UNIVERSITI PUTRA MALAYSIA

SIMULATION ON THE PERFORMANCE OF A STIRLING COOLER FOR USE IN SOLAR POWERED REFRIGERATOR

KHALID OSMAN DAFFALLAH AHMED.

FSAS 2004 47
SIMULATION ON THE PERFORMANCE OF A STIRLING COOLER
FOR USE IN SOLAR POWERED REFRIGERATOR

KHALID OSMAN DAFFALLAH AHMED

DOCTOR OF PHILOSOPHY
UNIVERSITI PUTRA MALAYSIA

2004
SIMULATION ON THE PERFORMANCE OF A STIRLING COOLER
FOR USE IN SOLAR POWERED REFRIGERATOR

By

KHALID OSMAN DAFFALLAH AHMED

Thesis Submitted to the School of Graduate Studies, Universiti Putra
Malaysia, in Fulfilment of the Requirements for the
Degree of Doctor of Philosophy

July 2004
To my parents, my wife, my daughter
and to all my brothers and sisters
Solar electricity produced by photovoltaic (PV) solar cells is one of the promising sources of power for solar refrigerator. Presently, solar PV is used to power conventional vapor compression or Rankine refrigerators. In this work, three photovoltaic freezers with different capacities and volumes of 100, 230 and 330 liters have been designed and tested. The freezers used the conventional vapor compression Rankine cycle. For the 100-liter freezer a minimum cabinet temperature of \(-20.1^\circ\text{C}\) was obtained. The maximum and minimum cooling capacity were semi-empirically computed to be 304W and 85.8W and the corresponding power consumptions were 139W and 70.1W respectively. Coefficient of performance was calculated to be 2.19 and 1.22 respectively at the maximum and minimum temperatures. For the 230-liter freezer, a temperature of \(-15.2^\circ\text{C}\) was achieved. The cooling capacity, power consumption, coefficients of performance were obtained semi-empirically. Similar experimental analysis was done on the 330-liter freezer to achieve a temperature of \(-5^\circ\text{C}\). All these freezers were tested for condenser temperature of 54°C and ambient temperature of 38°C.
Limitations of the vapor compression refrigerator were highlighted; these include insufficient power from the 75W solar panel to run the refrigerator’s compressor and therefore a backup battery is always required. But, battery is expensive and has a limited charge/discharge cycles.

To allow for the use of photovoltaic module to power bigger size refrigerator, a new age of refrigeration technology such as a free piston Stirling cooler is used to replace the vapor compression refrigerator. The free piston Stirling cooler uses small amount of power effectively besides elimination of battery since free piston Stirling cooler can use phase change material to store cooling when there is insufficient power (low solar insolation and night time operation).

The general principle in which a Stirling machine self-limits its operation was presented. The proposed design of the Stirling cooler was described and the performances of the cooler were simulated using the MATLAB computer software. Three types of analyses were carried out i.e. ideal adiabatic, Schmidt and non-ideal adiabatic.

Results from the ideal adiabatic analysis showed that the total power output was 101.2W. Coefficient of performance of 3.6 was obtained, which was found to be about 21.5% of the Carnot COP. The COP was calculated for cold space temperature of −10°C and warm space temperature of 27°C. The heat absorbed by the acceptor was found to be 44.28W while the heat released by the rejector was computed to be 56.51W.
For isothermal conditions of the working space and heat exchangers, Schmidt analysis was carried out for cold space temperature of \(-10^\circ\text{C}\) and warm space temperature of \(23^\circ\text{C}\). From the MATLAB results, work done on the expansion and by the compression spaces were found to be \(8.813\times10^{-1}\) and \(-9.283\times10^{-1}\) J respectively. Total work done was calculated to be \(1.145\times10^{-1}\) J.

The effects of the non-ideal heat exchangers and the difference in the working gas and wall temperatures were determined through a non-ideal adiabatic analysis. The gas temperature was obtained through iteration until convergence was achieved. Coefficient of performance of 3.8 was obtained for ideal regenerator and then reduced to 2.4 for a non-ideal regenerator when pumping loss was taken into account for the same temperatures of the working spaces.

Performance of operation, in terms of power consumption and cooling capacity, of the vapor compression refrigerator and Stirling type refrigerator was carried out. The comparison was based on the experimental data obtained for the vapor compression refrigerator and output data derived from MATLAB analysis for the Stirling refrigerator. The power consumption of the Stirling refrigerator was calculated to be 20 W while that of the vapor compression was computed to be 139 W.
SIMULASI KE ATAS PRESTASI PENDINGIN STIRLING UNTUK DIGUNAKAN DALAM PETI SEJUK BERKUASA SURIA

Oleh

KHALID OSMAN DAFFALLAH AHMED

Julai 2004

Pengerusi: Profesor Mohd Yusof Sulaiman, Ph.D.

