STRUCTURAL ELECTRICAL AND MAGNETIC PROPERTIES OF LA2/3CA1/3MNO3 PEROVSKITES WITH IN, GA AND AL SUBSTITUTION AT EITHER LA OR CA SITE

ABDULLAH CHIK.

FSAS 2004 32
STRUCTURAL, ELECTRICAL AND MAGNETIC PROPERTIES OF La$_{2/3}$Ca$_{1/3}$MnO$_3$ PEROVSKITES WITH In, Ga and Al SUBSTITUTION AT EITHER La OR Ca SITE

By

ABDULLAH CHIK

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

March 2004
DEDICATIONS

Prof. Dr. Abdul Halim Shaari,
for guidance...

To Prof. Datuk Dr. Mohd Noh Dalimin,
for patience and understanding...

To my wife, Rojita Abdul Hamid, and my two children,
Ahmad Luqman Afiq and Nurul Farzana Aimi
To my mother and father, Hjh. Che Bee Mohd Arshad
and Hj. Chik Hussain
for their love and support...

To Universiti Malaysia Sabah for this opportunity for study leave,
Universiti Putra Malaysia, friends and ex-coursemates!
The structure, electrical and magnetic properties of colossal magnetoresistance material $\text{La}_{2/3}\text{Ca}_{1/3}\text{MnO}_3$ (LCMO) substituted with In, Ga and Al at both La and Ca site have been studied. Samples of $(\text{La}_{1-x}\text{In}_x)_{2/3}\text{Ca}_{1/3}\text{MnO}_3$ (LICMO), $(\text{La}_{1-x}\text{Ga}_x)_{2/3}\text{Ca}_{1/3}\text{MnO}_3$ (LGCMO), $(\text{La}_{1-x}\text{Al}_x)_{2/3}\text{Ca}_{1/3}\text{MnO}_3$ (LACMO), $\text{La}_{2/3}(\text{Ca}_{1-x}\text{In}_x)_{1/3}\text{MnO}_3$ (LCIMO), $\text{La}_{2/3}(\text{Ca}_{1-x}\text{Ga}_x)_{1/3}\text{MnO}_3$ (LCGMO), $\text{La}_{2/3}(\text{Ca}_{1-x}\text{Al}_x)_{1/3}\text{MnO}_3$ (LCAMO) with $x=0.0$ to 1.0 were prepared using solid state reaction method. X-ray diffraction (XRD) patterns shows single phase pattern at low concentration with increasing intensity of secondary phases at high concentration of dopant. All samples except sample LICMO $x=0.6$, exhibit orthorhombic structure. Sample LICMO $x=0.6$ exhibits tetragonal structure. The AC susceptibility studies indicates LICMO, LGCMO, LACMO exhibit wide variety of magnetic phases. For LICMO, LACMO and LGCMO system, ferromagnetic to paramagnetic transition are observed from the undoped sample $x=0.0$ to $0.5, 0.4$ and 0.3 respectively. With further doping at La site, spin glass transition is observed followed by antiferromagnetic to paramagnetic transition with increasing dopant concentration. The Curie temperature, T_C decreases as indium, gallium and aluminum doping increases indicates weakening of
ferromagnetic interactions, but the antiferromagnetic interactions is getting stronger with increasing dopant, resulting spin glass system and antiferromagnetism with further doping concentration. With In, Ga and Al substitution at the Ca site, all samples with the exception of LCIMO $x=1.0$, exhibit ferromagnetic to paramagnetic transition. For LCIMO sample $x=1.0$, AC susceptibility study indicates antiferromagnetic to paramagnetic transition. The electrical properties show the metal to insulator transition and this property is limited to certain doping level for both La and Ca site substitution, i.e. until $x=0.9$ for LICMO, $x=0.8$ for LGCMO, LACMO, LCIMO and LCGMO, and $x=0.5$ for LACMO system. Beyond the specific doping level, the samples become insulator for La site substitution, and semiconducting behaviour for Ca site substitution. This phenomenon is due to the ionic size of dopant for La site substitution, and both ionic size of dopant and decreasing $\text{Mn}^{4+}/\text{Mn}^{3+}$ ratio due to decreasing Ca^{2+} ions. Fitting of adiabatic small polaron hopping model to high temperature $\ln(R/T)$, indicates the activation energies of all samples within range of 0.03eV to 0.17eV which is consistent with reported values in the literature, confirming small polaron hopping activities beyond T_P. Magnetoresistance measurements show that magnetoresistance (MR) ratio is maximum at temperature close to T_P for all samples, and increases with increasing dopant concentration for La site substitution. However, for Ca site substitution, the magnetoresistance’s maximum is not as high as La site substitution, and decreases with increasing dopant concentration for $x > 0.3$, because of the low $\text{Mn}^{4+}/\text{Mn}^{3+}$ ratio that weakened the Zener double exchange interactions and thus the metallic conductivity and ferromagnetism. High MR values are 80% for LICMO sample $x=0.4$, 95% for LGCMO sample $x=0.6$ and 87% for LACMO sample $x=0.2$, compares to 40% of LCMO sample. The Scanning Electron Microscopy (SEM) micrographs indicate
fused and denser grains for all samples. Large abnormal growth is seen only in LICMO for $x=0.1$ and 0.2 samples and increasing level of porosity with increasing dopant is seen for LACMO, LCGMO and LICMO samples. LICMO and LGCMO samples exhibit decreasing level of porosity with increasing substitution while LCAMO system has low level of porosity in all samples.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENCIRIAN STRUKTUR, ELEKTRIK DAN MAGNET BAGI BAHAN
PEROVSKIT La$_{2/3}$Ca$_{1/3}$MnO$_3$ DENGAN PENGGANTIAN In, Ga dan Al PADA
TAPAK La ATAU Ca

