related to its ability of anti-oxidant system as well as through activation of SOD1 / SOD2 / PARP1 transcriptional genes.

S.1. The fixed tank for Morris Water Maze.

S.2. Computer tracking program monitor Morris Water Maze.

S.3. The distribution of Edible Bird’s Nest in Southern East Asia.

S.4. A: House Edible Bird Nest (EBN) B: EBN processing procedure, including raw EBN collection, rinsing and soaking, removing impurities, modeling and drying

S.5. Experimental design of anti-aging properties of Edible Bird’s Nest in vitro and in vivo studies in animal model
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAPH</td>
<td>2,2’-azobis (2-amidinopropane) dihydrochloride</td>
</tr>
<tr>
<td>ABTS</td>
<td>2,2’-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid)</td>
</tr>
<tr>
<td>AGE</td>
<td>Advanced glycation end-product</td>
</tr>
<tr>
<td>Akt</td>
<td>Protein kinase B</td>
</tr>
<tr>
<td>ALP</td>
<td>Alanine transaminase</td>
</tr>
<tr>
<td>ALT</td>
<td>Alkaline phosphatase</td>
</tr>
<tr>
<td>AO / PI</td>
<td>Acridine orange and propidium iodide</td>
</tr>
<tr>
<td>APP</td>
<td>Amyloid Precursor Protein</td>
</tr>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>CA</td>
<td>Cornus ammonis</td>
</tr>
<tr>
<td>CASP3</td>
<td>Caspase 3</td>
</tr>
<tr>
<td>CAT</td>
<td>Catalase</td>
</tr>
<tr>
<td>CNS</td>
<td>Central nervous system</td>
</tr>
<tr>
<td>DMEM / F - 12</td>
<td>Minimum essential Eagle’s medium, Ham’s nutrient mixture</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>EBN</td>
<td>Edible bird’s nest</td>
</tr>
<tr>
<td>EGF</td>
<td>Epidermal growth factor</td>
</tr>
<tr>
<td>Gapdh</td>
<td>Glyceraldehydes - 3-phosphate dehydrogenase</td>
</tr>
<tr>
<td>Gck</td>
<td>Glucokinase</td>
</tr>
<tr>
<td>GGT</td>
<td>Gamma - glutamyl transferase</td>
</tr>
<tr>
<td>GLUT4</td>
<td>Glucose transporter type 4</td>
</tr>
<tr>
<td>HDL</td>
<td>High density lipoprotein</td>
</tr>
<tr>
<td>H$_2$O$_2$</td>
<td>Hydrogen peroxide</td>
</tr>
<tr>
<td>HOMA - IR</td>
<td>Homeostatic model assessment of insulin resistance</td>
</tr>
<tr>
<td>HRT</td>
<td>Hormone replacement therapy</td>
</tr>
<tr>
<td>IDE</td>
<td>Insulin - Degrading Enzyme</td>
</tr>
<tr>
<td>Ikbkb</td>
<td>Inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase beta</td>
</tr>
<tr>
<td>Insr</td>
<td>Insulin receptor</td>
</tr>
<tr>
<td>Kan(s)</td>
<td>Kanamycin resistance</td>
</tr>
<tr>
<td>K$_2$S$_2$O$_8$</td>
<td>Potassium persulphate</td>
</tr>
<tr>
<td>KNJC11</td>
<td>Potassium inwardly rectifying channel, subfamily J, member 11</td>
</tr>
<tr>
<td>LDL</td>
<td>Low density lipoprotein</td>
</tr>
<tr>
<td>LF</td>
<td>Lactoferrin</td>
</tr>
<tr>
<td>LPk</td>
<td>Pyruvate kinase-liver isoform</td>
</tr>
<tr>
<td>LRP1</td>
<td>Low Density Lipoprotein Receptor - Related Protein1</td>
</tr>
<tr>
<td>IRS</td>
<td>Insulin receptor substrate</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen-activated protein kinase</td>
</tr>
<tr>
<td>MDA</td>
<td>3,4-methylenedioxyamphetamine</td>
</tr>
<tr>
<td>MMP</td>
<td>Mitochondrial membrane potential</td>
</tr>
<tr>
<td>MTT</td>
<td>3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide</td>
</tr>
<tr>
<td>MWM</td>
<td>Morris Water Maze</td>
</tr>
<tr>
<td>NaHCO$_3$</td>
<td>Sodium bicarbonate</td>
</tr>
<tr>
<td>NF - κB</td>
<td>Nuclear factor kappa - light - chain - enhancer of activated B cells</td>
</tr>
<tr>
<td>OD</td>
<td>Optical density</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>OGTT</td>
<td>Oral glucose tolerance test</td>
</tr>
<tr>
<td>ORAC</td>
<td>Oxygen radical absorbance capacity</td>
</tr>
<tr>
<td>OVF</td>
<td>Ovotransferrin</td>
</tr>
<tr>
<td>OVX</td>
<td>Ovariectomy</td>
</tr>
<tr>
<td>PARP1</td>
<td>Poly (ADP-ribose) polymerase 1</td>
</tr>
<tr>
<td>PI3K</td>
<td>Phosphoinositide-3-kinase</td>
</tr>
<tr>
<td>PSEN1</td>
<td>Presenilin-1</td>
</tr>
<tr>
<td>PSEN2</td>
<td>Presenilin-2</td>
</tr>
<tr>
<td>p53</td>
<td>Cellular tumor antigen p53</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen-activated protein kinase</td>
</tr>
<tr>
<td>RA</td>
<td>Retinoic acid</td>
</tr>
<tr>
<td>ROS</td>
<td>Radical oxygen species</td>
</tr>
<tr>
<td>SIRT-1</td>
<td>Sirtuin-1</td>
</tr>
<tr>
<td>SOD</td>
<td>Superoxide dismutase</td>
</tr>
<tr>
<td>TBARS</td>
<td>Thiobarbituric acid reactive substances</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Biological ageing is the process of cumulative changes to molecular and cellular structures that disrupt metabolism with the passage of time, resulting in deterioration and death. Ageing related memory and cognitive decline are increasingly becoming a problem in humans especially due to improvements in healthcare delivery that have given rise to increasing longevity. Life expectancy for women is higher than for men and their menopausal transition is often accompanied with changes. Alteratives in central nervous system (CNS) are often reflected on memory and cognitive function and sensitive with body metabolic status. Over the years, the life span of Malaysian women increased to 76.8 years in 2011 (Malaysia), and the increasing longevity has meant that women live one-third of their lives beyond cessation of endogenous oestrogen production from the ovaries (Hara, et al., 2011). Before menopause, circulating oestrogen level protects women against neurodegenerative diseases, such as stroke, compared to men (Brann, et al., 2007; Mahesh, & Khan, 2007; Scott, et al., 2012 Vadlamudi, & Brann, 2012). Conversely, postmenopausal women have higher morbidity and mortality due to neurodegenerative diseases compared with age-matched men, because of reduced circulating oestrogen level (Appelros, Stegmayr, & Terént, 2009; Persky, Turtzo, & McCullough, 2010). On the other hand, the risk of metabolic diseases, like type 2 diabetes mellitus, increase significantly in women after menopause, and they are the burden of neurodegenerative diseases on the basis of literatures (de la Torre, 2004; Ulas & Cay, 2010).

