EFFECTS OF GRACILARIA CHANGII EXTRACT ON APOPTOSIS AND GENE EXPRESSION OF MCF-7 AND MDA-MB-231 BREAST CANCER CELL LINES

NAFEZAH ABDUL HAMID

FPSK(M) 2006 10
EFFECTS OF *GRACILARIA CHANGII* EXTRACT ON APOPTOSIS AND GENE EXPRESSION OF MCF-7 AND MDA-MB-231 BREAST CANCER CELL LINES

NAZEFAH ABDUL HAMID

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA

2006
EFFECTS OF *GRACILARIA CHANGII* EXTRACT ON APOPTOSIS AND GENE EXPRESSION OF MCF-7 AND MDA-MB-231 BREAST CANCER CELL LINES

NAZefaH aBDuL HaMiD

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

May 2006
DEDICATION

This thesis is dedicated to my loving family, who has been supporting me through thick and thin. Without them, none of this would have been possible.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

EFFECTS OF GRACILARIA CHANGII EXTRACT ON APOPTOSIS AND GENE EXPRESSION OF MCF-7 AND MDA-MB-231 BREAST CANCER CELL LINES

By

NAZEF AH ABDUL HAMID

May 2006

Chairman: Associate Professor Rozita Rosli, PhD

Faculty: Medicine and Health Sciences

Cancer is a large group of diseases characterized by uncontrolled growth and spread of abnormal cells. Hundreds of research studies have demonstrated significant benefit of the use of natural products in the treatment of cancer and scientists believe examining new natural products will continue to turn up even more useful drugs to treat cancer. Marine organisms are a rich source for natural products and many compounds that are derived from these have generated interest for their cytotoxicities. Gracilaria changii is a type of red seaweed which comes from the family Rhodophyta. It is a relatively abundant seaweed in Malaysia can be found in the mangrove areas. In this study, the chemotherapeutic potential of Gracilaria changii in selected reproductive cancer cell lines was evaluated together with tamoxifcn, a commercially used drug in cancer treatment. Exposure of breast, ovarian and cervical cancer cell lines, to a range of Gracilaria changii extracts demonstrated growth inhibition in some of these cancer cells in a dose-dependent manner. The Gracilaria changii extracts received from Kolej
Universiti Sains dan Teknologi Malaysia (KUSTEM) were methanol, buthanol and diethyl ether extracts. The methanol extract gave the most promising IC₅₀ values, as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay and the results are as follows: MCF-7 (7.8 µg/ml), MDA-MB-231 (25 µg/ml) HeLa (70.26 µg/ml) and Caov-3 (90.46 µg/ml). Since the results for the breast cancer cell lines were significant compared to the ovarian and cervical cancer cell lines, they were chosen for further analysis. The normal breast cell line, MCF-10A was also tested and the IC₅₀ value was found to be > 1000 µg/ml, indicating that the methanol extract was not cytotoxic to normal cells. AOPI staining was used to study the morphology of the cells treated with the extract. Apoptotic features that included membrane blebbing and nucleus condensation were evident in MCF-7 and MDA-MB-231 cancer cells. Subsequently, the TUNEL assay was conducted to determine and quantitate the apoptotic cells within a cell population. The results suggest that the methanol extract was better of inducing cell death by stimulating apoptosis than tamoxifen. This is based on the significantly higher percentage of apoptotic cells in the *G.changii* methanol extract treated cancer cells as compared to tamoxifen. For MCF-7 and MDA-MB-231 cell lines, *p* was <0.01 when compared with control (24 hours) and *P* of <0.001 when compared with control for 48 hours. In addition, gene expression analysis was performed using the microarray technology. This technology which allows the simultaneous analysis of a large number of nucleic acid hybridization experiments and was carried out to determine the gene expression profile. Preliminary work on microarray was conducted using MCF-7 cell line only, due to time constraints and limited funding. Upon treatment with the methanol extract on MCF-7, several suppressed genes were
identified including haplotype n1b mitochondrion complete genome, melanoma-associated antigen p97 isoform 1 and damage-specific DNA binding protein 2 (ddb2). The results showed that the three genes regulated by the methanol extract encode proteins that belongs to DNA repair, protection against membrane-lipid peroxidation and maternal inheritance family, which may play an important role for the cancer treatment. It was further confirmed using Reverse Transcription Polymerase Chain Reaction (RT-PCR). Therefore, the methanol extract of Gracilaria changii is a potential candidate to be developed as a chemotherapeutic agent in the treatment of estrogen receptor-positive breast cancers.
EFFECTS OF GRACILARIA CHANGII EXTRACT ON APOPTOSIS AND GENE EXPRESSION OF MCF-7 AND MDA-MB-231 BREAST CANCER CELL LINES