Oleh
ABDULLAH CHIK

Mac 2004

Pengerusi : Profesor Abdul Halim bin Shaari, Ph.D.

Fakulti : Sains dan Pengajian Alam Sekitar

Ciri-ciri struktur, elektrik and magnet bahan bermagnetorintangan kolosal La$_{2/3}$Ca$_{1/3}$MnO$_3$ (LCMO), digantikan dengan In, Ga dan Al pada kedua-dua tapak La dan Ca, telah dikaji. Sampel-sampel (La$_{1-x}$In$_x$)$_{2/3}$Ca$_{1/3}$MnO$_3$ (LICMO), (La$_{1-x}$Ga$_x$)$_{2/3}$Ca$_{1/3}$MnO$_3$ (LGCMO), (La$_{1-x}$Al$_x$)$_{2/3}$Ca$_{1/3}$MnO$_3$ (LACMO), La$_{2/3}$(Ca$_{1-x}$In$_x$)$_{1/3}$MnO$_3$ (LCIMO), La$_{2/3}$(Ca$_{1-x}$Ga$_x$)$_{1/3}$MnO$_3$ (LCGMO), La$_{2/3}$(Ca$_{1-x}$Al$_x$)$_{1/3}$MnO$_3$ (LCAMO) dengan x=0.0 ke 1.0 telah disediakan dengan menggunakan kaedah tindakbalas keadaan pepejal. Corak belauan sinar X menunjukkan fasa tunggal pada kepekatan rendah dengan pertambahan keamatan fasa kedua pada kepekatan pendopan yang tinggi. Kesemua sampel-sampel kecuali sampel LICMO x=0.6 mempamerkan struktur ortorombik. Sampel LICMO x=0.6 mempamerkan struktur tetragonal. Kajian kerentanan AC menunjukkan LICMO, LGCMO dan LACMO memperlihatkan pelbagai jenis fasa magnet. Bagi sistem LICMO, LACMO dan LGCMO, peralihan ferromagnet kepada paramagnet masing-masing dicerap daripada sampel x=0.0 ke 0.5, x=0.0 ke 0.4 dan x=0.0 ke 0.3. Dengan pertambahan pendopan di tapak La, peralihan kepada kaca spin dicerap dan diikuti dengan peralihan antiferomagnet kepada paramagnet dengan penambah kepekatan pendopan. Suhu
Curie, T_C mengurang dengan pertambahan pendopan indium, gallium dan aluminum menunjukkan interaksi ferromagnet yang semakin lemah, dan interaksi antiferromagnet yang semakin kuat, lalu melahirkan sistem spin kaca dan antiferromagnet dengan pertambahan kepekatan pendopan. Dengan penggantian In, Ga dan Al pada tapak Ca, kesemua sampel kecuali LCIMO $x=1.0$, menunjukkan peralihan ferromagnet kepada paramagnet. Interaksi ferromagnet masih berlaku dengan pertambahan kepekatan pendopan Al dan Ga walaupun pada kepekatan $x=1.0$. Untuk sampel LCIMO $x=1.0$, kajian kerentanan AC menunjukkan peralihan antiferromagnet kepada paramagnet. Ciri-ciri elektrik menunjukkan peralihan logam kepada penebat dan ciri ini terhad kepada paras pengdopan tertentu bagi kedua-dua penggantian tapak La dan Ca, contohnya, sehingga $x=0.9$ untuk LICMO, $x=0.8$ untuk LGCMO, LACMO, LCIMO dan LCGMO, dan $x=0.5$ untuk sistem LCAMO. Selepas paras pengdopan tersebut, sampel menjadi penebat bagi penggantian tapak La, dan bagi penggantian tapak Ca, sampel-sampel