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The microstructures and electrical properties of Pb(AlxV1-x)03*s ceramic have been 

investigated. The samples were prepared using solid-state technique and were 

sintered at 800 OC, 850 OC and 900 OC. Surface morphology studies show that small 

grains with submicron size - 0.25 pm coexist with the bigger grains in micron size. 

As the sintering temperature increased, the grains size increase and thus become 

more compact. From )(RD analysis, the sample structure obtained is an orthorhombic 

system with space group PMMA and unit cell volume is 469.595 A3. 

The dielectric constant, e' for sample PAV 71800, PAV 71850 and PAV 71900 

increased as the sintering temperature increased where the values of E' for sample 

sintered at 900 O C  is - 6000 at 10'~ Hz and - 90 at 1 kHz. However, the loss factor, 

E" for sample sintered at 900 O C  is higher than that of other samples. The loss 

tangent, E"/E' for sample PAV 71800, PAV 71850 and PAV 71900 at 1 kHz are 0.1, 

0.12 and 0.16 respectively. The PAV 0.9 shows the highest E' -4000 at Hz but 

the E" for this sample is also high. This is followed by sample PAV 0.7 and PAV 0.3. 

Between frequencies higher than 1 kHz, the magnitudes of the E' data dispersion (- 



80) are similar for samples PAV 0.3, PAV 0.7 and PAV 0.9. At 1 0-2 Hz to 1 kHz, the 

dispersion of E' is strongly dependent on frequency. However, the E' dispersion is 

independent with frequency at 1 kHz to lo5 Hz. The mechanisms that are observed 

from all samples are quasi dc, dipolar and barrier layer. A peak observed at lo2 Hz is 

due to the ionic relaxation processes. The activation energy that is obtained from 

sample PAV 71800 is 0.416. It indicates that the electrons hopping are weak. An 

equivalent circuit model has been proposed to represent the mechanism observed. 

The conductivity, o, is increased from 3.0x10-~ to 8.0x10-~ rnholm for sample PAV 

71800 and PAV 71900 respectively. For other samples with different Al composition, 

o, increased from 1.0x10-~ to 1.0x10-~ mholm for sample PAV 0.3 and PAV 0.9 

respectively. The o, curve exhibits two distinct regions where the low frequency 

region is weakly dependent on frequency due to free charge carriers while the high 

frequency region is strongly dependent with frequency due to bound charge carriers 

in this sample. The IS, is increased from to lo4 mholm for 50 O C  and 290 "C 

respectively. The activation energy of sample PAV 71800 and PAV 0.1 is -0.65 eV 

and may be due to the ac conduction in terms of hopping transport of charge carrier 

in a narrow band of localization states as the Fermi level. 

In complex impedance plots, only one semicircle is observed at low frequency and 

does not started fiom the origin due to the high frequency resistance effect. For 

sample PAV 71800, the resistance obtained from the plot is 8 . 9 9 ~ 1 0 ~  ohm/m and the 

value of the capacitance is 1.5x10-'~ F. The capacitance value obtained is in the range 

of bulk ferroelectric mechanism. In direct current measurement, the curve obtained 

obeyed the Ohm's law and the activation energy increased from 0.85 eV to 1.15 eV 
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as the sintering temperature increases from 800 O C  to 900 O C  and 0.71 eV to 1.62 eV 

when A1 compositions increase from PAV 0.1 to PAV 0.9. 
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Mikrostruktur dan sifat elektrik bagi cerarnik Pb(AIxV1-,)03G telah dikaji. Sampel 

tersebut disediakan menggunakan teknik keadaan pepejal dm disinter pada 800 OC, 

850 OC dan 900 "C. Kajian morfologi perrnukaan menunjukkan butiran kecil bersaiz 

submikron -0.25 pm wujud bersama dengan butiran besar bersaiz mikron. 

Peningkatan suhu sinteran menyebabkan saiz butiran bertarnbah besar dan seterusnya 

menjadi lebih padat. Daripada analisis XRD, struktur sampel ialah sistem 

orthorhombik dengan kumpulan ruang PMMA dan isipadu sel unit 469.595 A3. 

Pemalar dielektrik, E' bagi sampel PAV 71800, PAV 71850 dan PAV 71900 

meningkat dengan peningkatan suhu sinteran di mana nilai E' bagi sampel yang 

disinter pada 900 OC adalah - 6000 pada Hz dan - 90 pada 1 kHz. Walau 

bagaimanapun, faktor kehilangan, E" bagi sarnpel disinter pada 900 OC adalah tinggi 

berbanding sampel yang lain. Nilai bagi kehilangan tangen, &"I E' bagi sampel PAV 

71800, PAV 71850 dan PAV 7/900 masing-masing adalah 0.1, 0.12 dan 0.16 pada 

1kHz. Sampel PAV 0.9 menunjukan nilai tertinggi E' -4000 pada Hz tetapi E" 

bagi sampel ini juga tinggi. Ini diikuti oleh sampel PAV 0.7 dan PAV 0.3. Pada 



friquensi tinggi daripada 1 kHz, magnitud bagi taburan data E' (- 80) adalah sama 

untuk sampel PAV 0.3, PAV 0.7 dan PAV 0.9. Diantara 1 0 ' ~  Hz hingga I kHz, 

taburan E' sangat bergantung pada frequensi. Walau bagaimanapun, taburan E' tidak 

bergantung pada frequensi pada 1 kHz hingga lo5 Hz. Mekanisme yang diperolehi 

daripada semua sampel ialah quasi dc, dwikutub dan lapisan halangan. Puncak yang 

didapati pada lo2 Hz adalah disebabkan oleh proses relaksasi ionik. Tenaga 

pengaktifan yang diperolehi daripada sampel PAV 71800 ialah 0.416 eV. Ini 

menunjukan bahawa loncatan elektron adalah lemah. Model litar setara telah 

dicadangkan untuk mewakilkan mekanisme yang diperolehi. 