Oleh

NAZEFAH ABDUL HAMID

Mei 2006

Pengerusi : Profesor Madya Rozita Rosli, PhD
Fakulti : Perubatan dan Sains Kesihatan

Kanser merupakan satu kumpulan penyakit yang dikategorikan sebagai tumbesaran sel yang tidak dapat dikawal dan penyebaran sel-sel yang tidak normal. Sel-sel ini boleh membesar menjadi kelompok tisu yang dipanggil tisu malignan. Apabila kanser merebak, ia akan menyerang dan memusnahkan tisu normal dan juga akan merebak ke bahagian lain badan. Kanser yang merebak ke bahagian lain atau ke organ lain dipanggil kanser metastatik. Jika penyebaran kanser tidak dikawal, ia akan menyebabkan kematian. Kebanyakan kanser boleh dikawal atau dicegah jika dikesan awal dan dirawat dengan segera. Kebanyakan penyelidikan yang telah dijalankan menunjukkan kesan yang signifikan daripada penggunaan alam semulajadi dan saintis mempercayai bahawa ujian-ujian terhadap alam semulajadi yang baru akan membuka lebih banyak ubat antikanser. Organisma marin kaya dengan sumber alam semulajadi dan banyak sebatian daripadanya telah menarik minat terhadap kesan sitotoksik. Gracilaria changii merupakan rumpai laut merah daripada keluarga Rhodophyta. Ia merupakan rumpai laut
yang banyak terdapat di Malaysia dan boleh didapati di kawasan paya bakau. Di dalam kajian ini, potensi kemoterapeutik *Gracilaria changii* untuk kanser reproductif terpilih dikaji bersama tamoxifen, drug antikanser komersil yang sekarang digunakan untuk rawatan kanser. Pendedahan sel-sel kanser payudara, ovari dan serviks kepada julat kepekatan ekstrak yang berbeza menghasilkan perencatan pertumbuhan bagi kedua jenis sel kanser dengan bergantung kepada nilai kepekatan. Ekstrak yang diterima daripada Kolej Universiti Sains dan Teknologi Malaysia (KUSTEM) merupakan ekstrak metanol, butanol dan dietil eter. Ekstrak methanol memberikan nilai IC₅₀ yang paling baik, didapati daripada asai penurunan 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) adalah seperti berikut: MCF-7 (7.8 ug/ml), MDA-MB-231 (25 ug/ml) HeLa (70.26 ug/ml) and Caov-3 (90.46 ug/ml). Oleh kerana sel selanjar payudara memberikan keputusan yang baik berbanding dengan sel-sel selanjar ovari dan servik, maka ia dipilih untuk analisis seterusnya. Sel selanjar normal, MCF-10A juga diuji dan nilai IC₅₀ lebih daripada 1000 ug/ml, menunjukkan ekstrak metanol tidak sitotoksik terhadap sel normal. Pewarnaan AOPI digunakan untuk melihat perubahan morfologi sel selepas rawatan dengan ekstrak tersebut. Ciri-ciri apoptosis seperti gelembung membran dan kondensasi nukleus telah didapati bagi sel kanser MCF-7 dan MDA-MB-231. Seterusnya, asai TUNEL dijalankan untuk menentukan apoptosis. Menariknya, ekstrak metanol didapati menyebabkan kematian sel dengan merangsang apoptosis lebih baik daripada tamoxifen berdasarkan peratusan sel-sel apoptotik yang menunjukkan perbezaan yang signifikan berbanding sel-sel kanser dengan rawatan ekstrak metanol. Sebagai tambahan, analisis pengekspresan gen dijalankan dengan menggunakan teknologi mikroarray. Teknologi mikroarray membencarkan analisis terhadap asid nukleik yang
banyak secara serentak bertujuan untuk menentukan profil pengekspresan gen. Sebagai permulaan, kajian mikroarray hanya dijalankan ke atas sel selanjar MCF-7 sahaja, disebabkan factor masa dan geran yang terhad. Daripada rawatan ekstrak methanol terhadap MCF-7, didapati tiga gen yang telah ditindas iaitu haplotype n1b mitochondrion complete genome, melanoma-associated antigen p97 isoform 1 dan damage-specific DNA binding protein 2. Keputusan kajian menunjukan gen tersebut terdiri daripada gen yang mengkodkan protein kumpulan pembaikkan DNA, perlindungan terhadap peroksidasi membrane-lipid dan warisan daripada ibubapa, yang mungkin memainkan peranan yang penting terhadap rawatan kanser. Seterusnya ia disahkan dengan menggunakan Reverse Transcription Polymerase Chain Reaction (RT-PCR). Oleh itu, ekstrak methanol *Gracilaria changii* didapati mempunyai potensi untuk dikembangkan sebagai agen kemoteraputik untuk rawatan kanser yang bergantung kepada hormone.
ACKNOWLEDGEMENTS

