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A series of lithium fluoro phosphate glass, (LiF), (P205)1-x with x = 0.1 to x = 0.6; 

lithium chloro phosphate glass, (LiCl), (P205)1-x with x = 0.1 to x = 0.6 both in the 

interval of 0.05 and magnesium chloro phosphate glass, (MgC12)x (P205)1-x with x 

= 0.1 to x = 0.45 in the interval of 0.05 glasses were prepared by a single-step 

melting process with LiF, LiC1, MgC12 and P2O5 as starting materials. The 

amorphous structure of the samples was evident by the XRD spectrum. The short 

range structures of those binary phosphate samples were examined by Fourier- 

transform infrared (FTIR) spectroscopy. The densities of the samples were 

measured as supportive data for the investigations. Ellipsometer is used to 

determine the samples refractive indices. The results of refractive indices reveal 

the homogeneity of samples and it was found to be depended on the glass 

composition. The optical absorption spectra of these glasses were measured using 

a UV-Vis spectrophotometer and recorded. The Urbach rule has been applied to 

evaluate the fundamental absorption edges for all the glasses from the obtained 

spectrum. The optical band gaps were calculated from the absorption edge and it 

was found that the optical band gap, E,, depended on the glass composition. The 



value of Eopt was found to be erratic although it still shows a decreasing pattern 

with the increasing mole fraction of network modifier. The dielectric properties of 

the samples were also measured using a Novocontrol Novotherm High Dielectric 

Resolution Analyser. The results showed that the dielectric constant and the 

dielectric loss factor decreased with frequency and increased with temperature. 
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Kaca lithium fluro fosfat (LiF), (P205)1-x dengan komposisi x = 0.1 hingga x = 0.6; 

kaca lithium kloro fosfat (LiCl), (P205)1-x dengan komposis x = 0.1 hingga x = 0.6, 

kedua-duanya dengan selangan sebanyak 0.05 dan kaca magnesium kloro fosfat 

(MgC12), (P205)1-x dengan komposis x = 0.1 hingga x = 0.45, selangan sebanyak 

0.05 telah disediakan dengan teknik peleburan tunggal. Bahan asas yang digunakan 

ialah LiF, LiC1, MgC12 and P2O5. Struktur bahan amorfus dapat dibuktikan dalam 

spektra serakan sinar-X di mana ketidakwujudan puncak yang tajam dalam spektra 

yang diperolehi itu. Struktur tertib julat pendek binary kaca fosfat dikaji oleh 

spektroskopi infia merah (IR). Selain itu, ketumpatan kaca diukur sebagai data 

sampingan dalam kajian ini. Indeks biasan bahan didapati dengan menujukan sinar 

monokromat ke atas bahan. Bacaan indeks biasan yang diperolehi membuktikan 

kesekataan bahan dan ia juga didapati bergantung kepada komposisi bahan. Kaca- 

kaca ini telah diukur dengan menggunakan spektrofotometer dan spektra 

penyerapan optik dalam julat lampau unggu-cahaya nampak telah dicatatkan. 

Peraturan Urbach digunakan untuk menentukur asas pinggir serapan bagi kesemua 

spektra yang telah diperolehi. Tenaga jurang optik, E,,, bagi bahan yang dikaji 



adalah berkait-rapat dengan komposisi bahan. Nilai Eopt tidak tetap dan selalu 

berubah-ubah apabila lebih banyak komposisi pengubahsuai rangkaian 

ditarnbahkan. Sifat dielektrik bahan kaca juga diukur dengan menggunakan 

Novocontrol Novotherm Penganalisa Dielektrik Resolusi Tinggi. Data-data 

pemalar dielektrik dan faktor kehilangan dielektrik menurun dengan peningkatan 

frekuensi dan meningkat dengan peningkatan suhu. 
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CHAPTER 1 

INTRODUCTION 

Glass is no exception as a material of archaeological interest. The state in which it 

was found depends upon its original structure and composition since it was made. 

The range of glasses made is wider than ever before and now includes 

chalcogenides, fluorides and metals as well as oxides; the variety of techniques 

available for producing them has also expanded notably in recent years (Cable, 

1996). 

Glasses are fused mixtures of inorganic oxides, which are cooled to a solid state 

without crystallization. They do not have uniquely fixed compositions and 

thousands of glasses, each with a different composition, are produced 

commercially. It is often associated with fusion products made from silicates, 

which are used for windows, bottles, lenses, etc. Beside silicates, a lot of other 

substances can also be obtained in the glassy state. It is widely understood that the 

possibility of a material forming glass is not an atomic or molecular property and 

cannot be measured by chemical or physical properties. It is a state of the solid 

state which can be reached by a sufficiently high cooling rate. 

