UNIVERSITI PUTRA MALAYSIA

IN VITRO AND IN VIVO ANTI-LUNG CANCER PROPERTIES OF LEAF ETHANOLIC EXTRACT OF MORINDA CITRIFOLIA L.

LIM SWEE LING

IB 2015 17
IN VITRO AND IN VIVO ANTI-LUNG CANCER PROPERTIES OF LEAF ETHANOLIC EXTRACT OF MORINDA CITRIFOLIA L.

By

LIM SWEE LING

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

June 2015
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

IN VITRO AND IN VIVO ANTI-LUNG CANCER PROPERTIES OF LEAF ETHANOLIC EXTRACT OF MORINDA CITRIFOLIA L.

By

LIM SWEE LING

June 2015

Chair: Professor Suhaila Mohamed, PhD
Faculty: Institute of Bioscience

Lung cancer causes 1.4 million deaths and 1.6 million new cases annually, worldwide. The non-small-cell lung cancer (NSCLC) represents 75% – 80% of lung cancer cases. Morinda citrifolia leaves (a common tropical vegetable) scopoletin and epicatechin rich extract (MLE) were assessed for anti-lung cancer effects in vitro on A549 NSCLC cells and in vivo on BALB/c mice. Cell death was assessed by MTT, caspase assays, cell cycle and fluorescence microscopy. The lung cancer was induced by subcutaneously injecting A549 cells into the back of BALB/c mice. The MLE inhibited the proliferation and induced apoptosis in A549 cells (IC\textsubscript{50} = 23.47 μg/mL), arrested cancer cell cycle at G0/G1 phases and significantly increased caspase-3/-8 without changing caspase-9 levels. It was not cytotoxic on non-cancerous MRC-5 lung cells even at 100 μg/mL. The orally administered MLE significantly upregulated the pro-apoptotic P53 genes and downregulated the pro-tumourigenesis genes (BIRC5, JAK2/STAT3/STAT5A) in the tumour tissues.

Cancer development is closely associated with inflammation, oxidative stress and uncontrolled cell growth. The effects of the MLE containing scopoletin (2.2%) and epicatechin (3.4%), on inflammation, endogenous antioxidant responses and apoptosis-related genes expression in lung-cancer induced mice, compared with the anti-cancer drug Erlotinib were investigated. NSCLC-induced BALB/c mice were fed with 150 and 300 mg/kg MLE and compared with Erlotinib (50 mg/kg body-weight) for 21 days. It significantly increased the anti-inflammatory IL4, IL10 and NR3C1 expressions in the lung and hepatic tissues, enhanced the NFE2L2-dependent antioxidant responses against oxidative injuries and elevated the serum neutrophils. It suppressed inflammation and oedema, while up-regulated the endogenous antioxidant responses and apoptosis genes to suppress the metastasized cancers.

The MLE significantly increased blood lymphocytes counts, spleen tissues B cells, T cells and natural killer cells, and reduced the epidermal growth factor receptor (EGFR) which is a lung adenocarcinoma biomarker. The MLE also suppressed the
cyclooxygenase 2 (COX2) inflammatory markers; and enhanced the tumour suppressor gene (phosphatase and tensin homolog, PTEN). The MLE inhibited the tumour growth cellular genes (transformed mouse 3T3 cell double minute 2 (MDM2), V-raf-leukemia viral oncogene 1 (RAF1), and mechanistic target of rapamycin (MTOR)) mRNA expressions.

Cancer development is also related with angiogenesis and metastasis. The anti-angiogenesis and anti-metastasis properties of MLE were investigated and compared with Erlotinib. The 300 mg/kg body-weight MLE was 41% more effective than 50 mg/kg body-weight Erlotinib in suppressing the lung tumor growth; down-regulating new tumour-related blood vessel development or angiogenesis-relevant genes (VEGFA; AKT1; BCL2; MAP3K14 and MAPK1) in both the liver and lung tissues. The MLE suppressed lung and liver cancer invasive migration or metastasis via down-regulating angiogenesis biochemical pathways (EGFR, MMP9 and integrin).