Fakulti: Sains dan Pengajian Alam Sekitar

liter dan telah menghasilkan suhu pada -5°C. Semua penyejuk beku ini telah diuji untuk suhu kondenser pada 54°C dan suhu ambien pada 38°C.

Kelemahan peti sejuk jenis mampatan wap telah dinyatakan dan ini termasuk ketidakupayaan kuasa panel suria 75W untuk mengoperasi alat pemampat peti sejuk sehingga memerlukan penggunaan bateri penyokong pada sepanjang masa. Tetapi, penggunaan bateri adalah mahal malah bateri mempunyai kitar cas/nyahcas yang terhad.

Untuk membolehkan penggunaan modul fotovolta menguasai peti sejuk yang lebih besar, teknologi peti sejuk era baru seperti pendingin piston bebas Stirling lebih sesuai digunakan untuk menggantikan peti sejuk jenis mampatan wap. Pendingin piston bebas Stirling berupaya menggunakan dengan berkesan kuasa yang lebih kecil untuk membolehkan bateri diganti dengan bahan bolehubah fasa. Bahan seperti ini boleh digunakan untuk menyimpan tenaga penyejuk apabila kuasa elektrik berkurangan (dalam keadaan penyinaran suria yang rendah dan ketika malam hari).

Prinsip umum yang membolehkan mesin Stirling menghadkan operasinya juga telah diberikan. Cadangan rekabentuk pendingin Stirling telah diterangkan dan prestasi pendingin ini telah disimulasi dengan menggunakan perisian komputer MATLAB. Tiga jenis analisis telah dijalankan iaitu, analisis adiabatik unggul, analisis Schmidt dan analisis adiabatik tak unggul.
Hasil dari analisis adiabatik unggul memberikan jumlah kuasa bersamaan 101.2W. Pekali prestasi bersamaan 3.6 telah diperolehi, iaitu 21.5% daripada pekali prestasi Carnot. Pekali prestasi ini telah dikira untuk suhu ruang dingin pada –10°C dan suhu ruang hangat pada 27°C. Haba yang diserap oleh alat penyerap telah dikira dan didapati bersamaan 44.28W sementara haba yang dibebaskan oleh alat pengasing haba bersamaan 56.51W.

Untuk ruang kerja dan penukar haba jenis isoterma, analisis Schmidt telah dijalankan untuk suhu ruang dingin pada –10°C dan suhu ruang hangat pada 23°C. Hasil dari pengiraan MATLAB, kerja yang dilakukan oleh ruang pengembangan adalah bersamaan 8.813x10⁻¹J dan kerja yang dilakukan ke atas ruang pemampatan bersamaan –9.283x10⁻¹J. Jumlah kerja yang dilakukan telah juga dikira dan didapati bersamaan 1.145x10⁻¹J.

Analisis telah juga dilakukan dengan mengambilkira kesan dari penggunaan alat penukar haba yang tak unggul dan perbezaan suhu dinding gas dari ruang kerja. Suhu gas telah diperolehi dengan cara pelelaran sehingga hasil penumpuan diperolehi. Pekali prestasi bersamaan 3.8 telah diperolehi untuk alat penjana semula yang unggul dan nilai ini telah berkurangan kepada 2.4 apabila alat penjana semula tak unggul digunakan. Dalam alat penjana semula tak unggul berlaku kehilangan tekanan pada suhu ruang kerja yang sama.

Analisis prestasi operasi yang berkaitan dengan penggunaan kuasa dan keupayaan penyejuk bagi peti sejuk jenis mampatan wap dan Stirling telah dijalankan.
Perbandingan telah dibuat berasaskan kepada data eksperimen bagi peti sejuk jenis mampatan wap dan data yang diperolehi dari analisis MATLAB bagi peti sejuk jenis Stirling. Penggunaan kuasa bagi peti sejuk jenis Stirling telah dikira dan didapati bersamaan 20W sementara bagi peti sejuk jenis mampatan wap bersamaan 139W.
ACKNOWLEDGEMENTS

I would like to express my sincerest thanks, gratitude and appreciation to Prof. Dr. Mohd Yusof Sulaiman chairman of my supervisory committee, for his invaluable guidance, helpful advice, suggestion, valuable support, endless patience and continuous encouragement throughout this project. His way of guiding, leading by doing is the best source of advice and is most effective.

Similar thanks is extended to members of my supervisory committee, Dr. Mahdi Abdul Wahab, Assoc. Prof. Dr. Azmi Zakaria and Assoc. Prof. Dr. Zainal Abidin Sulaiman for their assistance, suggestions and guidance throughout this work.