I am giving all my thanks to Allah S.W.T whose blessings have accompanied me with the energy, time and ideas in every step of the way in finishing this work and made it a possible task.

This project would have never been initiated and completed without the persistent help from so many people. Greatest debt of gratitude therefore is owed to my supervisor, Assoc.Prof. Dr. Rozita Rosli whose inspiration, gratitude, advice and unwavering support made the completion of this project a reality. I thank her again for trusting me so much in this project and all the help she provided during the accomplishment of this project. I am also grateful to my co-supervisor, En. Muhammad Nazil Salleh for the comments, suggestions and attention in this project.

Very special thanks to K. Nurma for her invaluable contribution in knowledge and guidance as well as tirelessly accompanying me throughout the course of my project. Recognition also goes to members of the Molecular Genetics lab, Wong, King Hwa, Syaban, Lama, Nasir, K. Za, Chan, Chin, Radha and K. Shariza Sr. Not forgetting Molecular Microbiology’s lab members, Matun, Mas, Farah, Lai and Hana for their support and helping hands.

Loving thanks to all my collegues, Yati, Zet, Fatan, Arie, Ajantha, Nirmala, Ahmad, Pike See, Yunus and Im, who assisted me with their invaluable advice and encouragement.
Special thanks to Thila, K. Shahriza and K. Sue, who kept on providing encouragement and help along the journey.

My heartiest gratitude and sincere thanks to my family for their love, encouragement and support in completing this project. On a personal note, I would like to express my gratitude to my beloved husband, Nizam Nordin for his support and concern all this while. Words cannot describe their patience and kindness in helping and guiding me in every part of this project.

Last but not least, I would like to thank to everyone who have helped me directly or indirectly, towards the completion of this research project.
I certify that an Examination Committee has met on 31st May 2006 to conduct the final examination of Nazefah Abdul Hamid on her Master of Science thesis entitled “Effects of Gracilaria changii Extract on Apoptosis and Gene Expression of MCF-7 and MDA-MB-231 Breast Cancer Cell Lines” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Mariana Nor Shamsudin, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Abdul Manaf Ali, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Chong Pei Pei, PhD
Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Shamala Devi K. C. Sekaran, PhD
Professor
Faculty of Medicine
Universiti Malaya
(External Examiner)

HASANAH M. D. GHAZALI, PhD
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 28 AUGUST 2006
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Rozita Rosli, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Mohd Nazil Salleh
Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 14 SEPTEMBER 2006
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

NAZEFAH ABDUL HAMID

Date: 27/9/06
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Cancer | 1 |
1.2 Significance of study | 2 |
1.3 Objectives | 3 |

2 LITERATURE REVIEW

2.1 Natural products in cancer treatment | 4 |
2.2 *Gracilaria changii* | 7 |
2.3 Cancer Cases in Malaysia | 10 |

2.4 Breast cancer

2.4.1 Overview | 11 |
2.4.2 Epidemiology of Breast Cancer| 12 |
2.4.3 Treatment of Breast Cancer | 14 |
2.4.4 Tamoxifen as treatment in breast cancer | 16 |
2.4.5 Side effects of tamoxifen | 17 |