The 300 mg/kg body-weight MLE significantly (and dose-dependently) suppressed lung tumour growth, more effectively than the 50 mg/kg body-weight Erlotinib treatment for most of the parameters measured. Part of the mechanisms involved enhancing immune responses, suppressing proliferation and interfering with various tumour growth signalling pathways, angiogenesis and metastasis in both the lung and liver tumours.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

SIFAT-SIFAT ANTI-KANSER PEPARU PADA DAUN MORINDA CITRIFOLIA L. ETANOL EKSTRAK IN VITRO DAN IN VIVO

Oleh

LIM SWEE LING

Jun 2015

Pengerusi: Professor Suhaila Mohamed, PhD
Fakulti: Institut Biosains

Kanser peparu menyebabkan 1.4 juta kematian dan 1.6 juta kes baru di seluruh dunia setiap tahun. Kanser peparu bukan sel kecil (NSCLC) mewakili 75% - 80% semua kes kanser peparu. Ekstrak daun mengkudu (*Morinda citrifolia*) (MLE) yang kaya kandungan scopoletin dan epicatechin dinilai untuk kesan anti kanser peparu *in vitro* pada sel A549 NSCLC dan *in vivo* pada tikus BALB/c. Kematian sel telah dinilai melalui asai MTT, caspase, kitaran sel dan pemerhatian menggunakan mikroskop pendarfluor. MLE menghalang proliferasi dan apoptosis teraruh dalam sel A549 (IC₅₀ = 23.47 μg/mL); menghentikan kitaran sel kanser di fasa G0/G1 dan meningkatkan dengan ketara ekspresi caspase -3/-8 tanpa mengubah ekspresi caspase-9. Ia tidak sitotoksik pada sel peparu sihat MRC-5 walaupun pada tahap 100 μg/mL. Pengambilan MLE melalui mulut dapat meningkatkan regulasi gen penggalak-apoptosis P53 dengan ketara dan merencat regulasi gen penggalak-kanser (*BIRC5, JAK2/STAT3/STAT5A*) dalam kanser peparu tisu.

Pertumbuhan kanser berkait rapat dengan keradangan tisu, tekanan oksidatif dan pertumbuhan sel tidak terkawal. Kesan MLE yang mengandungi scopoletin (2.2%) dan epicatechin (3.4%), ke atas keradangan tisu, tindakbalas antioksidan endogen dan gen apoptosis dalam kanser peparu tikus, telah dibandingkan dengan ubat kanser Erlotinib. Kanser peparu telah diari dalam tikus BALB/c dengan menyuntik sel A549 di bawah kulit bahagian belakang tikus. Tikus dirawat dengan diberi makan 150 atau 300 mg/kg MLE dan dibandingkan dengan rawatan Erlotinib (50 mg/kg berat-badan) selama 21 hari. MLE dapat meningkatkan sytokin penghalang-radang *IL4, IL10* dan *NR3C1* dalam tisu kanser (peparu dan hati) dengan ketara. MLE juga meningkatkan tindakbalas antioksidan endogen *NFE2L2* untuk memelihara dari kecederaan oksidatif sambil meningkatkan kandungan neutrofil dalam darah. MLE dapat merencat keradangan tisu dan pembengkakan, serta meningkatkan tindakbalas kawal-selia antioksidan endogen dan gen penggalak apoptosis untuk menekan kanser dari merebak.
MLE dapat meningkatkan sistem pertahanan badan dengan ketara terbukti melalui peningkatan sel limfosit darah, sel B tisu limpa, sel T dan sel pembunuh semula jadi; serta mengurangkan reseptor faktor pertumbuhan epidermal (EGFR) yang merupakan penanda-bio adenokarsinoma peparu. MLE juga merencat penanda radang cyclooxygenase 2 (COX2); dan meningkatkan gen penindas tumor (phosphatase dan tensin homolog, PTEN). Rawatannya juga merencat ungkapan mRNA gen berkaitan perbiakan sel kanser (transformed mouse 3T3 cell double minute 2 (MDM2), V-rafl-leukemia viral oncogene 1 (RAF1), and mechanistic target of rapamycin (MTOR)) dalam tisu.

Pembiakan kanser juga berkait rapat dengan angiogenesis (pembangunan saluran darah baru) dan metastasis (penhijrahan merebak ke tisu baru). MLE pada dos 300 mg/kg berat badan adalah 41% lebih berkesan daripada 50 mg/kg berat badan Erlotinib untuk menekan pertumbuhan kanser peparu; melalui penekanan gen kawal-selia angiogenesis (VEGFA; AKT1; BCL2; MAP3K14 dan MAPK1) dalam kedua-dua tisu kanser peparu dan hati. MLE juga merencat kanser dari merebak melalui penurunan-kawal-selia laluan biokimia angiogenesis EGFR, MMP9 and integrin, dalam tisu-tisu kanser.

