UNIVERSITI PUTRA MALAYSIA

DNA MARKERS AND MAPPING OF QUANTITATIVE TRAIT LOCI FOR YIELD AND BUNCH QUALITY IN DELI DURA X YANGAMBI PISIFERA OIL PALM (Elaeis guineensis Jacq.) POPULATION

SENG TZER YING

IB 2015 12
DNA MARKERS AND MAPPING OF QUANTITATIVE TRAIT LOCI FOR
YIELD AND BUNCH QUALITY IN DELI DURA X YANGAMBI PISIFERA OIL
PALM (Elaeis guineensis Jacq.) POPULATION

By

SENG TZER YING

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

July 2015
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the Degree of Doctor of Philosophy

DNA MARKERS AND MAPPING OF QUANTITATIVE TRAIT LOCI FOR YIELD AND BUNCH QUALITY IN DELI DURA X YANGAMBI PISIFERA OIL PALM (Elaeis guineensis Jacq.) POPULATION

By

SENG TZER YING

July 2015

Chair : Assoc. Prof. Faridah Qamaruz Zaman, PhD
Faculty : Institute of Bioscience

Increased modern farming of the oil biosynthesis efficient oil palm, Elaeis guineensis Jacq., has propelled it to be the world's largest source of edible oil today. However, further oil yield improvement by conventional breeding is increasingly limited by lengthy time and costs due to long reproductive cycles, large plant size and an evaluation period of 10-15 years. Molecular tools which allow rapid, large scale evaluation over a short time, independent of plant age, will be particularly valuable in the face of such constraints. Towards such a goal, the aim of this particular study was to construct a genetic linkage map of a high yield oil palm population using DNA markers and to identify Quantitative Trait Loci (QTLs) related to oil yield components. This was followed by configuration of Quantitative Trait Alleles (QTA) with favourable and unfavourable effects on their respective oil yield components. The mapping population was a high-yielding Felda breeding cross, coded DA41, represented by 118 progeny palms. Besides the genotypic data generated in this study, phenotypic data of 21 yield components were available from ongoing field trials. The DNA markers employed for genotype data were microsatellites (SSR), Amplified Fragment Length Polymorphism (AFLP) and Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) markers. A total 804 segregating marker loci (489 SSRs, 307 AFLPs and 8 PCR-RFLP) were used for final linkage analysis and map construction. The map of DA41 (ARK86D X ML161P) was 2398.8 cM long with 512 marker loci (368 SSRs, 135 AFLPs and 9 PCR-RFLPs), at an average 32 markers and a range of 15-59 markers per linkage group, and an average map density of 5 cM. The linkage group length was 77.5 cM to 223 cM, with an average of 150 cM. Taking the yield components phenotype data on board resulted in the detection of 164 QTLs associated with oil yield components. The QTLs had an average confidence region of 15.4 cM and no marker interval exceeded 50 cM. In the DA41 population, cumulative QTL effects increased in tandem with the number of QTL markers, matching the QT+ allele for each of the traits tested.
The many QTLs detected per trait suggested that the traits studied are polygenic with many genes of individual small effects on independent loci. However, the scope of the study did not rule out or rule in epistasis between different QTLs affecting a particular trait. Furthermore, several QTLs probably also show pleiotropic effects as seen by QTL clustering of inter-related traits on almost all the linkage groups, confirming the complexity of the genetic architecture of not only oil yield but also its components in the oil palm. The overall picture suggests that certain regions of the chromosomes are richer in the genes that affect the expression of a particular yield component trait and encompass pleiotropic, epistatic and heterotic effects. Hence, it will not be surprising if a large proportion of the identified additive effects from QTLs actually arise from digenic interactions between loci. For practical applications from this work, it will be necessary to test these yield component QTLs in a broader array of genetic backgrounds and in different environments. Also, more closely linked markers or flanking markers to the QTLs should be sought because recombinations between the markers and QTLs can occur when transferring the results from one population to another. Clearly, while this study has generated results that can be used in initial marker-assisted selection (MAS) for oil palm breeding, such as in population selection and enrichment, more detailed knowledge of marker-trait association will further contribute to more precise applications.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah

PETANDA-PETANDA DNA DAN MENGENALPASTI LOKUS SIFAT KUANTITATIF BAGI HASIL DAN MUTU TANDAN KELAPA SAWIT (Elaeis guineensis Jacq,) PADA POPULASI DELI X YANGAMBI PISIFERA

Oleh

SENG TZER YING

Julai 2015

Pengerusi : Prof. Madya Faridah Qamaruz Zaman, PhD
Fakulti : Institut Biosains

Peningkatan pertanian secara moden kelapa sawit Elaeis guineensis Jacq yang bercekap biosintesis minyak, telah menjadikannya tanaman minyak yang paling lumayan di dunia hari ini. Walau bagaimanapun, hasil kelapa sawit secara pembiakan konvensional yang memakan masa dan mahal. Ini disebabkan kitaran pembiakan yang panjang, saiz pokok yang besar dan tempoh penilaian yang lama (10-15 tahun). Kaedah molekular membolehkan penilaian skala besar dalam masa yang singkat tanpa bergantung kepada factor umur pokok. Tujuan kajian ini adalah untuk membina peta rangkaian genetic kelapa sawit berhasil tinggi dengan menggunakan penanda DNA (asid deoksiribonukleik) serta mengenalpasti Lokus Sifat Kuantitatif (QTLs) yang berkaitan dengan komponen hasil minyak. Analisis lanjut untuk konfigurasi QTA yang mempunyai kesan meningkat/menurun terhadap komponen hasil minyak turut diuji. Kacukan Felda DA41 yang berminyak tinggi terpilih bagi uji-kaji ini, sebanyak 118 pokok. Selain daripada data genotipik yang dihasilkan dalam penelitian ini, data fenotipik daripada 21 komponen hasil juga sedia-ada. Penanda DNA digunakan untuk data genotip adalah mikrosatelite (SSR), Polimorfisme panjang fragmen teramplifikasi (AFLP) dan Reaksi berantai polymerase-Polimorfisme Panjang Berkas Restriksi (PCR-RFLP). Sejumlah 804 penanda lokus (489 SSRs, 307 AFLPs and 8 PCR-RFLPs) telah digunakan untuk analisis rangkaian dan pembinaan peta akhir. Peta DA41 (ARK86D X ML161P) adalah 2398.8 cM dengan 512 penanda lokus (368 SSRs, 135 AFLPs and 9 PCR-RFLPs), dengan purata penanda lokus 32 dan pada lingkungan penanda lokus 15-59 dalam setiap rangakaian kumpulan, dan purata densiti peta adalah 5 cM. Rangakaian kumpulan sepanjang 77.5 cM to 223 cM, dengan puratanya 150 cM. Sebanyak 164 QTLs yang berkaitan dengan komponen hasil minyak telah dikesan. QTLs mempunyai kepastian dalam linkungan 15.4 cM dan tiada selang penanda melebihi 50cM. Dalam DA41, kesan terkumpul QTL meningkat apabila bilangan penanda QTL padan dengan allele QT+ untuk semua sifat yang diuji. Banyak QTLs yang dikesan
bagi setiap sifat mengesahkan bahawa sifat yang dikaji memang dikawal oleh banyak gen mempunyai kesan individu yang kecil terhadap lokus bebas. Walaubagaimanapun, epistasis antara QTLs juga perlu diambil-kira menyebabkan hubungan yang lebih komplek antara QTLs dan jumlah ekspresi suatu sifat. Malah QTLs mungkin memberi kesan pleiotropic, dimana mereka mengawal sifat berkait yang berbeza, walaupun mempunyai kedudukan kromosom yang sama/dekat. QTL yang berkelompok sebegini dilihat dalam hampir kesemua kromosom, mengesahkan kerumitan seni-bina genetik yang mengawal hasil dan komponennya dalam kelapa sawit. Kelompok ini menggambarkan kawasan-kawasan tertentu dalam kromosom yang lebih kaya dengan gen yang memberi kesan terhadap ekspresi suatu sifat komponen tertentu. Kajian ini mengesahkan warisan kompleks pada sifat-sifat komponen hasil yang merangkumi kesan pleiotropic, epistatic dan heterotic pada QTLs hasil minyak. Oleh itu, tidak mengejutkan jika sebahagian besar kesan tambahan QTLs yang dikenalpasti juga disebabkan oleh interaksi digenic antara lokus dalam kelapa sawit juga. Lebih banyak eksperimen perlu dijalankan menggunakan pokok kelapa sawit yang mempunyai sumber genetik dan persekitaran yang berbeza, bagi menguji QTLs hasil. Selain itu, penanda rapat atau penanda pengapit bagi QTL diperlukan dalam kajian seterusnya. Ini disebabkan penggabungan semula yang mungkin berlaku dalam populasi lain antara penanda dan QTLs. Walaupun kajian ini berjaya menjana hasil yang boleh digunakan dalam proses pemilihan berasakan penanda (marker-assisted selection, MAS), pengetahuan yang lebih terperinci dalam assosiasi penanda-sifat akan meningkatkan penggunaannya.
ACKNOWLEDGEMENTS