2.5 Breast Cancer Cell Lines

2.5.1 MCF-7 | 18 |
2.5.2 MDA-MB-231 | 19 |
2.5.3 MCF-10A | 19 |

2.6 Apoptosis

2.6.1 Overview | 20 |
2.6.2 Apoptosis and Cancer Chemotherapy | 25 |

2.7 Microarray

2.7.1 Overview | 26 |
2.7.2 Microarray and breast cancer | 28 |

xiv
2.8 Reverse Transcription Polymerase Chain Reaction (RTPCR)

2.8.1 Overview

3 MATERIALS AND METHODS

3.1 General outline of the study
3.2 Gracilaria changii extracts
3.3 Cancer cell lines
3.4 Cell Culture
 3.4.1 Preparation of media
 3.4.2 PBS-EDTA solution for washing the cell lines
 3.4.3 Trypsinizing solution
3.5 Cell culture protocols
 3.5.1 Thawing cryopreserved cells
 3.5.2 Media renewal
 3.5.3 Subculture of adherent cells
 3.5.4 Cell plating
 3.5.5 Cryopreservation
3.6 MTT Cytotoxicity Assay
3.7 Morphological Studies Using Phase Contrast Microscope
3.8 Acridine Orange/Propidium Iodide (AOPI) Staining
3.9 Detection of Apoptosis Using DeadEnd™ Fluorimetric
 TUNEL System
3.10 Statistical Analysis
3.11 Microarray
 3.11.1 Spotted slide
 Array fabrication
 Resuspension of oligonucleotides
 Array printing
 Post treatment
 Slide Quality Control
 3.11.2 Commercially available slide
 MWG slide
 Extraction of Total RNA
 RNA Quantification
 RNA Quantification by
 spectrophotometer
 Electrophoresis of RNA
 cDNA Synthesis
 Double stranded DNA Purification
 T7 Transcription of cRNA and
 Labeling of cRNA
 Fragmentation of labeled cRNA
 Hybridization
 Washing
 Scanning
Data Analysis

3.11 Reverse Transcription Polymerase Chain Reaction (RTPCR)
 3.11.1 Primer design
 3.11.2 Reverse Transcription
 3.11.3 Polymerase Chain Reaction (PCR)
 3.11.4 Agarose Gel Electrophoresis
 3.11.5 Agarose Gel Formula
 3.11.6 Electrophoresis

RESULTS

4.1 Cytotoxicity assay
4.2 Morphological studies using phase contrast inverted microscope
4.3 Cell Viability and Apoptosis Assay using AO/PI Staining
4.4 TUNEL assay
4.5 Microarray

DISCUSSION

5.1 Effect of methanol extract of Gracilaria changii on breast cancer cell lines and induction of apoptosis
5.2 Microarray