I would like to thank members and staffs of the Department of Physics who have always willing to offer assistance and advice, in particular, Mr. Shahruddin Hj. Abd. Rahman, Mr. Suhaime Ibrahim, Mr. Razak Haroun and Mr. Roslim Mohd.

I would like to acknowledge the assistant of my friend Mr. James Han who assisted me in building my hardware and for all the practical implementation knowledge that he passed on to me.

I am very grateful to the University of Gezira Sudan for giving me the opportunity to further my study.
My great appreciation goes to my wife and my daughter for sharing this adventure with me.

Finally, I would also like to thank all my friends and colleagues for the help that they rendered to me during the course of my study.
I certify that an Examination Committee met on 22nd of July 2004 to conduct the final examination of Khalid Osman Daffallah Ahmed on his Doctor of Philosophy thesis entitled "Simulation on the Performance of a Stirling Cooler for Use in Solar Powered Refrigerator" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

W. Mahmood Mat Yunus, Ph.D.
Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Chairman)

Zainal Abidin Talib, Ph.D.
Associate Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

Zaidan Abdul Wahab, Ph.D.
Associate Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

Noorddin Ibrahim, Ph.D.
Professor
Faculty of Science
Universiti Technology Malaysia
(Independent Examiner)

GULAM RUSUL RAHMAT ALI, Ph.D.
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 26 AUG 2004
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirements for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Mohd Yusof Sulaiman, Ph.D.
Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Chairman)

Mahdi Abdul Wahab, Ph.D.
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

Azmi Zakaria, Ph.D.
Associate Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

Zainal Abidin Sulaiman Ph.D
Associate Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

AINI IDERIS, Ph.D.
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia
Date: 10 SEP 2004
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

KHALID OSMAN DAFFALLAH

Date: 20.8.2004
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>x</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS/NOTATIONS/GLOSSARY OF TERMS</td>
<td>xxiii</td>
</tr>
</tbody>
</table>

CHAPTER

1 **INTRODUCTION**
 1.1 Limitations and Problems of the Vapour Compression Cycle 3
 1.2 Objectives of the Study 4

2 **METHODS OF REFRIGERATION**
 2.1 Introduction 6
 2.2 Performance of the Vapour Compression refrigeration 6
 2.3 Heat and Energy Transfer of Individual Vapour Compression Processes 10
 2.4 The Stirling Engine 11

3 **LITERATURE REVIEW** 17

4 **CONVENTIONAL SOLAR POWERED FREEZER** 27
 4.1 Introduction 27
 4.2 Photovoltaic Panel 27
 4.3 Battery 30
 4.4 Battery Charge Controller 31
 4.5 Brushless DC Motor (BLDCM) Compressor 33
 4.6 Ice Box 35
 4.7 Analysis of the Freezer Performance 35
 4.7.1 Cooling Capacity 38
 4.7.2 Power Consumption 38
 4.7.3 Coefficient of Performance (COP) 39
9.4 Future Work

REFERENCES

APPENDIX
A Polynomial Coefficients for the BD2.5F and BD5.0F Compressors 138
B1 Ice-Cream-Freezer Performance at 3500 rpm 140
B2 Fishery-Freezer Performance at 3000 rpm 143
C1-C10 Ideal Adiabatic Files 146
D1-D19 Non Ideal Adiabatic Files 163
E Schmidt Analysis for Stirling Cooler 194

BIODATA OF THE AUTHOR 200
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Technical Specification of the Solar Panel</td>
<td>29</td>
</tr>
<tr>
<td>4.2</td>
<td>Battery Specifications</td>
<td>30</td>
</tr>
<tr>
<td>4.3</td>
<td>Compressor Speed Control</td>
<td>34</td>
</tr>
<tr>
<td>4.4</td>
<td>Freezers Specifications</td>
<td>36</td>
</tr>
<tr>
<td>7.1</td>
<td>Input data for the ideal adiabatic analysis</td>
<td>102</td>
</tr>
<tr>
<td>7.2</td>
<td>Results of the ideal adiabatic analysis</td>
<td>103</td>
</tr>
<tr>
<td>7.3</td>
<td>Results of Schmidt analysis (for one cycle)</td>
<td>108</td>
</tr>
<tr>
<td>7.4</td>
<td>Input data to the non-ideal adiabatic model</td>
<td>112</td>
</tr>
<tr>
<td>7.5</td>
<td>Results of the non-ideal adiabatic analysis</td>
<td>113</td>
</tr>
<tr>
<td>7.6</td>
<td>Adiabatic analysis results with finite wall/gas temperature difference</td>
<td>115</td>
</tr>
<tr>
<td>7.7</td>
<td>Analysis with non-ideal regenerator</td>
<td>115</td>
</tr>
<tr>
<td>8.1</td>
<td>Performance map of the 100-liter vapor compression refrigerator</td>
<td>124</td>
</tr>
<tr>
<td>8.2</td>
<td>Power consumption of the Stirling refrigerator</td>
<td>128</td>
</tr>
<tr>
<td>9.1</td>
<td>Performance of the vapour compression freezers</td>
<td>130</td>
</tr>
<tr>
<td>Figure</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>2.5(a)</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>4.10</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>47</td>
<td></td>
</tr>
</tbody>
</table>