I gratefully acknowledge the support, guidance and also encouragement of my chair supervisor, Assoc. Prof. Dr. Faridah Qamaruz Zaman. A special thank you goes to all co-supervisors, Prof. Tan Soon Guan, Dr. Rajinder Singh and Dr. Sharifah Shahrul Rabiah Syed Alwee, for their supervision and valuable comments that helped towards the completion of this study. Sincere thanks go to Dr. Enrique Ritter, Dr. Norbert Billotte, Ms. Ting Ngoot Chin, for assisting in my discovery of the research field, sharing their professional knowledge, giving valuable comments and constant encouragement.

My appreciation also extends to my laboratory colleagues in FGV Biotechnology Centre (FBC), especially Mrs. Jamilah Ismail, Mrs. Siti Hawa and Ms. Nurul Hafiza Ramli whose heartfelt support, patience, and assistance allowed the work to be completed successfully. I would like to thank all FBC staff for their helpfulness and willingness to share, thus making it possible to complete this work. Deep gratitude also goes to Mr. Chin Cheuk Weng, Mr. Nasruddin Mohamad, Mr. Mohd. Latif Kamarudin, Mr. Nardeman Samin and Mr. Yahor and the administration at breeding station, Pusat Penyelidikan Pertanian Tun Razak, Pahang for providing breeding materials.

Especial thanks go to Mr. Chang Kwong Choong (Andy) for editing my thesis and for the enduring encouragement. My special thanks go to a group of friends out of the lab, for their invaluable friendship, help, understanding, love and care. I wish to express my deepest gratitude and appreciation to my parents Seng Hoi Lum and Sing Mooi and also my siblings for their understanding, encouragement and endless love throughout my study. Last but not least, I thank my husband, Vengeta Rao, for a life of love, joy and courage. Also, my indebtedness to my two sons, Chenna and Manu, who were always so tolerant of the time that it took to finish this work and for their never failing love and support.
I certify that a Thesis Examination Committee has met on 14 July 2015 to conduct the final examination of Seng Tzer Ying on her thesis entitled "DNA Markers and Mapping of Quantitative Trait Loci for Yield and Bunch Quality in Deli Dura X Yangambi Pisifera Oil Palm (Elaeis guineensis Jacq.) Population" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Faridah Hanum Ibrahim, PhD
Professor
Faculty of Forestry
Universiti Putra Malaysia
(Chairman)

Ghizan Saleh, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Mohd Rafii Yusop, PhD
Professor
Institute of Tropical Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Rene Smulders, PhD
Senior Lecturer
Wageningen UR
Netherlands
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 22 September 2015
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Faridah Bt. Qamaruz Zaman, PhD
Associate Professor
Institute of Bioscience
Universiti Putra Malaysia
(Chairperson)

Tan Soon Guan, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Rajinder Singh A/L Harminder Singh, PhD
Group Leader of Genomics Group
Advanced Biotechnology and Breeding Centre (ABBC)
Malaysian Palm Oil Board (MPOB)
(Member)

Sharifah Shahrul Rabiah Syed Alwee, PhD
Chief Executive Officer
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia
Date:
Declaration by graduate student

I hereby confirm that:
- this thesis is my original work
- quotations, illustrations and citations have been duly referenced
- the thesis has not been submitted previously or concurrently for any other degree at any institutions
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be owned from supervisor and deputy vice-chancellor (Research and innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software

Signature: ___________________ Date: ___________________

Name and Matric No: Seng Tzer Ying (GS22332)
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature: ____________________________
Name of Chairman of Supervisory Committee: Faridah Bt. Qamaruz Zaman, PhD, Assoc. Prof

Signature: ____________________________
Name of Member of Supervisory Committee: Tan Soon Guan, PhD, Prof

Signature: ____________________________
Name of Member of Supervisory Committee: Rajinder Singh A/L Harminder Singh, PhD

Signature: ____________________________
Name of Member of Supervisory Committee: Sharifah Shahrul Rabiah Syed Alwee, PhD
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxiv</td>
</tr>
</tbody>
</table>