mempamerkan hanya perlakuan semikonduktor. Fenomena ini disebabkan oleh saiz ion pendopan bagi penggantian tapak La, dan kedua-dua saiz ion pendopan dan pengurangan nisbah Mn$^{4+}$/Mn$^{3+}$ disebabkan oleh pengurangan ion-ion Ca$^{2+}$. Lekapan model lompatan polaron kecil adiabatik kepada ln(R/T) pada suhu tinggi, menunjukkan tenaga pengujaan kesemua sampel adalah dalam lingkungan 0.03 eV ke 0.17 eV yang konsisten dengan nilai-nilai dilaporkan dalam literatur, mengesahkan aktiviti lompatan polaron kecil pada suhu melebihi T_P. Penyukatan magnetorintangan menunjukkan nisbah magnetorintangan (MR) adalah maksimum pada suhu menghampiri T_P pada semua sampel, dan bertambah dengan pertambahan kepekatan pendopan pada penggantian tapak La. Walaubagaimanapun, bagi penggantian tapak Ca, megnetorintangan maksima adalah tidak setinggi penggantian pada tapak La, dan berkekurangan.
dengan petambahan kepekatan pendopan $x > 0.3$, kerana nisbah $\text{Mn}^{4+}/\text{Mn}^{3+}$ yang rendah melemahkan interaksi pertukaran ganda dua Zener dan seterusnya konduksi logam dan feromagnet. Nilai MR yang tinggi adalah 80% bagi sampel LICMO $x=0.4$, 95% bagi sampel LGCMO $x=0.6$ dan 87% bagi sampel LACMO $x=0.2$, berbandingkan 40% sampel LCMO. Mikrograf Mikroskop Elektron Imbasan (SEM) menunjukkan butir-butir tercantum dan lebih tumpat untuk kesemua sampel. Pertumbuhan abnormal yang besar kelihatan hanya pada sampel LICMO $x=0.1$ dan 0.2 dan pertambahan paras poros dengan pertambahan pendopan dilihat pada sampel-sampel LACMO, LCGMO dan LCIMO. Sampel-sampel LICMO dan LGCMO mempamerkan penurunan paras poros dengan pertambahan penggantian manakala sistem LCAMO mempunyai paras poros yang rendah bagi semua sampel.
ACKNOWLEDGEMENTS

I would like to express my utmost gratitude and appreciation to my project supervisor, Professor Dr. Abdul Halim Shaari for his patience, supervision, guidance, and discussions. I am also very grateful to my co-supervisor, Professor Dr. Wan Mahmood Mat Yunus and Professor Dr. Mohd Maarof H.A. Mokhsin for their comments and suggestions throughout the research work.

I am also expressing my gratitude to Universiti Malaysia Sabah for granting study leave and scholarship for Ph. D study. I would like to thank Tan Sri Professor Datuk Seri Panglima Dr. Abu Hassan Othman for allowing me to complete my work at Universiti Putra Malaysia. I am also grateful to Professor Datuk Dr. Mohd Noh Dalimin for his guidance and suggestions throughout my study leave.