LIST OF FIGURES
5.4 Working spaces of (a) beta and (b) gamma configurations of the Stirling machines

5.5 Phasor diagram for the beta and gamma Stirling machines

5.6 Components of the Stirling cooler used in the ideal adiabatic model showing the five cells, interfaces and their temperature distribution.

5.7 A generalised cell

5.8 Adiabatic compression space

5.9 Linear temperature profile of the regenerator

5.10 Different types of regenerator

5.11 Regenerator Temperature Profile

5.12 Simplified Simulation Model Temperature Distribution

5.13 Newton’s Law of Viscosity

5.14 Temperature dependence of dynamic viscosity of typical gases

5.15 Reynolds Friction Coefficient against Reynolds Number for smooth circular pipes

6.1 Component Parts of a Free Piston Stirling Cooler

6.2 Amplitude of the Reciprocating Oscillation of the Piston

6.3 Change in the Proportionality Constant of the Spring as a Function of Piston Displacement

6.4 Duty Cycle of High State of the Linkage

6.5 Self Limiting Operation

6.6 A Stirling Cooler with a displacer and Piston reciprocate within a cylinder

6.7 An Exploded or Separated View of the Piston and Outer Sleeve
6.8 Ports 1 & 3 Having Triangular Configuration
6.9 Piston and Outer Sleeve Rotation in One Direction
6.10 Piston and Outer Sleeve Rotation in One Direction
7.1 Proposed design of a Stirling Cooler
7.2 A slide Switch
7.3 Flow Chart for the Ideal Adiabatic Analysis
7.4 Components programs of Ideal adiabatic analysis
7.5 Energy Plot for the Ideal Adiabatic Model
7.6 Variation of the Pressure of the Working Gas Over a Single Cycle
7.7 p-V Diagram of an Ideal Adiabatic Model of the Stirling Cooler
7.8 Temperature variations of working gas, acceptor, regenerator and rejector for an ideal adiabatic process
7.9 Schmidt Pressure against Cycle Angle Plot
7.10 Schmidt p-V plot
7.11 Flow chart of the non-ideal adiabatic analysis
7.12 Component program of the non-ideal adiabatic analysis
7.13 Energy Plot for the Non-Ideal Adiabatic Modle
7.14 p-V Diagram for the Non-Ideal Adiabatic Model of the Stirling Cooler
7.15 Non-Ideal Working Space Pressure Over one Cycle
7.16 Temperature Variation for the Non-Ideal Process
7.17 Pressure Drop across the Regenerator, Rejester and Acceptor
7.18 Particles of Equal Mass Flowing Through the Cooler over a Cycle
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Layout of Striling Freezer</td>
<td>122</td>
</tr>
<tr>
<td>8.2</td>
<td>Layout of a Stirling Deep Freezer</td>
<td>123</td>
</tr>
<tr>
<td>8.3</td>
<td>Plot of the Cooling Capacity against Power Consumption for the 100-liter Vapor Compression Refrigerator.</td>
<td>124</td>
</tr>
<tr>
<td>8.4</td>
<td>Variation of the Percentage Carnot COP against Carnot COP for the Stirling Cooler and Vapor Compression Refrigerator.</td>
<td>125</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS AND ABBREVIATIONS

PV Photovoltaic
BLDCM Brushless DC Motor
P-h Pressure-enthalpy
COP, ε Coefficient Of Performance
Qₑ Heat absorbed by the evaporator
Qᶜ Heat rejected by the condenser
Wᶜ Work done to drive the compressor
Tₑ Temperature of the evaporator
Tₑₑ Temperature of the refrigerant in the evaporator
Tᶜ Temperature of the condenser
Tᶜᶜ Temperature of the refrigerant in the condenser
εᶜ Cartnot COP
ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers
Tₑ Expansion temperature
Tₑ Compression temperature
pV Pressure-volume
TS Temperature-entropy
cs Compression space
es expansion space
PV–TE Photovoltaic Thermoelectric