CHAPTER

1 AN OVERVIEW

1.1 Introduction 1

1.2 Objectives 3

2 LITERATURE REVIEW

2.1 Oil Palm 4

2.1.1 The Fruit Type and Fruit Form 6

2.1.2 Origin and Domestication 9

2.1.3 History and Importance of the oil palm in Malaysia 9

2.1.4 Oil Palm Genetic Resources 10

2.1.4.1 Deli Dura 10

2.1.4.2 Teneras and Pisiferas 11

2.1.5 Yield records and Bunch analysis 12

2.1.6 Oil Palm Breeding and Its Achievements 14

2.1.6.1 Oil Yield 15

2.1.6.2 Bunch and Oil Yield Performance of Deli Dura x Yangambi Pisifera 15

2.1.6.3 Other Traits 16

2.1.7 Molecular breeding in oil palm 18

2.1.8 DNA Markers and their use in oil palm 21

2.1.8.1 Morphological Markers 21

2.1.8.2 Biochemical Markers 21

2.1.8.3 Molecular Markers 22

2.1.8.3.1 Hybridization-based DNA marker techniques 23

2.1.8.3.2 Polymerase Chain Reaction (PCR)-Based DNA Marker Techniques 25

2.1.8.3.3 Sequence-based Marker 28

2.2 Monogenic traits in the oil palm 29

2.3 Genes influencing quantitative traits in oil palm 30

2.4 Complexity of oil yield traits 32
2.5 Types of mapping populations in oil palm 38
 2.5.1 F2 population 38
 2.5.2 Backcross Mapping Population 38
2.6 Population size 38
2.7 Parentage analysis for mapping population 39

3 SELECTION OF MAPPING POPULATION AND SURVEY OF GENETIC VARIATION IN OIL YIELD COMPONENTS IN OIL PALM 41
3.1 Introduction 41
3.2 Methodology 42
 3.2.1 Plant Materials - Mapping population 42
 3.2.2 Phenotypic data analysis 43
 3.2.2.1 Yield Recording and Bunch Analysis Data 43
 3.2.2.2 Basic statistical analysis of phenotypic data 45
 3.2.3 Parentage analysis for mapping population 45
 3.2.3.1 DNA Extraction 45
 3.2.3.2 Chemicals 45
 3.2.3.3 Quantitation of DNA 45
 3.2.3.4 Gel Electrophoresis and Documentation 47
 3.2.3.5 Microsatellite Analysis 47
 3.2.3.6 PCR-amplification 47
 3.2.3.7 Parentage testing 49
3.3 Results 49
 3.3.1 Selection of mapping population: Mapping population used in oil yield components marker project 49
 3.3.2 Phenotypic data analysis 50
 3.3.3 Parentage analysis for mapping population 57
 3.3.3.1 DNA Extraction 57
 3.3.3.2 Microsatellite Analysis - Parentage Analysis 58
3.4 Discussion 61
 3.4.1 Selection of mapping population: Mapping population used in oil yield components marker project 61
 3.4.2 Phenotypic data analysis 62
 3.4.3 Parentage analysis for the mapping population 62
3.5 Conclusion 63

4 CONSTRUCTION OF A GENETIC LINKAGE MAP USING AFLP AND SSR MARKERS 64
4.1 Introduction 64
4.2 Methodology 65
 4.2.1 Plant materials 65
 4.2.2 AFLP analysis 65
 4.2.2.1 Preparation of Template DNA for AFLP Reaction 66
4.2.2.2 Pre-amplification 66
4.2.2.3 Selective Amplification 67
4.2.2.4 AFLP Electrophoresis and Autoradiography 68
4.2.2.5 AFLP Fragment Analysis 69
4.2.3 Microsatellite analysis 69
4.2.3.1 Screening of Published Microsatellite sequences 69
4.2.3.2 M13-tailed primer method 69
4.2.4 PCR–RFLP analysis 70
4.2.5 Data Analysis 71
4.2.6 Map construction 73
4.3 Results 74
4.3.1 AFLP Analysis 74
4.3.2 Microsatellites markers 75
4.3.3 PCR-RFLP 76
4.3.4 Construction of genetic linkage map 79
4.4 Discussion 94
4.4.1 Mapping population 94
4.4.2 Genetic Markers 94
4.4.3 Genetic map construction 95
4.5 Conclusion 96

5 MAPPING OF QUANTITATIVE TRAITS IN OIL PALM AND CUMULATIVE ANALYSIS 97
5.1 Introduction 97
5.2 Methodology 99
5.2.1 Plant Materials - Mapping population 99
5.2.2 Phenotypic data analysis 99
5.2.3 Quantitative Trait Loci (QTL) Analysis 99
5.2.4 Cumulative Effects of Quantitative Trait Allele (QTA) Analysis 100
5.3 Results 100
5.3.1 QTL Analysis - Linkage of markers to oil yield component trait 100
5.3.2 QTLs for fruit bunch production traits 101
5.3.3 QTLs for fruit oil yield components 105
5.3.3.1 Fruit Kernel traits – KB, KF and MKW 105
5.3.3.2 Fruit Shell traits – MSW & SF 105
5.3.3.3 Fruit Mesocarp traits – DPF, MPW & WPF 105
5.3.3.4 Fruit Oil content traits– OB, ODP & OWP 106
5.3.4 Quantitative Trait Allele (QTA) Analysis - Cumulative Effects 111
5.3.5 Comparative QTL analysis 115
5.4 Discussion 125
5.4.1 Linkage to quantitative traits (QTLs) 125
5.5 Conclusion 131
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>24</td>
</tr>
<tr>
<td>2.3</td>
<td>36</td>
</tr>
<tr>
<td>3.1</td>
<td>44</td>
</tr>
<tr>
<td>3.2</td>
<td>48</td>
</tr>
<tr>
<td>3.3</td>
<td>51</td>
</tr>
<tr>
<td>3.4</td>
<td>56</td>
</tr>
<tr>
<td>3.5</td>
<td>60</td>
</tr>
<tr>
<td>4.1</td>
<td>66</td>
</tr>
<tr>
<td>4.2</td>
<td>66</td>
</tr>
<tr>
<td>4.3</td>
<td>67</td>
</tr>
<tr>
<td>4.4</td>
<td>67</td>
</tr>
<tr>
<td>4.5</td>
<td>67</td>
</tr>
<tr>
<td>4.6</td>
<td>68</td>
</tr>
<tr>
<td>4.7</td>
<td>68</td>
</tr>
<tr>
<td>4.8</td>
<td>71</td>
</tr>
<tr>
<td>4.9</td>
<td>73</td>
</tr>
<tr>
<td>4.10</td>
<td>78</td>
</tr>
<tr>
<td>4.11</td>
<td>78</td>
</tr>
<tr>
<td>4.12</td>
<td>80</td>
</tr>
<tr>
<td>4.13</td>
<td>81</td>
</tr>
<tr>
<td>5.1</td>
<td>103</td>
</tr>
</tbody>
</table>