MLE pada dos 300 mg/kg berat badan berkesan merencat pertumbuhan kanser peparu bergantung mengikut dos dengan lebih mujarab daripada 50 mg/kg berat badan rawatan Erlotinib bagi kebanyakan parameter yang dikaji. Sebahagian daripada mekanisme yang terlibat adalah melalui peningkatan tindakbalas imun, penekanan percambahan saluran darah serta mengganggu pelbagai laluan isyarat pertumbuhan tumor, angiogenesis dan metastasis dalam kanser peparu.
ACKNOWLEDGEMENTS

I would sincerely like to extend my greatest and deepest appreciation to my main supervisor, Prof Suhaila Mohamed for her guidance, advice and encouragement which she unselfishly gave throughout the course of this study. I would also like to thank to my co-supervisors, Prof Noordin Mohamed Mustapha and Assoc Prof Goh Yong Meng for their suggestions and support.

Sincere gratitude and appreciation are forwarded to Mrs. Tommini Salleh, Mrs. Nooraini Mohd. Ain, Mrs. Noor Haizi Mohammad Ruslan, Mrs. Norlela Ahmad, staffs in MAKNA Cancer Research Laboratory of Institute of Bioscience for their technical assistance during this study. Thanks also forwarded to staffs in Comparative Medicine and Technology Unit (COMeT) and to all my friends in UPM.

Last but not least, I would like to extend my extreme gratitude to my supportive parents and family members for their constant support and encouragement.
I certify that a Thesis Examination Committee has met on 24th June 2015 to conduct the final examination of Lim Swee Ling on her thesis entitled “In Vitro and In Vivo Anti-Lung Cancer Properties of Leaf Ethanolic Extract Of Morinda Citrifolia” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Rozita bt Rosli, PhD
Professor
Institute of Bioscience
Universiti Putra Malaysia
(Chairman)

Latifah binti Saiful Yazan, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Amin bin Ismail, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Abbas Ali Mahdi, PhD
Professor
Department of Biochemistry
King George’S Medical University
India
(External Examiner)

(Bujang B. K. Huat, PhD)
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia
Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Suhaila Mohamed, PhD
Professor
Institute of Bioscience
Universiti Putra Malaysia
(Chairman)

Noordin Mohamed Mustapha, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Goh Yong Meng, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PHD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:

vii
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ________________________ Date: __________________

Name and Matric No.: Lim Swee Ling (GS35225)
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:
Name of Chairman of Supervisory Committee: Prof Dr Suhaila Mohamed

Signature:
Name of Member of Supervisory Committee: Prof Dr Noordin Mohamed Mustapha

Signature:
Name of Member of Supervisory Committee: Assoc Prof Dr Goh Yong Meng
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>v</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
</tbody>
</table>

CHAPTER

1 **INTRODUCTION**

1.1 Background of study 1
1.2 Hypothesis 2
1.3 Aims of the study 3

2 **LITERATURE REVIEW**

2.1 Lung cancer 4

2.1.1 Epidemiology 4
2.1.2 Risk Factors 4
2.1.3 Symptoms and Signs 5
2.1.4 Types 5
2.1.5 Tumor Markers 5
2.1.6 Diagnosis 6
2.1.7 Treatment Approaches 6
2.1.8 EGFR targeted therapy in NSCLC 7
2.1.9 Erlotinib 8
2.1.10 Methods for EGFR detection 9
2.1.10.1 Immunohistochemistry 9
2.1.10.2 Polymerase chain reaction 10
2.1.11 Lung Cancer Animal Models 10
2.1.11.1 Xenografts 10
2.1.11.2 Carcinogen 13

2.2 Cancer cells death signaling mechanism 15

2.2.1 Regulation of apoptosis 15
2.2.2 Molecular mechanism in lung cancer 18
2.2.3 Immune cells in lung tumorigenesis 20
2.2.3.1 Natural killer cells 22
2.2.3.2 Neutrophils 22
2.2.3.3 B lymphocytes 23
2.2.3.4 T lymphocytes 23
2.2.4 Plant extract with anti-lung cancer properties 23