CONCLUSION

6.1 Conclusion
6.2 Achievement of the projected objectives
6.3 Limitations of the study
6.4 Future studies

REFERENCES

BIODATA OF AUTHOR
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Differential features and significance of necrosis and apoptosis, including morphological, biochemical and physiological features.</td>
<td>23</td>
</tr>
<tr>
<td>2</td>
<td>Temperature and time of PCR parameters that were optimized for the three genes.</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>MTT assay results on the five cell lines. Data represents the mean IC_{50} value and standard error (SEM) for each of the cell lines tested with the extracts and tamoxifen.</td>
<td>65</td>
</tr>
<tr>
<td>4</td>
<td>Chemotherapeutic significance values for anticancer screening according to NCI standard for crude extract.</td>
<td>66</td>
</tr>
<tr>
<td>5</td>
<td>The concentration and purity total of RNA extracted from MCF-7. Concentration of RNA extracted is expressed as μg/ml.</td>
<td>102</td>
</tr>
<tr>
<td>6</td>
<td>List of genes in the block on the commercial slide which were analyzed using QuantArray software.</td>
<td>105</td>
</tr>
<tr>
<td>7</td>
<td>Genes regulated by methanol extract in MCF-7. For fold changes, (-) indicates suppression. Significant differences were determined according to cut-off values of two-fold or greater.</td>
<td>108</td>
</tr>
<tr>
<td>8</td>
<td>Gene-specific primers designed for RT-PCR. The primers were designed using Primer Premier 5.0 software.</td>
<td>114</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gracilaria changii harvested from Morib, Selangor.</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>Ten most frequent cancers in females, Peninsular Malaysia 2003.</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>Structure of tamoxifen.</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>The general pipeline for the study outlining methods used in the study.</td>
<td>36</td>
</tr>
<tr>
<td>5</td>
<td>Pipeline for microarray.</td>
<td>49</td>
</tr>
<tr>
<td>6</td>
<td>Effect of increasing concentrations of methanol extract and tamoxifen on the cell viability.</td>
<td>67</td>
</tr>
<tr>
<td>7</td>
<td>The effect of methanol extract and tamoxifen on MCF-10A.</td>
<td>68</td>
</tr>
<tr>
<td>8</td>
<td>Changes in morphology of MCF-7 cells after treatment with methanol extract and tamoxifen, 24 hours.</td>
<td>71</td>
</tr>
<tr>
<td>9</td>
<td>Morphological changes (inverted microscopy) in control and treated cells, 48 hours (MCF-7).</td>
<td>72</td>
</tr>
<tr>
<td>10</td>
<td>Morphological changes of MCF-7 cells treated with methanol extract and tamoxifen at 72 hours.</td>
<td>73</td>
</tr>
<tr>
<td>11</td>
<td>Morphological analysis of MDA-MB-231 cells after 24 hours exposure to methanol extract and tamoxifen.</td>
<td>74</td>
</tr>
<tr>
<td>12</td>
<td>Methanol-induced morphologic changes characteristic of apoptosis in MDA-MB-231 cell lines for 48 hours.</td>
<td>75</td>
</tr>
<tr>
<td>13</td>
<td>Changes in morphology of MDA-MB-231 cells after treatment with methanol extract and tamoxifen (72 hours).</td>
<td>76</td>
</tr>
<tr>
<td>14</td>
<td>Fluorescent microscopy analysis of the morphological changes in MCF-7 cell lines.</td>
<td>79</td>
</tr>
<tr>
<td>15</td>
<td>Fluorescence images of MCF-7 treated for 48 hours.</td>
<td>80</td>
</tr>
<tr>
<td>16</td>
<td>MCF-7 cell line treated for 72 hours.</td>
<td>81</td>
</tr>
<tr>
<td>17</td>
<td>Morphological changes of MDA-MB-231 undergoing apoptosis. (24 hours)</td>
<td>82</td>
</tr>
</tbody>
</table>
MDA-MB-231 cell line treated for 48 hours.

Fluorescent images MDA-MB-231 treated for 72 hours.

TUNEL assay performed on MCF-7 at day 1 (24 hours).

TUNEL assay performed on MCF-7 at day 2 (48 hours).

Effect of methanol extract on MDA-MB-231 cells at 24 hours.

Fluorescent TUNEL labeling of methanol treated MDA-MB-231 cells at 48 hours.

TUNEL assays demonstrate the differential induction of apoptosis in MCF-10A at 24 hours treatment.

TUNEL assay performed on MCF-10A at day 2 (48 hours).

Percentage of apoptosis induced by methanol extract and tamoxifen on MCF-7.

Percentage of MDA-MB-231 cells stained positive for apoptosis using TUNEL assay.

Quantification of apoptosis effects of methanol extract on MCF-10A for 24 and 48 hour.

Slide design which contains 3 replicates of 380 genes.

A slide scanned without using any dye.

Spotcheck slide scanned using Cy3 channel.

A representative of the quality of RNA from untreated and untreated MCF-7.

Image scanned from the microarray slide after hybridization.

Scatter plot of fluorescence intensity values from MWG slide hybridized with untreated and treated MCF-7.

Histogram of Cy3 and Cy5 ratio according to each of the genes.

Histogram of M log₂ vs. A log₂

RT-PCR analysis of ddb2 expression in MCF-7.

RT-PCR analysis of mfi2 expression in MCF-7.