The fruit form of oil palm
Comparison of the five molecular markers widely used in plants, each characterized by its unique combination of advantages and disadvantages.
QTL identified for important traits at both genome and chromosome-wide significant levels in oil palm using various mapping populations.
Twenty-one oil yield component traits (yield recording and bunch analysis) and their abbreviations used in this project.
Details of 16 microsatellite primers of oil palm selected for parental analysis.
Mean, range and distribution statistics for 21 oil yield component traits in the Felda elite cross DA41.
Correlations between 21 quantitative characters measured in cross DA41 according to Pearson’s coefficient and corresponding corrected P-value.
Allele frequency analysis results for 120 palms of cross DA41.
The composition of Enzyme Master Mix I.
The composition of Enzyme Master Mix II.
Composition of Pre-amplification Master Mix.
Composition of Selective Amplification Mixture.
Matrix of AFLP Primer combinations for Selective Amplification (A total of 88 primer combinations used in initial screening).
Matrix of AFLP Primer combinations of Selective Amplification. 30 primers selected for genotyping mapping population DA41.
The composition of loading mixtures for the ABI 3130xl Genetic Analyser (Applied Biosystems).
Table 4.8: PCR-RFLP primers/ enzyme combinations used to screen cross DA41.
Four Marker allele class phenotypes based on the allelic configurations of the parents at a locus and their progeny genotypes (source: Ritter et al., 1990).
Characteristics of AFLP, RFLP and SSR markers screened in DA41 mapping population.
Segregation patterns of progeny phenotypes for markers in DA41 mapping population.
Characteristics of parental genetic linkage groups of mapping population DA41.
Characteristics of genetic linkage groups of mapping population DA41.
Number of QTLs detected, their mapped distribution over linkage groups and the proportion of total variance (%) accounted for in 21 yield component traits of Felda elite.
5.2 Example results of QTL analysis for Bunch Weight in cross DA41

5.3 Example results of QTLs detected for Mean Shell Weight (MSW), potential QTAs nearest the QTL peak and their specific effects on the trait

5.4 QTL markers matching allelic effects (positive or negative) as cumulative percentages against the means for oil yield components
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Scheme representing the major events in the phases of mesocarp development (Adapted from: Tranbarger et al. 2011).</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Oil palm fruit forms (Photo Source: T.Y. Seng)</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>The oil palm fruit types (Photo Source: T.Y. Seng)</td>
<td>8</td>
</tr>
<tr>
<td>2.4</td>
<td>Possible ancestries of Deli dura breeding sub-population. Some important present-day sub-populations are presented in bold. (Adapted from: Corley and Tinker, 2003)</td>
<td>11</td>
</tr>
<tr>
<td>2.5</td>
<td>The major components of oil palm fruit bunch of interest in breeding (Adapted from: Rao et al., 1983)</td>
<td>13</td>
</tr>
<tr>
<td>2.6</td>
<td>Schematic of Bunch analysis method and laboratory layout (Adapted from: Rao et al., 1983)</td>
<td>14</td>
</tr>
<tr>
<td>2.7</td>
<td>Yield Profile of Felda DxP Yangambi Planting Materials in Pusat Penyelidikan Pertanian Tun Abdul Razak (PPPTR) Sungai Tekam, Jerantut, Pahang (Adapted from: Junaidah et al., 2009).</td>
<td>16</td>
</tr>
<tr>
<td>3.1</td>
<td>Approach for mapping of F1 of heterozygous parents where markers vary in information content and linkage phase must be inferred via grandparent genotypes, multiallelic markers or haplotyping gametes. (Adapted from: Hittalmani et al., 2008)</td>
<td>42</td>
</tr>
<tr>
<td>3.2</td>
<td>(a) – (u): The frequency distribution for 21 oil yield components traits (used in this study) assessed using kurtosis and skewness via Excel.</td>
<td>52</td>
</tr>
<tr>
<td>3.3</td>
<td>Electrophoretic analysis of 30 total genomic DNA of DA41 on 0.8% agarose gel. (M1=marker □-Hind III and M2=1 Kbp molecular weight ladder).</td>
<td>57</td>
</tr>
<tr>
<td>3.4</td>
<td>Typical profile obtained from restriction digestion of genomic DNA with EcoRI of eight independent DA41 DNA samples. ML: 100bp molecular ladder. Lane 1 is undigested DNA and Lane 2 represent DNA digested with EcoRI.</td>
<td>58</td>
</tr>
<tr>
<td>3.5</td>
<td>The Best (ML) full-sib family analysis using COLONY v.2.0.4.1 revealing three families were detected in DA41 cross.</td>
<td>59</td>
</tr>
<tr>
<td>4.1</td>
<td>Example of an AFLP electropherogram depicting the range between 40-500 bp, showing number of fragments and size of fragments as well as the peak heights.</td>
<td>75</td>
</tr>
</tbody>
</table>
4.2 An Example of a gel image of the four alleles segregating pattern obtained from the amplification of SSR primers using Li-Cor IR2 4200 sequencer.

4.3 Example of a fragment profile obtained from PCR-RFLP using primer SFB20 with enzyme Rsal.

4.4 (a) Linkage map of DA41_Dura (ARK86) using MAPRF7 programme with Kosambi mapping function (Linkage Group 1–4). Marker names are shown to the right of each LG, with map distances (in cM) to the left. The map consists of 318 marker loci (235 SSRs, 75 AFLPs and 8 PCR–RFLPs). Marker types and designations are as follows: SSRs (CNI, DHP, mEgCIR, PJ, sEg, sMg and sMo); RFLPs (CA, CB, MET and SFB); AFLPs (EAAC, EAAT, EACA, EACC, EACT, EAGA and EAGG).

4.4 (b) Figure 4.4 (b): Linkage map of DA41_Dura (ARK86) using MAPRF7 programme with Kosambi mapping function (Linkage Group 5–8). Marker names are shown to the right of each LG, with map distances (in cM) to the left. The map consists of 318 marker loci (235 SSRs, 75 AFLPs and 8 PCR–RFLPs). Marker types and designations are as follows: SSRs (CNI, DHP, mEgCIR, PJ, sEg, sMg and sMo); RFLPs (CA, CB, MET and SFB); AFLPs (EAAC, EAAT, EACA, EACC, EACT, EAGA and EAGG).

4.4 (c) Figure 4.4 (c): Linkage map of DA41_Dura (ARK86) using MAPRF7 programme with Kosambi mapping function (Linkage Group 9–12). Marker names are shown to the right of each LG, with map distances (in cM) to the left. The map consists of 318 marker loci (235 SSRs, 75 AFLPs and 8 PCR–RFLPs). Marker types and designations are as follows: SSRs (CNI, DHP, mEgCIR, PJ, sEg, sMg and sMo); RFLPs (CA, CB, MET and SFB); AFLPs (EAAC, EAAT, EACA, EACC, EACT, EAGA and EAGG).

4.4 (d) Figure 4.4 (d): Linkage map of DA41_Dura (ARK86) using MAPRF7 programme with Kosambi mapping function (Linkage Group 13–16). Marker names are shown to the right of each LG, with map distances (in cM) to the left. The map consists of 318 marker loci (235 SSRs, 75 AFLPs and 8 PCR–RFLPs). Marker types and designations are as follows: SSRs (CNI, DHP, mEgCIR, PJ, sEg, sMg and sMo); RFLPs (CA, CB, MET and SFB); AFLPs (EAAC, EAAT, EACA, EACC, EACT, EAGA and EAGG).
4.5 (a) Linkage map of DA41_Pisifera (ML161) using MAPRF7 programme with Kosambi mapping function (Linkage Group 17 – 20). Marker names are shown to the right of each LG, with map distances (in cM) to the left. The map consists of 342 marker loci (266 SSRs, 71 AFLPs and 5 PCR–RFLPs). Marker types and designations are as follows: SSRs (CNI, DHP, mEgCIR, PJ, sEg, sMg and sMo); RFLPs (CA, CB, MET and SFB); AFLPs (EAAC, EAAT, EACA, EACC, EACT, EAGA and EAGG).