2.3 *Morinda citrifolia* 27

2.3.1 Taxonomical classification 27
2.3.2 Plant description 27
2.3.3 Ethnobotanical uses 28
2.3.4 Phytochemical compositions 28
2.3.5 Biological activities 31
3 MATERIALS AND METHODS / METHODOLOGY

3.1 Plant materials
3.2 HPLC chromatographic
3.3 In vitro anti-proliferative effects of MLE on A549 cells
 3.3.1 Cell culture
 3.3.2 MTT cytotoxicity assay
 3.3.3 Morphological evaluation
 3.3.4 AOPI double staining
 3.3.5 Annexin V-FITC assay
 3.3.6 Cell cycle analyses
 3.3.7 Caspase-3, -8, and -9 bioluminescent assays
3.4 Ethic statement for animal study
3.5 Animals
3.6 In vivo tumour xenograft model
 3.6.1 Tumour volume measurement
 3.6.2 Differential counts
 3.6.3 IHC staining
 3.6.4 Immunophenotyping analysis
 3.6.5 Gene expression by real time-PCR
3.7 Statistical analysis

4 RESULTS

4.1 Major phytochemical in MLE
4.2 In vitro cytotoxicity effect of MLE on A549 cells
 4.2.1 Effect of MLE on viability cells
 4.2.2 Effect of MLE on morphological changes
 4.2.3 Effect of MLE on PS externalization
 4.2.4 Effect of MLE on cell cycle
 4.2.5 Effect of MLE on caspase activity
4.3 Effect of MLE on animal lung cancer model
 4.3.1 Effect of MLE on tumour volume
 4.3.2 Effect of MLE on blood differential counts
 4.3.3 Effect of MLE on immunophenotyping
 4.3.4 Histopathology evaluation
 4.3.4.1 H&E and EGFR IHC on tumour
 4.3.4.2 Effect of MLE on pulmonary and hepatic inflammation
 4.3.4.3 Effect of MLE on pulmonary and hepatic metastasis
 4.3.4.4 Effect of MLE on IHC of EGFR, MMP9 and integrin β1 expression
 4.3.5 Effect of MLE on gene expression
 4.3.5.1 Apoptosis-relevant gene expression
 4.3.5.2 Anti-proliferative-relevant gene expression
 4.3.5.3 Anti-inflammatory and anti-oxidant-relevant gene expression
 4.3.5.4 Anti-angiogenesis and anti-
metastasis-relevant gene expression