A wide variety of industrial glasses for packaging, household uses, building and 

construction, electrical engineering, and optical applications, are manufactured in 

large industrial plants by the processing of melts, mainly in the open air. 



Amorphous substances are formed from solutions when the conditions change at a 

sufficiently high rate, followed by strong over-saturation. There is often not 

enough time for the generation of crystalline nuclei and their growth. 

Many metal oxides form glasses when melted with a basic glass former oxide such 

as P20s, B203, SiO2, GeO2, As203, Sbz03, etc. Network modifier such as Na20, 

Li20, CaO and PbO have the function that break up the network. The introduction 

of large number of network modifiers into a glass leads to an increase in the 

splitting of the network. An increased mobility of the structural units causes a 

decrease in the viscosity. Moreover, other physical properties, such as the electrical 

conductivity, vary greatly. As the network modifiers are irregularly distributed in 

the whole network, the properties of the glass normally change continuously 

according to the change in the composition (Naess, 2001). 

The vast bulk of these glasses can be considered in three main groups: the soda- 

lime-silica, the borosilicate and the lead silicate glasses. The largest percentage of 

all manufactured glass is soda-lime glass, which are mixtures of silica (SiOz), 

sodium oxide (Na20) and calcium oxide (CaO). This group form by far the largest 

group of glasses in terms of tonnage produced and includes the common sheet and 

plate glasses used for windows as well as the glasses used for most bottles and jars. 

This type of glass supplies most of the world's needs for bottles, food jars, 

drinking glasses, tableware, lamp bulbs, plate glass and window glass. 

Borosilicate glasses, which are mixtures of silica sand and boric oxide, have a high 

chemical durability, high thermal resistance, high electrical resistivity and low 



thermal expansivity. Materials of this group are in common use for cooking 

utensils, domestic ovenware, chemical process equipment and laboratory glassware. 

Lead silicate glasses, which are mixtures of silica sand, potash and lead oxide, 

have a very high electrical resistivity and refractive index. The presence of lead 

makes the glass heavy. These lead glasses are known as crystal and are used for 

most of the high-quality decorative cut glass and fine tableware. Relatively costly 

raw materials and melting difficulties make this group of glasses expensive to 

produce, but nevertheless they are used for special purposes: for decorative, high- 

quality tableware, where the very high refractive index gives the classical 'sparkle' 

when prismatic cuts are used to decorate the surfaces, and for the glass-to-metal 

seals in the bases of electric lamps and electronic valves (Holloway, 1973). Lead 

glass is also the "paste" used in making imitation diamonds. Glass with a high lead 

content can be used as a shield in nuclear energy installations industry. 

Fused silica which are made from pure silicon dioxide (SiOz), with no additives 

have the characteristics of high hardness, a low thermal coefficient of expansion, 

and a high melting point of 1650 O C .  It is a very stable material which can be used 

for making astronomical telescope mirrors with very large diameters. Its strength 

and mechanical stability also make it a good material for laboratory apparatus. 

Another classification is the alkali silicate family of glasses which are made by 

adding an alkali such as sodium or potassium to the silica which lowers the melting 

point and makes the resulting glass become soluble in water. Proper preparation 



can yield a liquid solution of glass and water known commercially as water glass. 

This substance is used as a protective coating, for fire proofing and as an adhesive. 

Phosphate glasses are of technological interest due to their several advantages over 

conventional silicate and borate glasses. Among the superior physical properties 

of phosphate glasses are high thermal expansion coefficient, high thermal 

conductivity, low glass transition temperature (T,), low melting and softening 

temperatures. Because of these behaviours, phosphate glasses were the candidates 

for fast ion conducting material and other important applications such as lasers 

hosts, wave guides, thick film paste, the molding of optical elements, low 

temperature enamels for metals, glass to metal seals and bio-compatible materials 

or biomedical implants (Shih et al., 2003). 

Phosphate glasses also have the characteristics of high ultraviolet transmission for 

hosting lasing ions, and are potential candidates for making solid state electrolytes, 

machinable glass ceramics, amorphous semiconductors, laser glasses, 

optoelectronics and nuclear waster storage (Subbalakshmi et al., 2002, and Hezzat 

et al., 2003). 

Phosphate glasses have considerable potential for applications in optical data 

transmission, detection, sensing and laser technologies. For example, neodymium 

phosphate glasses have been widely used in lasers because of the characteristic of 

high ultraviolet transmission which is suitable for hosting lasing ions (Higazy et al., 

1995). Phosphate glasses are relatively easy to prepare and offer an important 

range of compositional possibilities, which facilitate tailoring of the physical and 