4.5 (b) Linkage map of DA41_Pisifera (ML161) using MAPRF7 programme with Kosambi mapping function (Linkage Group 21 – 24). Marker names are shown to the right of each LG, with map distances (in cM) to the left. The map consists of 342 marker loci (266 SSRs, 71 AFLPs and 5 PCR–RFLPs). Marker types and designations are as follows: SSRs (CNI, DHP, mEgCIR, PJ, sEg, sMg and sMo); RFLPs (CA, CB, MET and SFB); AFLPs (EAAC, EAAT, EACA, EACC, EACT, EAGA and EAGG).

4.5 (c) Linkage map of DA41_Pisifera (ML161) using MAPRF7 programme with Kosambi mapping function (Linkage Group 25 – 28). Marker names are shown to the right of each LG, with map distances (in cM) to the left. The map consists of 342 marker loci (266 SSRs, 71 AFLPs and 5 PCR–RFLPs). Marker types and designations are as follows: SSRs (CNI, DHP, mEgCIR, PJ, sEg, sMg and sMo); RFLPs (CA, CB, MET and SFB); AFLPs (EAAC, EAAT, EACA, EACC, EACT, EAGA and EAGG).

4.5 (d) Linkage map of DA41_Pisifera (ML161) using MAPRF7 programme with Kosambi mapping function (Linkage Group 29 – 32). Marker names are shown to the right of each LG, with map distances (in cM) to the left. The map consists of 342 marker loci (266 SSRs, 71 AFLPs and 5 PCR–RFLPs). Marker types and designations are as follows: SSRs (CNI, DHP, mEgCIR, PJ, sEg, sMg and sMo); RFLPs (CA, CB, MET and SFB); AFLPs (EAAC, EAAT, EACA, EACC, EACT, EAGA and EAGG).

4.6 (a) Integrated linkage map of FELDA’s oil palm cross DA41 (ARK 86D x ML 161P) using MAPRF7 programme with Kosambi mapping function (Linkage Group I–IV). Marker names are shown to the right of each LG, with map distances (in cM) to the left. The map consists of 512 marker loci (368 SSRs, 135 AFLPs and 9 PCR–RFLPs) with 148 anchor points. Markers indicated in normal front are from map ARK86 while markers in italics are from
map ML161, and markers representing an anchor point are underlined. Marker types and designations are as follows: SSRs (CNI, DHP, mEgCIR, PJ, sEg, sMg and sMo); RFLPs (CA, CB, MET and SFB); AFLPs (EAAC, EAAT, EACA, EACC, EACT, EAGA and EAGG).

4.6 (b) Integrated linkage map of FELDA’s oil palm cross DA41 (ARK 86D x ML 161P) using MAPRF7 programme with Kosambi mapping function (Linkage Group V–VIII). Marker names are shown to the right of each LG, with map distances (in cM) to the left. The map consists of 512 marker loci (368 SSRs, 135 AFLPs and 9 PCR–RFLPs) with 148 anchor points. Markers indicated in normal front are from map ARK86 while markers in italics are from map ML161, and markers representing an anchor point are underlined. Marker types and designations are as follows: SSRs (CNI, DHP, mEgCIR, PJ, sEg, sMg and sMo); RFLPs (CA, CB, MET and SFB); AFLPs (EAAC, EAAT, EACA, EACC, EACT, EAGA and EAGG).

4.6 (c) Integrated linkage map of FELDA’s oil palm cross DA41 (ARK 86D x ML 161P) using MAPRF7 programme with Kosambi mapping function (Linkage Group IX–XII). Marker names are shown to the right of each LG, with map distances (in cM) to the left. The map consists of 512 marker loci (368 SSRs, 135 AFLPs and 9 PCR–RFLPs) with 148 anchor points. Markers indicated in normal front are from map ARK86 while markers in italics are from map ML161, and markers representing an anchor point are underlined. Marker types and designations are as follows: SSRs (CNI, DHP, mEgCIR, PJ, sEg, sMg and sMo); RFLPs (CA, CB, MET and SFB); AFLPs (EAAC, EAAT, EACA, EACC, EACT, EAGA and EAGG).

4.6 (d) Integrated linkage map of FELDA’s oil palm cross DA41 (ARK 86D x ML 161P) using MAPRF7 programme with Kosambi mapping function (Linkage Group XIII–XVI). Marker names are shown to the right of each LG, with map distances (in cM) to the left. The map consists of 512 marker loci (368 SSRs, 135 AFLPs and 9 PCR–RFLPs) with 148 anchor points. Markers indicated in normal front are from map ARK86 while markers in italics are from map ML161, and markers representing an anchor point are underlined. Marker types and designations are as follows: SSRs (CNI, DHP, mEgCIR, PJ, sEg, sMg and sMo); RFLPs (CA, CB, MET and SFB); AFLPs (EAAC, EAAT, EACA, EACC, EACT, EAGA and EAGG).
5.1(a) Integrated linkage map of cross DA41 (ARK86D x ML161P) with markers and QTLs (Linkage Group 1 – 4). Markers descending from P1 and P2 are shown in normal and italic font respectively. Common fragments are underscored. SSR and AFLP markers are displayed in black while the QTLs are in red and coded as in Appendix 8.

5.1(b) Integrated linkage map of cross DA41 (ARK86D x ML161P) with markers and QTLs (Linkage Group 5 – 8). Markers descending from P1 and P2 are shown in normal and italic font respectively. Common fragments are underscored. SSR and AFLP markers are displayed in black while the QTLs are in red and coded as in Appendix 8.

5.1(c) Integrated linkage map of cross DA41 (ARK86D x ML161P) with markers and QTLs (Linkage Group 9 – 12). Markers descending from P1 and P2 are shown in normal and italic font respectively. Common fragments are underscored. SSR and AFLP markers are displayed in black while the QTLs are in red and coded as in Appendix 8.

5.1(d) Integrated linkage map of cross DA41 (ARK86D x ML161P) with markers and QTLs (Linkage Group 13 – 16). Markers descending from P1 and P2 are shown in normal and italic font respectively. Common fragments are underscored. SSR and AFLP markers are displayed in black while the QTLs are in red and coded as in Appendix 8.