Peningkatan konduktiviti, o, daripada 3.0x10-* kepada 8.0x10-~ rnholm bagi sampel 

masing-masing PAV 71800 dan PAV 71900. Bagi sampel yang lain dengan 

komposisi Al berbeza, peningkatan o, dari 1.0x10-~ kepada 1.0x10-~ mholm bagi 

sampel masing-masing PAV 0.3 dan PAV 0.9. Lengkok ox juga menunjukan dua 

bahagian di mana bahagian frequensi rendah bergantung secara lemah pada frekuensi 

disebabkan oleh pembawa cas bebas manakala bahagian frekuensi tinggi sangat 

bergantung pada frekuensi disebabkan oleh pembawa cas terikat dalarn sampel ini. 

ox meningkat daripada kepada lo6 rnholm masing-masing dan bagi 50 O C  dan 

200 O C .  Tenaga pengaktifan bagi sampel PAV 71800 dan PAV 0.1 ialah pada -0.65 

eV dan h i  mungkin disebabkan oleh kekonduksian ac bagi pengangkutan loncatan 

oleh pembawa cas dalam jalur tenaga yang sempit bagi keadaan setempat seperti 

paras Fenni. 

Dalam plot impedant komplex, terdapat satu semi-bulatan diperolehi pada frequenci 

rendah d m  tidak bermula daripada asalan disebabkan oleh kesan rintangan fiequensi 

VII 



tinggi. Bagi sampel PAV 71800, rintangan yang diperolehi daripada plot tersebut 

ialah 8 . 9 9 ~ 1 0 ~  o h d m  dan nilai kapasitan ialah 1 . 5 ~ 1 0 - ' ~  F. Nilai kapasitan yang 

dicerap ialah di dalarn julat mekanisme ferroelektrik. Dalam pengukuran arus terus, 

data yang diperolehi mematuhi hukum Ohm dm tenaga pengaktifannya meningkat 

daripada 0.85 eV kepada 1.15 eV apabila suhu sinteran meningkat dari 800 O C  

kepada 900 O C  dan 0.71 eV kepada 1.62 eV apabila komposisi Al bertambah dari 

PAV 0.1 kepada PAV 0.9. 
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CHAPTER 1 

RESEARCH OVERVIEW 

1.1 Introduction 

Dielectric is a field of knowledge that belongs to physics, chemistry, biology and 

engineering. Dielectrics are not confined to the narrow area of insulators, but to any 

non-metal that interacts with electric or electromagnetic fields. Polarization and the 

dynamics of electric charges are at the heart of dielectrics. These are often described 

in terms of macroscopic properties such as permittivity, dielectric loss and also 

dielectric constant. Electrical engineers have characterized dielectrics 

macroscopically using field vectors, equivalent circuits and reliability statistics. In 

contrast, the physicist and chemist have pushed forward the understanding of 

dielectric response in terms of molecular and structural response and relaxation. 

Many of the fimdamental problems have now been addressed and it is now possible 

to move from dielectric analysis to dielectric synthesis. This is of considerable 

interest to most areas of science and demonstrates the cross-disciplinary nature of 

dielectrics. 

Not only the electrical property has been investigated but also its correlation on 

chemical and microstructure. Scanning Electron Microscope (SEM), Energy 

Dispersive Microanalysis (EDS) and X-ray difhction (XRD) are used in hundreds 

of applications where knowledge of chemical information on the micro- or nano- 



scale is important. Major users include industry, university research institutes and 

government facilities. Typical applications are in materials research, quality control, 

failure analysis, and forensic science. Industries that commonly use this technique 

include: semi-conductor and electronics, metals, ceramics, minerals, manufacturing, 

engineering, nuclear, paper, petroleum, bio-science, and the motor industry. 

The development in electronic and related industries on dielectric materials has 

pushed researchers to synthesize new materials with good dielectric properties. From 

AB03 perovskite structure (ca. BaTi03) to the modification on the A and B sites, a 

new material with good electrical and mechanical properties has been found. Recent 

work has shown that the substitution on A site with Pb and some modification on B 

site produce a good result on its dielectric and mechanical properties. Many works 

have been reported on the effect of substitution and modification on B site. However 

substitution and modification with aluminium (AI~+) and vanadium (v5+) on B site 

have not been reported yet. In this work, the Pb(AIxV,,)03G ceramic systems has 

been studied and its electrical properties have been characterized. 

1.2 Objective 

The main objectives of this study is to characterize the Pb(A1xVt-x)O~s ceramic 

systems by TGA, XRD, SEM, EDX, dielectric spectrometer and dc conductivity 

measurement. A detail objective of this study was conducted in order to investigate: 