RT-PCR analysis of haplotype n1b expression in MCF-7.
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>µl</td>
<td>Microliter</td>
</tr>
<tr>
<td>µM</td>
<td>Micromolar</td>
</tr>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary deoxyribonucleic acid</td>
</tr>
<tr>
<td>cRNA</td>
<td>complementary ribonucleic acid</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxide</td>
</tr>
<tr>
<td>dNTP</td>
<td>Deoxyribonucleotide triphosphate</td>
</tr>
<tr>
<td>dsDNA</td>
<td>Double stranded deoxyribonucleic acid</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetra-acetic acid</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>MTT</td>
<td>3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide</td>
</tr>
<tr>
<td>mV</td>
<td>Millivolt</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffer saline</td>
</tr>
<tr>
<td>pmol</td>
<td>picomole</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Reverse Transcription Polymerase Chain Reaction</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium Deodecyl Sulphate</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

1.1 Cancer and natural product

Cancer is a collective term that covers hundreds of different diseases characterised by invasive and uncontrolled cell growth. It is a chronic disease that can consist of specific stages, from genetic predisposition through various forms of premalignant and malignant degeneration of cells to disease progression. Breast cancer is one of the most common cancers diagnosed in women worldwide and is a leading cause of cancer-related deaths (Greenlee et al., 2000). In Malaysia, as of 2003, it accounted for 31% of newly diagnosed female cases, and was the commonest cancer in all ethnic groups and all age groups in females from the age of 15 years (Lim and Halimah, 2004).

Mortality that results from the common forms of cancer is still unacceptably high. Natural or semisynthetic compounds may be used to block, reverse, or prevent the development of invasive cancers. Cellular carcinogenesis forms the biological basis for the identification of preventive products, the assessment of their activity, and ultimately the success or failure of a therapy (Reddy et al., 2003).

Ideally, chemotherapeutic drugs should specifically target only neoplastic cells and should decrease tumor burden by inducing cytotoxic and/or cytostatic effects with minimal “collateral damage” to normal cells. (Ricky et al., 2002). Many pharmaceutical
agents have been discovered by screening natural products from plants, animals, marine organisms and microorganisms. Despite major scientific and technological progress in combinatorial chemistry, drugs derived from natural products still make an enormous contribution to drug discovery today (Rocha et al., 2001).

Epidemiological data indicated that ubiquitous consumption of seaweeds in Japan may be a possible protective factor against some types of tumor (Okai et al., 1994). Therefore in this study, *Gracilaria changii*, from the family of *Rhodophyta* or red seaweed was chosen. It is indigenous agarophytic seaweed in Malaysia (Phang, 1994). *Gracilaria changii* when used as food provides substantial amounts of fiber, minerals, lipids and protein (Norziah et al., 2000). At present, this seaweed is only consumed in certain coastal areas especially along the east coast of Peninsula Malaysia and in East Malaysia.

1.2 Significance of study

In recent years, improved diagnostic tools have made it possible to detect breast cancers at early, even pre-invasive stages leading to a significant decrease in breast cancer mortality rates over the past decades. Breast cancer has been the major killer in women all over the world, and the number is increasing year by year. The use of natural product in cancer treatment has shown good results, and extensive research is being carried out. In Japan, the cancer mortality rate is among the lowest in the world, and this has been associated with having seaweed in their dietary intake. Thus, this study is hoped to
highlight on our own seaweed as a potential anticancer agent. The molecular studies of *Gracilaria changii* on breast cancer may contribute insight on drug targets and formulation against novel apoptosis pathway.

1.3 Objectives

There has been no previous study reported on the effect of *Gracilaria changii* on cancer cells. Thus, the objectives of the study are:

1) to determine whether *Gracilaria changii* extract is effective in inhibiting the proliferation of selected breast cancer cell lines (MCF-7, MDA-MB-231), cervical cancer (HeLa) and ovarian cancer cell lines (Caov-3).

2) to select the cell lines most effective against the extracts and comparing this with a normal cell line.

3) to evaluate apoptosis inducing ability of the *Gracilaria changii* extract by morphology through the apoptotic features of the cells and to confirm through quantification using TUNEL assay.

4) to determine the gene expression profile following treatment of the extract on the cancer cells using microarray technology and to validate the expression using RT-PCR.