5.2 Distribution of numbers of individual palms by their cumulative QT+ alleles for each of 21 traits.

5.3 Cumulative QTLs effects for Mean Kernel Weight (g).

5.4 (a) Comparative mapping from this study (TY) and Billotte et al., 2010 (NB_2010). The homologous chromosome arms TY_Lg:1 are aligned with NB_2010_Lg:16 using shared markers for the QTLs detected in both maps. Markers common to both maps are displayed in green. Distances (in centiMorgans, cM) between the markers in both maps are given to the left. Red = QTLs detected in this study, blue = QTLs detected in Billotte et al. The vertical solid blue segments in the TY map represent marker intervals and QTL regions similar to those of Billotte et al. (2010).
5.4 (b) Comparative mapping from this study (TY) and Billotte et al., 2010 (NB_2010). The homologous chromosome arms TY_Lg:3 are aligned with NB_2010_Lg:6 using shared markers for the QTLs detected in both maps. Markers common to both maps are displayed in green. Distances (in centiMorgans, cM) between the markers in both maps are given to the left. Red = QTLs detected in this study, blue = QTLs detected in Billotte et al. The vertical solid blue segments in the TY map represent marker intervals and QTL regions similar to those of Billotte et al. (2010).

5.4 (c) Comparative mapping from this study (TY) and Billotte et al., 2010 (NB_2010). The homologous chromosome arms TY_Lg:5 are aligned with NB_2010_Lg:4 using shared markers for the QTLs detected in both maps. Markers common to both maps are displayed in green. Distances (in centiMorgans, cM) between the markers in both maps are given to the left. Red = QTLs detected in this study, blue = QTLs detected in Billotte et al. The vertical solid blue segments in the TY map represent marker intervals and QTL regions similar to those of Billotte et al. (2010).

5.4 (d) Comparative mapping from this study (TY) and Billotte et al., 2010 (NB_2010). The homologous chromosome arms TY_Lg:7 are aligned with NB_2010_Lg:9 using shared markers for the QTLs detected in both maps. Markers common to both maps are displayed in green. Distances (in centiMorgans, cM) between the markers in both maps are given to the left. Red = QTLs detected in this study, blue = QTLs detected in Billotte et al. The vertical solid blue segments in the TY map represent marker intervals and QTL regions similar to those of Billotte et al. (2010).

5.4 (e) Comparative mapping from this study (TY) and Billotte et al., 2010 (NB_2010). The homologous chromosome arms TY_Lg:8 are aligned with NB_2010_Lg:2 using shared markers for the QTLs detected in both maps. Markers common to both maps are displayed in green. Distances (in centiMorgans, cM) between the markers in both maps are given to the left. Red = QTLs detected in this study, blue = QTLs detected in Billotte et al. The vertical solid blue segments in the TY map represent marker intervals and QTL regions similar to those of Billotte et al. (2010).

5.4 (f) Comparative mapping from this study (TY) and Billotte et
al., 2010 (NB_2010). The homologous chromosome arms TY_Lg:9 are aligned with NB_2010_Lg:1 using shared markers for the QTLs detected in both maps. Markers common to both maps are displayed in green. Distances (in centiMorgans, cM) between the markers in both maps are given to the left. Red = QTLs detected in this study, blue = QTLs detected in Billotte et al. The vertical solid blue segments in the TY map represent marker intervals and QTL regions similar to those of Billotte et al. (2010).

5.4 (g) Comparative mapping from this study (TY) and Billotte et al., 2010 (NB_2010). The homologous chromosome arms TY_Lg:11 are aligned with NB_2010_Lg:15 using shared markers for the QTLs detected in both maps. Markers common to both maps are displayed in green. Distances (in centiMorgans, cM) between the markers in both maps are given to the left. Red = QTLs detected in this study, blue = QTLs detected in Billotte et al. The vertical solid blue segments in the TY map represent marker intervals and QTL regions similar to those of Billotte et al. (2010).

5.4 (h) Comparative mapping from this study (TY) and Billotte et al., 2010 (NB_2010). The homologous chromosome arms TY_Lg:14 are aligned with NB_2010_Lg:8 using shared markers for the QTLs detected in both maps. Markers common to both maps are displayed in green. Distances (in centiMorgans, cM) between the markers in both maps are given to the left. Red = QTLs detected in this study, blue = QTLs detected in Billotte et al. The vertical solid blue segments in the TY map represent marker intervals and QTL regions similar to those of Billotte et al. (2010).
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Schematic diagrams of useful and (b) less useful F$_1$ and F$_2$ breeding population for genetic linkage mapping in oil palm.</td>
<td>181</td>
</tr>
<tr>
<td>2</td>
<td>Schematic diagrams of useful and (b) less useful Backcross breeding populations for genetic linkage mapping in oil palm.</td>
<td>182</td>
</tr>
<tr>
<td>3</td>
<td>Flow chart of bunch analysis method of Breeding Unit FASSB</td>
<td>183</td>
</tr>
<tr>
<td>4</td>
<td>Buffers and other solutions</td>
<td>184</td>
</tr>
<tr>
<td>5</td>
<td>Commercially available chemicals, kits and suppliers list</td>
<td>187</td>
</tr>
<tr>
<td>6</td>
<td>Mapping population (DA41 cross): 120 palms with bunch analysis and yield data, selected to be used in this study</td>
<td>188</td>
</tr>
<tr>
<td>7</td>
<td>Polymorphic primer list and their sequences and also their positions on the chromosome (only 100% full length sequences matched) in the oil palm</td>
<td>198</td>
</tr>
<tr>
<td>8</td>
<td>A total 164 QTLs were identified for the 21 oil yield components</td>
<td>214</td>
</tr>
<tr>
<td>9</td>
<td>The potential QTAs nearest the QTL peak and their specific effects on their associated traits</td>
<td>227</td>
</tr>
<tr>
<td>10</td>
<td>The graphs of cumulative QTL effects, as percentage changes from the mean for each trait tested</td>
<td>238</td>
</tr>
<tr>
<td>11</td>
<td>Publications</td>
<td>249</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