Oestrogen is secreted and controlled through hypothalamus-pituitary-gonadal (HPG) axis, to regulate biological function. The decline in oestrogen level in menopause is reported to result in memory loss and metabolic perturbation soon after it starts, and sirtuin - 1 protein played important roles in hippocampus dependent memories and synaptic plasticity as reports. Eventually, low levels of oestrogen lead to other secondary metabolic abnormalities including oxidative stress, apoptosis and inflammation that together complicate the ageing-related degenerative diseases through neuropathy, dementia, Alzheimer’s disease, cardiovascular disease and diabetes. Also, complications arising from oestrogen - deficit diseases are debilitating and result in a huge expenditure in health care. In addition, these degenerative diseases that are among the most common diseases affecting menopausal women, have been linked with lifestyle especially diet (WHO).

Encouragingly, hormone replacement therapy (HRT) has been shown to prevent neurodegenerative disorders as conventional usage on treating menopausal symptoms. However, the risk of life - threatenting complications it induces has limited its use. Data have reported the effects of long term HRT on the risk of breast cancer (Beral, Banks, & Reeves, 2002; Tempfer, et al., 2009)and venous thromboembolism (Jick, Derby, Myers et al., 1996 Vasilakis, & Newton, 1996). Thus, alternatives with better safety profile compared with conventional HRT have received close attention. Herbal medicine has a long history of use and is still widely practiced today, based on the theories, beliefs, and experiences indigenous to different cultures, and used in the maintenance of health as well as in the prevention, improvement or treatment of physical and mental illness (Organisation, 2012).
There is a long history of using traditional medicines in Asian countries. China, one of the early ancient civilisations, has been using edible bird’s nest (EBN) since ancient dynasty. EBN is produced by swiftlets from their salivary glue, which is a cementing substance. The nests are considered to have high nutritional and medicinal values, traditionally believed to have everything from anti-ageing and anti-cancer properties to the ability to improve immunity and raise libido. Composition analysis of EBN shows the major composition is protein (62 % – 68 %) including glycoproteins (Hamzah, Ibrahim, Jaafar et al., 2013), followed by carbohydrate and mineral salts. Additionally, other bioactives have been reported in EBN including epidermal growth factor (EGF), testosterone (Marcone, 2005), and chondroitin glycosaminoglycans (Matsukawa, Matsumoto, Bukawa et al., 2011). Numerous in vitro and in vivo researches have shown that administration of EBN was able to boost immunity, improve anti-oxidant ability, promote neutralisation of influenza activity as well as improve osteoporosis. Sadly, however, evidence-based details of other properties of EBN are lacking. Since the practical usage of traditional medicine is not strictly enforced under scientific evidence, herbalism is just recognised as a form of alternative medicine in modern medicine. Despite EBN’s long history of medicinal use, there is still a dearth of research and scientific evidence to substantiate the claims of health benefits associated with anti-ageing including its mechanistic basis.