5 DISCUSSION 100
6 CONCLUSION AND RECOMMENDATIONS 110

REFERENCES/BIBLIOGRAPHY 112
APPENDICES 153
BIODATA OF STUDENT 185
LIST OF PUBLICATIONS 186
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>List of genetic and protein-based biomarkers in lung cancer</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Mechanisms of drug targeted EGFR</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Erlotinib monotherapy in animal model</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>Injection methods on A549-induced mice</td>
<td>13</td>
</tr>
<tr>
<td>2.5</td>
<td>Herbs exhibiting anti-lung cancer activities via different mechanism of apoptosis</td>
<td>24</td>
</tr>
<tr>
<td>2.6</td>
<td>Phytochemical compounds in different parts of M. citrifolia</td>
<td>29</td>
</tr>
<tr>
<td>2.7</td>
<td>Biological activities of M. citrifolia</td>
<td>31</td>
</tr>
<tr>
<td>2.8</td>
<td>In vitro research related to M. citrifolia</td>
<td>40</td>
</tr>
<tr>
<td>2.9</td>
<td>In vivo animal research related to M. citrifolia</td>
<td>42</td>
</tr>
<tr>
<td>2.10</td>
<td>In vivo human research related to M. citrifolia</td>
<td>45</td>
</tr>
<tr>
<td>3.1</td>
<td>Target genes</td>
<td>52</td>
</tr>
<tr>
<td>4.1</td>
<td>Mouse anti-inflammatory and anti-oxidant-relevant gene expression on lung and liver tissues</td>
<td>97</td>
</tr>
<tr>
<td>4.2</td>
<td>Mouse anti-angiogenesis and anti-metastasis-relevant gene expression on lung and liver tissues</td>
<td>98</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Erlotinib chemical structures</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Gross examination after transplantation of A549 cells</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Histopathological examination after transplantation of A549 cells</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>Induction of lung cancer animal model by carcinogen</td>
<td>14</td>
</tr>
<tr>
<td>2.5</td>
<td>Histopathology of lung adenocarcinomas, which was induced by VC in female A/J mouse</td>
<td>15</td>
</tr>
<tr>
<td>2.6</td>
<td>Apoptosis is triggered in response to internal or external stimuli</td>
<td>17</td>
</tr>
<tr>
<td>2.7</td>
<td>Multiple signaling pathways implicated in lung cancer</td>
<td>20</td>
</tr>
<tr>
<td>2.8</td>
<td>Immune cells in NSCLC</td>
<td>21</td>
</tr>
<tr>
<td>2.9</td>
<td>Morinda citrifolia L</td>
<td>28</td>
</tr>
<tr>
<td>4.1</td>
<td>Reverse-phase HPLC chromatograms of standards and MLE</td>
<td>54</td>
</tr>
<tr>
<td>4.2</td>
<td>Inhibitory concentrations of MLE and Erlotinib on (A) healthy human lung MRC5 cells and (B) lung adenocarcinoma A549 cells</td>
<td>55</td>
</tr>
<tr>
<td>4.3</td>
<td>Normal phase contrast inverted micrograph of MLE treated-A549 cells</td>
<td>57</td>
</tr>
<tr>
<td>4.4</td>
<td>Normal phase contrast inverted micrograph of Erlotinib treated-A549 cells</td>
<td>58</td>
</tr>
<tr>
<td>4.5</td>
<td>Fluorescence micrograph of AOPI double-stained on MLE treated-A549 cells</td>
<td>59</td>
</tr>
<tr>
<td>4.6</td>
<td>Fluorescence micrograph of AOPI double-stained on Erlotinib treated-A549 cells</td>
<td>60</td>
</tr>
<tr>
<td>4.7</td>
<td>Percentages of viable, apoptotic, and necrotic cells (AOPI double-stained on treated-A549 cells)</td>
<td>61</td>
</tr>
<tr>
<td>4.8</td>
<td>Flow cytometric analysis of Annexin V on treated-A549 cells</td>
<td>63</td>
</tr>
<tr>
<td>4.9</td>
<td>Cell cycle phase distribution of treated-A549 cells</td>
<td>65</td>
</tr>
<tr>
<td>4.10</td>
<td>Relative luminescence expression of caspase on treated-A549 cells</td>
<td>66</td>
</tr>
</tbody>
</table>
A549 cells