Most of the abbreviations used are standard. However, attention is drawn to the following:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ^2</td>
<td>Chi square values</td>
</tr>
<tr>
<td>ABI</td>
<td>Applied Biosystems (Perkin Elmer)</td>
</tr>
<tr>
<td>ABW</td>
<td>Average bunch weight</td>
</tr>
<tr>
<td>ACCase</td>
<td>Acetyl CoA-carboxylase</td>
</tr>
<tr>
<td>ACS</td>
<td>American Chemical Society</td>
</tr>
<tr>
<td>AFLP</td>
<td>Amplified Fragment Length Polymorphism</td>
</tr>
<tr>
<td>AMD</td>
<td>Average marker density</td>
</tr>
<tr>
<td>AMP-PCR</td>
<td>anchored microsatellite primed PCR</td>
</tr>
<tr>
<td>Ao</td>
<td>number of alleles observed per locus</td>
</tr>
<tr>
<td>AP-PCR</td>
<td>Arbitrarily Primed Polymerase Chain Reaction</td>
</tr>
<tr>
<td>ASAP</td>
<td>Allele-Specific Associated Primers</td>
</tr>
<tr>
<td>AVROS</td>
<td>Algemeene Vereniging van Rubberplanters ter Oostkust van Sumatra</td>
</tr>
<tr>
<td>BAC</td>
<td>Bacterial Artificial Chromosomes</td>
</tr>
<tr>
<td>BC</td>
<td>Backcross</td>
</tr>
<tr>
<td>BNO</td>
<td>Bunch numbers</td>
</tr>
<tr>
<td>BPRO</td>
<td>Breeding Populations of Restricted Origin</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>BWT</td>
<td>Bunch weight</td>
</tr>
<tr>
<td>BWT</td>
<td>Bunch Weight (kg)</td>
</tr>
<tr>
<td>CAP</td>
<td>Cleaved Amplified Polymorphic Sequence</td>
</tr>
<tr>
<td>CIM</td>
<td>composite interval mapping</td>
</tr>
<tr>
<td>CIRAD</td>
<td>Centre International Recherche Agricola et Developpement</td>
</tr>
<tr>
<td>cM</td>
<td>centiMorgan</td>
</tr>
<tr>
<td>CM</td>
<td>markers common to both parents</td>
</tr>
<tr>
<td>CRoPS</td>
<td>Complexity Reduction of Polymorphic Sequences</td>
</tr>
<tr>
<td>CTAB</td>
<td>Hexadecyltrimethyl ammonium bromide</td>
</tr>
<tr>
<td>D x T</td>
<td>dura x tenera cross</td>
</tr>
<tr>
<td>D</td>
<td>dura form</td>
</tr>
<tr>
<td>DAF</td>
<td>DNA Amplification Fingerprinting</td>
</tr>
<tr>
<td>DES</td>
<td>descent from P1: ARK86D or P2: ML161P</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTPs</td>
<td>deoxynucleotide triphosphates</td>
</tr>
<tr>
<td>DPF</td>
<td>Dry Pericarp-to-Fruit (%)</td>
</tr>
<tr>
<td>E</td>
<td>expected number</td>
</tr>
<tr>
<td>e.g.</td>
<td>for example</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>eQTLs</td>
<td>expression QTLs</td>
</tr>
<tr>
<td>EST</td>
<td>Expressed Sequence Tags</td>
</tr>
<tr>
<td>EtBr</td>
<td>Ethidium Bromide</td>
</tr>
<tr>
<td>etc.</td>
<td>and the others</td>
</tr>
<tr>
<td>F(null)</td>
<td>null allele estimated frequency</td>
</tr>
<tr>
<td>F/B</td>
<td>ratio of total fruit weight to bunch weight</td>
</tr>
</tbody>
</table>
F₁ First cross / Filial 1
F₂ Intercross between two F₁
FAC Fatty acid composition
FAM 5-carboxyfluorescein (ABI fluorescent label – blue)
FASSB FELDA Agricultural Services Sdn. Bhd.
FB Fruit-to-Bunch (%)
FELDA Federal Land Development Authority Malaysia
FFA free fatty acid
FFB fresh fruit bunch
FIB Fibre-to-Bunch (%)
FIPS Family and individual palm selection
FIWP Fibre-to-Wet Pericarp (%)
GBS Genotyping by-sequencing
GCA General Combining Ability
GDP Gross Domestic Product
GLM Generalized linear model
GMO Genetically modified organisms
Hₑₓᵖᵉ expected heterozygosity
Hₒᵇˢ observed heterozygosity
HVR Hypervariable Regions
HWE Hardy-Weinberg equilibrium
I-C interval length (confidence)
INEAC Institut National pour l’Etude Agronomique du Congo
IP₁ individual markers (parent 1 specific)
IP₂ individual markers (parent 2 specific)
IRD Infrared dye
IRHO Institut de Recherches pour les Huiles et Oleagineux
ISA/ISSR Inter SSR Amplification
IV iodine value
JOE (ABI fluorescent label – green)
KB Kernel-to-Bunch (%)
KF Kernel-to-Fruit (%)
KLM Kuala Lumpur Melanocca
KY kernel yield
LGs linkage groups
LiCI Lithium chloride
LOD logarithm-of-the-odds
M/B Mesocarp-to-bunch
M/F mesocarp-to-fruit
MABW Mean Average Bunch Weight From Pool Over Years
MAS Marker-Assited Selection
MB Molecular breeding
MBNO Mean Bunch Number Weight from Pool Over Years
Weight
MFFB Mean Fresh Fruit Bunch from Pool Over Years Weight
MFW Mean fruit weight
MFW Mean Fruit Weight (g)
MIM multiple interval mapping
MKW Mean Kernel Weight
MPOB Malaysia Oil Palm Board
MP-PCR Microsatellite (repeat)-primed PCR
MPW Mean Pericarp Weight
MRRS Modified reciprocal recurrent selection
MSW Mean Shell Weight
Na₂OAc Sodium acetate
NaCl Sodium chloride
NaOH Sodium hydroxide
NE-1P average non-exclusion probability for one candidate parent
NE-PP average non-exclusion probability for a candidate parent pair
NGS Next Generation Sequencing
NH₄OAc Ammonium Acetate
NIFOR Nigerian Institute for Oil Palm Research
Nig *Nigrescens*
NIL Near Isogenic Lines
O observed number
O/F oil-to-fruit
O/M oil-to-mesocarp
O/WM oil-to-wet mesocarp
OB Oil-to-Bunch (%)
OD Optical Density
ODP Oil-to-Dry Pericarp (%)
OWP Oil-to-Wet Pericarp (%)
OY oil yield
P *pisifera* form
p Probability
PCR Polymerase Chain Reaction
pers. comm. Personal communication
PIC Polymorphism Information Content
PIR Protein Identification Resource
PKO Palm kernel oil
PNG Papua New Guinea
POS position of QTL from left flanking marker of the interval
PRL probability for Null hypothesis of no QTL
PV phenotypic variance
PVP Polyvinylpyrrolidone
PVP-40 Polyvinylpyrrolidone with molecular weight 40,000
“q” derived from male parent
“Q” derived from female parent
QT+ quantitative trait plus
QTA Quantitative Trait Allele
QTL Quantitative Trait Loci
r recombination estimates
R² coefficient of determination
RAD Restriction Site Associated DNA
RAMP Randomly Amplified Microsatellite Polymorphism
RAPD Random Amplified Polymorphic DNA
RE Restriction Endonuclease
Restorer genes
Restriction Fragment Length Polymorphism
recombination frequencies
Relative Fluorescent Units
resistances gene analogues
Recombinant Inbred Line
Ribonucleic Acid
Ribonuclease
Internal size standard (ABI fluorescent label – red)
revolutions per minute
shell-to-fruit
Selective Amplification of Microsatellite Polymorphic Loci
Specific Combining Ability
Sequence Characterization Amplified Region
simplified composite interval mapping
Sugarcane Mosaic Virus
Sodium Dodecyl Sulphate
Shell-to-Fruit (%)
Shell gene
single/simple marker analysis
Single Nucleotide Polymorphisms
Single Primer Amplification Reaction
number of spikelets per panicle
SPSS statistical software packages
Simple Sequence Repeat
Sequence-Tagged Microsatellite Sites
Short Tandem Repeats
Sequence Tagged Sites
tenera x tenera cross
tenera form
Tris-acetate EDTA
(ABI fluorescent label – yellow)
Tris-borate EDTA
Tris-EDTA
1,000 grain weight
total number of markers for linkage group
Tris (hydromethyl) methylamine
Ultraviolet
mean value of the trait across all palms without the band
difference between the mean
Virescens
Variable Number Tandem Repeat
West African Institute for Oil Palm Research
Water-to-Fiber (%)
wet mesocarp-to-fruit
Wet Pericarp-to-fruit (%)
Water-to-Wet Pericarp (%)
CHAPTER 1