In this study, it was aimed to explore the evidences for the use of EBN as a functional food in preventing and managing ageing-related neurodegenerative diseases in menopause, of which the risk is increased due to loss of protection from oestrogen and related hormones. The brain cells are normally sensitive to the effect of redox system because of their peculiar energetic demands (Gandhi & Abramov, 2012). In brain senescence, radical oxygen species (ROS) starts to accumulate in neurons before clinically evident signs and symptoms of the disease can be detected (Gandhi & Abramov, 2012). When ROS accumulate, oxidative damage is normally prevented by induction of protective factors, like antioxidants. On the other hand, the imbalanced redox status is involved in advanced glycation end-products (AGEs) adjustment pathway, and the depletion of cellular antioxidant mechanisms and the generation of free radicals by AGEs may play a major role in the pathogenesis of neurodegeneration (Kuhla, 2014; Prasad, et al., 2014). Furthermore, AGEs is influenced by glucose and lipid homeostasis, and may play the role in transcriptional and proteomic aspects if the insult is too overwhelming. In such cases, apoptotic mechanisms set in to remove neurons deemed irreparable (Radi, et al., 2014). Loss of neurons through these apoptotic deaths results in severe morphological and functional deficits, which manifest with progressive memory and cognitive decline. Therefore, it was hypothesised that this research will give clues on the effect of EBN in some selected organs and functions that are affected by low estrogenic level such as memory loss, weight increase, insulin deficiency and lipid metabolic abnormalities. Their effects on brain and liver related to anti-oxidation, apoptosis and inflammation were equally considered.
Hypotheses of the study were:

1. EBN and its bioactives (LF and OVF) protect SH-SY5Y cells against H$_2$O$_2$-induced cytotoxicity and cell oxidative stress;
2. EBN enhances spatial learning and memory in ovariectomized rats;
3. EBN preserves hippocampal SIRT-1 activity in the menopause model, as the likely basis for enhanced spatial learning and memory;
4. EBN is neuroprotective against oestrogen deficiency - induced damage via increasing serum oestrogen level, and decreasing AGEs and oxidative stress;
5. EBN improves metabolic indices like glucose metabolism, lipid profile and antioxidant status in ovariectomized rats.

General objective

To study the anti-ageing effects of EBN and its mechanism through in vitro and in vivo approaches, including transcriptomic and proteomic analyses.

Specific objective

1. To examine the effects of EBN on ovariectomy - induced memory and cognitive dysfunctions, including transcriptomic and proteomic mechanisms; as well as to obtain sirtuin-1 data on hippocampus and frontal cortex parameters;
2. To determine the effects of EBN on serum AGEs and redox status, and neuro-dysfunction in ovariectomized rats, including mechanistic basis for such effects;
3. To determine the effects of EBN on weight and metabolic indices related to insulin resistance in ovariectomized rats, and mechanistic basis for such effects.
4. To characterize the bioactives (lactoferrin [LF] and ovotransferrin [OVF]) in EBN, and evaluate their anti-oxidant abilities;
5. To determine the neuroprotective potentials of EBN water extract and its constituents, LF and OVF, and related molecular mechanisms involved in H$_2$O$_2$ - induced oxidative stress and apoptosis in SH - SY5Y cells.
REFERENCES

Chan, K. W., Khong, N. M., Iqbal, S., Ch'ng, S. E., & Babji, A. S. (2012). Preparation of clove buds deodorized aqueous extract (cdae) and evaluation of its potential

against hydrogen peroxide induced cell death in human sh-sy5y cells. *International journal of molecular sciences, 13*(8), 9692-9708.

Biochemistry and Physiology Part B: Comparative biochemistry, 87(2), 221-226.

WHO. from http://www.who.int/nutrition/topics/ageing/en/index1.html