4.11 Effect of MLE on the tumor volume of NSCLC-induced mice

4.12 White blood cells counts in different treatment groups

4.13 Neutrophils differential counts on different experiment group

4.14 Red blood cells differential counts on different experiment group

4.15 Immunophenotyping results on different treatment group

4.16 Photomicrograph of H&E on tumor of untreated cancer mice at the end of the treatment

4.17 Photomicrograph of EGFR IHC on tumor of untreated cancer mice at the end of the treatment

4.18 Photomicrograph of the mice lung at the end of the experiment

4.19 Inflammation scores on mice lung tissues at the end of experiments

4.20 Photomicrograph of mice liver tissues at the end of the experiment

4.21 Inflammation scores on mice liver tissues at the end of experiments

4.22 Histological photomicrograph of the untreated cancer mice lung

4.23 Histological photomicrograph of the treated-mice lung at the end of experiment

4.24 Histological photomicrograph of the mice liver at the end of experiment

4.25 Histological photomicrograph of EGFR IHC on mice lung at the end of the experiment

4.26 EGFR IHC scores on mice lung at the end of experiments

4.27 Histological photomicrograph of EGFR IHC on mice liver at the end of the experiment

4.28 EGFR IHC scores on mice liver at the end of experiments

4.29 Histological photomicrograph of MMP9 IHC on mice lung at

xv
the end of the experiment

4.30 MMP9 IHC scores on mice lung at the end of experiments
4.31 Histological photomicrograph of integrin β1 on mice liver at the end of the experiment
4.32 Integrin β1 IHC scores on mice liver at the end of experiments
4.33 Mouse apoptosis-relevant gene expression on tumour tissue
4.34 Proposed apoptosis model of MLE in vitro and in vivo
4.35 Mouse anti-proliferative-relevant gene expression on tumour tissue
4.36 Proposed anti-proliferative model of MLE against lung adenocarcinoma in vivo
4.37 A simplified illustration showing the role of MLE in anti-oxidative and anti-inflammatory pathways preventing lung adenocarcinoma in vivo
4.38 A schematic representation of the signaling pathways involved in the inhibition of angiogenesis and metastasis of lung adenocarcinoma by MLE
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AKT</td>
<td>Protein kinase B</td>
</tr>
<tr>
<td>ALK</td>
<td>Anaplastic lymphoma kinase</td>
</tr>
<tr>
<td>AO</td>
<td>Acridine Orange</td>
</tr>
<tr>
<td>APAF-1</td>
<td>Protease-activating factor 1</td>
</tr>
<tr>
<td>ASA</td>
<td>American Society of Anesthesiologists</td>
</tr>
<tr>
<td>BAC</td>
<td>Bronchioloalveolar carcinoma</td>
</tr>
<tr>
<td>BAD</td>
<td>BCL2-associated agonist of cell death</td>
</tr>
<tr>
<td>BAK</td>
<td>BCL2 antagonist/killer (BAK)</td>
</tr>
<tr>
<td>BAX</td>
<td>BCL2-associated protein X</td>
</tr>
<tr>
<td>BCL2</td>
<td>B cell lymphoma 2</td>
</tr>
<tr>
<td>BCL-XL</td>
<td>B cell lymphoma extra large</td>
</tr>
<tr>
<td>bFGF</td>
<td>Basic fibroblast growth factor</td>
</tr>
<tr>
<td>BH</td>
<td>BCL2 homology</td>
</tr>
<tr>
<td>BID</td>
<td>BH3-interacting domain death agonist</td>
</tr>
<tr>
<td>BIM</td>
<td>BCL2-interacting mediator of cell death</td>
</tr>
<tr>
<td>BIRC5</td>
<td>Baculoviral IAP repeat-containing 5</td>
</tr>
<tr>
<td>CD</td>
<td>Cluster of differentiation</td>
</tr>
<tr>
<td>CTL</td>
<td>Cytotoxic T lymphocytes</td>
</tr>
<tr>
<td>COX</td>
<td>Cyclooxygenase</td>
</tr>
<tr>
<td>DISC</td>
<td>Death-inducing signal complex</td>
</tr>
<tr>
<td>ECM</td>
<td>Extracellular matrix</td>
</tr>
<tr>
<td>EGF</td>
<td>Epidermal growth factor</td>
</tr>
<tr>
<td>EGFR</td>
<td>Epidermal growth factor receptor</td>
</tr>
<tr>
<td>EML4</td>
<td>Echinoderm microtubule-associated protein-like 4</td>
</tr>
<tr>
<td>ErbB</td>
<td>Erythoblastic leukemia viral oncogene homolog</td>
</tr>
<tr>
<td>ERK</td>
<td>Extracellular signal-regulated kinases</td>
</tr>
<tr>
<td>FAK</td>
<td>Focal adhesion kinase</td>
</tr>
<tr>
<td>FISH</td>
<td>Fluorescent in situ hybridization</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>Granulocyte-macrophage colony-stimulating factor</td>
</tr>
<tr>
<td>GRB2</td>
<td>Growth factor receptor bound protein 2</td>
</tr>
<tr>
<td>HER</td>
<td>Human epidermal growth factor receptor</td>
</tr>
<tr>
<td>IFN</td>
<td>Interferon</td>
</tr>
<tr>
<td>IGF1R</td>
<td>Insulin-like growth factor-I receptor</td>
</tr>
<tr>
<td>IHC</td>
<td>Immunohistochemistry</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>JAK</td>
<td>Janus tyrosine kinase</td>
</tr>
<tr>
<td>Kras</td>
<td>V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog</td>
</tr>
<tr>
<td>LLC</td>
<td>Lewis lung peritoneal carcinoma</td>
</tr>
<tr>
<td>LPL</td>
<td>Lipoprotein lipase</td>
</tr>
<tr>
<td>MAP2K1</td>
<td>Dual specificity mitogen-activated protein kinase kinase 1</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen-activated protein kinase</td>
</tr>
<tr>
<td>MCHC</td>
<td>Mean cell hemoglobin concentration</td>
</tr>
<tr>
<td>MCL-1</td>
<td>Myeloid leukemia cell differentiation protein</td>
</tr>
<tr>
<td>MCV</td>
<td>Mean corpuscular volume</td>
</tr>
<tr>
<td>MDM2</td>
<td>Transformed mouse 3T3 cell double minute 2</td>
</tr>
<tr>
<td>MEK</td>
<td>Mitogen-activated protein kinase kinase</td>
</tr>
<tr>
<td>MHC</td>
<td>Major histocompatibility complex</td>
</tr>
<tr>
<td>MMP9</td>
<td>Matrix metalloproteinase 9</td>
</tr>
<tr>
<td>MOMP</td>
<td>Mitochondrial outer membrane permeabilization</td>
</tr>
</tbody>
</table>
MTOR Mechanistic target of rapamycin
N Node
NCCN National comprehensive cancer network
NCR Natural cytotoxicity receptor
NFE2L2 Nuclear factor, erythroid derived 2, like 2
NK Natural killer
NNK Nicotine-derived nitrosamine ketone
NR3C1 Nuclear receptor subfamily 3, group C, member 1
NSCLC Non-small-cell lung cancer
PDK Pyruvate dehydrogenase kinase
PFS Progression-free survival
PI3K Phosphatidylinositol 3-kinase
PIP3 Phosphatidylinositol (3,4,5) tris-phosphate
PTEN Phosphatase and tensin homolog
RAF V-raf 1 murine leukemia viral oncogene homolog 1
RAS Retrovirus-associated DNA sequences
SCC Squamous cell carcinoma
SCLC Small-cell lung cancer
SMAC Second mitochondria-derived activator of caspases
SOS Son-of-sevenless
STAT Signal transducers and activators of transcription
TCR T-cell receptor
TGFα Transforming growth factor alpha
Th T helper
TKI Tyrosine kinase inhibitor
TNF Tumor necrosis factor
TRP53 Transformation related protein 53
VC Vinyl carbamate
VEGF Vascular Endothelial Growth Factor
CHAPTER I