AN OVERVIEW

1.1 Introduction

The oil palm, *Elaeis guineensis* Jacq., is the world's most productive oil crop and has been an important crop for mankind for more than 5000 years (Zeven, 1967). The cultivation has contributed greatly to the economic development of otherwise backward rural areas by providing cash employment and higher earnings over the traditional, largely sustenance, agriculture. Palm oil is an important export commodity in some of the countries where the crop is grown, and is the second largest contributor to Malaysia's Gross Domestic Product (GDP). Besides Malaysia, oil palm cultivation has expanded rapidly in other parts of South East Asia, especially Indonesia, and, to a smaller extent, Africa and South and Central America.

Although the oil palm is the most productive oil crop, from intrinsic high oil yields coupled with breeding and agronomic improvements, the national Malaysian yield has stagnated for the past 20 years with fresh fruit bunch (FFB) production at ~20 t/ha/yr, palm oil at ~4 t/ha/yr and palm kernel (KY) ~1.0 t/ha/yr (Malaysian Palm Oil Board, 2013). With the rapid expansion of the world population particularly in the third world where dietary fat intake is still very low, edible oils and fats consumption is likely to increase tremendously, prompting increased production. For this to happen, simply expanding the area cultivated would be the easiest, but practically difficult for want of land and the increasingly strident calls for conservation. For example, in 2010 it was estimated that any future expansion in the oil palm area in Malaysia would only be to 1.3 M ha (Malaysian Prime Minister’s Department, 2010). This leaves the only option of increasing yield to solve this problem. There certainly has been yield improvement over, say, the last 50 years – about 70 percent due to breeding improvement and 30 percent due to better agronomic practices (Rosenquist, 1985; Davidson 1993; Corley and Tinker, 2003). The most important single breeding effort for yield improvement was the gain in bunch oil content from 16% (in the Dura type of oil palm) to 26% (in the tenera or DxP type) following discovery of the shell thickness gene and subsequent universal adoption of DxP planting materials (Hardon *et al.*, 1985, 1987). Following the advances with the shell gene, further yield gains were made through classical breeding for better duras and pisiferas to cross, i.e., with good general combining ability (GCA) and specific combining ability (SCA). Oil production as high as 14.9 t/ha/year from FFB yield of 45 t/ha/year and oil content of 35 percent have been recorded in experimental plantings (Rajanaidu and Kushairi, 2003). These impressive experimental yields are, nevertheless, still below the theoretical maximum of 18.2 t/ha/year oil from 45 t FFB (Corley 1983, 1985, 1998).
As noted above, classical oil palm breeding is time consuming and costly - due to long generation cycles, large plant size and an evaluation period of 10-15 years. For such crops, the new science of molecular breeding (MB) - using molecular markers to facilitate the breeding process (Mohan et al., 1997; Hash and Bramel-Cox, 1999; Kumar, 1999) – beckons. Having markers for characters with easily detectable phenotypes can simplify the recovery of genes of interest linked to the traits, hence the vogue for Marker-Assisted Selection (MAS). MAS generally refers to using molecular markers, near to, or flanking, to a gene which effect on the phenotype is of interest, to identify and then select for/against the gene (Kumar, 1999). The markers are thus signposts for the whereabouts of the gene and indicate the part of the genome to manipulate, i.e., where to introduce/remove genes in the crop (Hash and Bramel-Cox, 1999; Young, 1999; Mackill, 2003). Once a gene is tagged with a marker, pre-selection for the gene (through the marker) can be made in even very young seedlings. Only the plants with the marker/trait of interest are retained/rejected. Furthermore, MAS can greatly reduce the number of breeding cycles by offering greater precision in palm selection in each cycle.

As maybe gathered from the above, oil yield is the most important economic trait in oil palm, hence the search for marker(s) for the shell gene which has veered most mapping work to *tenera x tenera* (Mayes et al., 1997; Singh et al., 2005), *dura x tenera* (Rhode, 2003; Billotte et al., 2005) and *tenera x pisifera* (Moretzsohn et al., 2000) crosses. However, away from the shell thickness hunt, direct higher oil yield in the oil palm (as opposed to more oil from less shell), like in most other crops, is a composite trait which final expression is the sum of a number of components that result in higher FFB yield and better fruit quality traits for oil in the bunch (Sparnaaij et al., 1963). Thus, direct oil yield in oil palm is a complex trait under polygenic control, multiplicatively interrelated and highly influenced by the environment. Therefore, while a useful first step, MAS, based merely on markers for the single gene of shell thickness alone, is unlikely to contribute much to oil yield of the crop.

Hence, the main aims of this study are to detect and map QTLs affecting the oil yield components in oil palm and in passing, re-assess the interrelationships between oil yield and its components. The study was preceded by a survey of the genetic variation in existing potential mapping populations to obtain an indication of the potential improvement possible through breeding, and to identify suitable planting materials for mapping. The availability of reliable phenotype data for the traits of interest (oil yield components), from FASSB recording, for all selected individual palms in the proposed mapping population, was obviously also a key requirement. Three molecular marker assay systems with a slew of advantages – AFLPs, RFLPs and SSRs - were employed to genotype the mapping population.
1.2 Objectives

The objectives of this study were:

i) To select of mapping population and survey the genetic variation of oil yield components in the population.

ii) To identify polymorphic AFLPs, RFLPs and SSRs markers.

iii) To construct genetic linkage maps for both parental palms, ARK86 and ML161 and construct a high density map by integrating both parental maps.

iv) To identify markers possibly associated with the quantitative traits linked to the oil yield components in oil palm.

v) To determine the allelic configurations of each QTL and their specific effects (positive or negative) on the trait and compute the cumulative effects of all the QTL+ alleles for each trait.
REFERENCES

Gore, M. A., Wright, M. H., Ersoz, E. S., Bouffard, P., Szekeres, E. S., Jarvie, T. P., Hurwitz, B. L., Narechania, A., Harkins, T. T., Grills, G. S., Ware, Do. H., and Buckler, E. S. (2009). Large-Scale Discovery of

presented at The International Seminar on Breeding for Sustainability in Oil Palm, Kuala Lumpur, Malaysia. 18 November 2011.

Rohde, W., Sniady, V., Herrán, A., Estioko, L., Sinje, S., Marseillac, N., Berger, A., Lebrun, P., Becker, D., Kullaya, A., Rodríguez, J., Billotte, N. and

Architectures Among Rapidly Speciating Cichlids. Genetics Society of America, DOI: 10.1534/genetics.108.089367