INTRODUCTION

1.1 Background of study

Lung cancer is the leading cause of cancer-related death worldwide, killing an estimated 1.4 million people annually (Ferlay et al., 2010). In 2030, there will be an estimated 219,440 new cases and 159,390 deaths due to lung cancer (Jemal et al., 2011). In Malaysia, lung cancer is, in overall, the third commonest cancer, the commonest tumor to afflict males and the most common cause of cancer deaths accounting for 19.8% of all medically certified cancer related mortality (Al-Naggar and Kadir, 2013), where it accounts for 13.8% of all cancers in males and 3.8% of all cancers in females (Liam et al., 2006). Due to this alarming statistic, it is necessary to develop not only new but also effective means of treatment.

Lung cancer is classified into two major groups: small cell lung carcinoma (SCLC) and non-small cell lung carcinoma (NSCLC). NSCLC usually spreads to different parts of the body more slowly than SCLC, and accounts for more than 85% of lung cancer cases, of which adenocarcinoma (~40% of cases) is the most common subtype, followed by squamous cell carcinoma (SCC) (~25-30%) and large-cell carcinoma (~10-15%) (Wood et al., 2014). These subtypes differ in terms of site of origin and patient characteristics, SCC being associated with smoking and origin from bronchial epithelial cells, whilst adenocarcinoma is mainly derived from alveolar/bronchial cells (Langer et al., 2010). In most cases, lung cancer is diagnosed at an advanced stage when treatment outcomes are unfavorable (Mazzone et al., 2007). Not surprisingly, the overall 5-year survival rate for all stages of NSCLC is only 17% (American Cancer Society, 2013). Once recurred or metastasized, the disease is essentially incurable with survival rates at 5 years of less than 5%, and this has improved only marginally during the past 25 years (Jemal et al., 2010).

In NSCLC, epidermal growth factor receptor (EGFR) is over-expressed in a substantial proportion of tumors in the range of 40% to 80% and has been associated with a poor prognosis (Silvestri and Rivera, 2005), and it was one of the molecules that was recognized as a biomarker for the development of targeted therapies (Mendelsohn, 2003). Erlotinib, one of the oral EGFR tyrosine-kinase inhibitors (TKIs), has been reported to be effective in second- and third-line therapy (Reck et al., 2010; Shepherd et al., 2005), and furthermore in first-line (Zhou et al., 2011) and maintenance settings (Cappuzzo et al., 2010). Therefore, Erlotinib has been approved in more than 80 countries for the treatment of advanced NSCLC, and was also approved in the People’s Republic of China (PRC) in 2006 and USA in 2004 (Cohen et al., 2010). However, the drawbacks of Erlotinib has been reported, such as skin rash, acne, diarrhea, headache, mucositis, hyperbilirubinemia, neutropenia and anemia (Ranson, 2004).
Moreover, chemotherapy was reported to cause undesirable side-effects, severe damage to normal cells and resistance development to the agents (Mohan et al., 2011). Due to the poor respond of chemotherapy, limited effective drug, negative side effects of medicination, and negative social impacts, a dire need for an alternative treatment for lung cancer patients.

Currently, much attention has been placed on anticancer drugs of herbal origin. They demonstrate selective toxicity toward tumorigenic tissues by suppressing proliferation, triggering apoptosis, inhibiting angiogenesis, and retarding metastasis in both \textit{in vitro} and \textit{in vivo} (Tan et al., 2011). For example, Paclitaxel (Taxol), a natural compound isolated from the Pacific northwest yew tree, is used for the treatment of lung cancer (Bonomi, 1999).

One of the most beneficial plants in the tropical areas, which has been flourishingly planted is \textit{Morinda citrifolia} L (Rubiaceae), known popularly as noni, a small evergreen tree or shrub, native to South Asia that currently grows throughout the tropics, has been utilized as a remedy for >2000 years by Polynesians (Kinghorn et al., 2011). The need of \textit{M. citrifolia} increases due to importance of widely curative influences such as anticancer, antioxidant, antibacterial, hypertensive, anti-inflammatory and antimicrobial (Alsaeed, 2013). \textit{M. citrifolia} leaves ethanolic extract have antioxidant, liver-protective and wound healing effects (Nayak et al., 2009) without any acute, sub-acute and sub-chronic oral toxicity (West et al., 2007). An oral intake of 1000 mg/kg of \textit{M. citrifolia} leaf 50% ethanolic extract has been reported as the no observed-adverse-effect level (NOAEL) (Lagarto et al., 2013). \textit{M. citrifolia} leaf dichloromethane extract reportedly has \textit{in vitro} antiproliferative activities in KB (human epidermoid carcinoma) and HeLa (human cervical carcinoma) cell lines (Thani et al., 2010), thus indicating its general anti-cancer potential, but there is no report on its anti-lung cancer effects or the mode of action.

This study can potentially reduce the numbers of death, providing cheaper medicine drug due to its bioavailablity in Malaysia, and without negative side effects on lung cancer patient. Consequently, it may contribute to the improvement of quality of life, as well as economic and social well being of Malaysia.

1.2 Hypothesis

It is hypothesized that \textit{M. citrifolia} leaves 50% ethanolic extract (MLE) will show cytotoxic effect on the human lung adenocarcinoma cell line (A549), without affecting the human lung fibroblast cell line (MRC5), and will has antiproliferative effect on animal lung cancer model via immune-mudulatory and anti-angiogenesis/anti-metastasis signaling pathways.
1.3 Aims of the study

General Objectives: To determine the *in vitro* and *in vivo* anti-lung cancer activities of ethanolic extract of *Morinda citrifolia* leaves

Specific Objectives:
1. To identify the chemical profile of MLE
2. To evaluate *in vitro* cytotoxic effects of MLE on MRC5 and A549 cells
3. To determine the immuno-modulation exhibited by the MLE on A549-induced BALB/c mice
4. To determine the anti-angiogenesis/anti-metastasis signaling pathway and pathological changes exhibited by the MLE on A549-induced BALB/c mice
REFERENCES

Trends in Molecular Medicine, 13(1), 4–11.

Phytotherapy Research, 24(1), 38–42.

Natural Product Research, 26(16), 1492–1497.

Biochimica et Biophysica Acta (BBA)- Molecular Basis of Disease, 1586(1), 11–22.

Berg, J. and Furusawa, E. (2007). Failure of juice or juice extract from the noni plant (*Morinda citrifolia*) to protect rats against oxygen toxicity.
Hawaii Medical Journal, 66(2), 41–44.

121

Roengvoraphoj, M., Tsongalis, G., Dragnev, K. and Rigas, J. (2013). Epidermal growth factor receptor tyrosine kinase inhibitors as initial therapy for non-small cell

Trellakis, S., Farjah, H., Bruderek, K., Dumitrut, C., Hoffmann, T., Lang, S. and Brandau, S. (2010). Peripheral blood neutrophil granulocytes from patients...

multicentre, open-label, randomised, phase 3 study. *The Lancet Oncology*, 12(8), 735–742.