Sincere thanks to Dr. Lim Kean Pah, Dr. Imad Hamadneh, Mrs Iftetan, Ms. Zohra Gebrel, Mr. K.K.Kabashi, Mrs Sharmiwati and Mr Azman Awang Teh for their assistance in samples preparation method, in using resistivity machine, AC susceptometer, magnetoresistance measurements, X ray diffractometer, furnaces and fruitful discussions. I would like also to thank Mr. Razak Harun for all technical favors.

I wish to thank all staffs of Electron Microscope Unit, Faculty of Bioscience, UPM especially Mr. Raffi, Ms. Aini, and Mrs. Faridah for helping me in operating SEM and taking SEM micrographs.
At last but not least, to my loving wife, Rojita Abdul Hamid, for her understanding, caring and continuous support, and my two darling children, Ahmad Luqman Afiq and Nurul Farzana Aimi of whom I cannot live without.
I certify that an Examination Committee met on 29th March 2004 to conduct the final examination of Abdullah Chik on his Doctor of Philosophy thesis entitled "Structural, Electrical and Magnetic Properties of La$_{2-x}$Ca$_{x}$MnO$_3$ Perovskites with In, Ga and Al Substitution at Either La or Ca Site" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Zainal Abidin Talib, Ph.D.
Associate Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Chairman)

Hishamuddin Zainuddin, Ph.D.
Associate Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

Elias Saion, Ph.D.
Associate Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

Muhammad Yahya, Ph.D.
Director
Center of Academic Advancement
Universiti Kebangsaan Malaysia
(Independent Examiner)

\[Signature\]

Gulam R usul Rahmat Ali, Ph.D.
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 17 Jun 2004
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as partial fulfilment of the requirements for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Abdul Halim Shaari, Ph.D.
Associate Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Chairman)

Hishamuddin Zainuddin, Ph.D.
Associate Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

Elias Saion, Ph.D.
Associate Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

![Signature]

AINI IDERIS, Ph.D.
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: **20 JUL 2004**
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or currently submitted for any other degree at UPM or other institutions.

ABDULLAH CHIK

Date: 07 JUL 2004
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xxvii</td>
</tr>
<tr>
<td>LIST OF ABREVIATIONS / NOTATIONS / GLOSSARY OF TERMS</td>
<td>xxviii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION
 1.1 Colossal Magnetoresistance Phenomenon
 1.2 The Need for CMR Material Research
 1.3 Application of Manganites
 1.4 Objective of the Thesis

2 LITERATURE REVIEW
 2.1 Mixed Valence Manganites
 2.2 Basic Properties
 2.2.1 Crystalline Structure
 2.2.2 Electronic Structure
 2.2.3 Magnetic Properties
 2.2.3.1 Phase Diagram of La_{1-x}Ca_xMnO_3
 2.3 Colossal Magnetoresistance Phenomenon
 2.4 Transport Properties of Manganites
 2.4.1 High Temperature Resistivity
 2.4.2 Low Temperature Resistivity
 2.5 Lattice Effect

3 THEORETICAL MODELS FOR CMR
 3.1 Introduction
 3.2 Magnetic Interaction
 3.2.1 Super Exchange
 3.2.2 Double Exchange
 3.2.3 Semicovalence Exchange
 3.3 Charge Carriers Localizations
 3.3.1 Self Trapping of Carriers
 3.3.2 Charge Transport at Higher Temperatures
 3.3.3 Disorder Induced Localizations

4 SAMPLE PREPARATION AND CHARACTERIZATION
 4.1 Samples Preparation

xiv
5

RESULTS AND DISCUSSION

5.1 Introduction 46

5.2 Effect of In, Ga and Al substitution for La site in La\textsubscript{2/3}Ca\textsubscript{1/3}Mn\textsubscript{3} 47

5.2.1 LICMO System

Structural properties 47
Magnetic properties 49
AC susceptibility analysis of LICMO samples 49
Curie Weiss law analysis of LICMO samples 53
Curie Temperature, T\textsubscript{C}, of LICMO samples 58
Electrical properties 60
Resistance and phase transition temperature, T\textsubscript{P} 60
The dR/dT analysis of LICMO samples 65
Activation energy of LICMO samples 68
Microstructure properties 71
Magnetoresistance properties of LICMO samples 74
Phase diagram for LICMO system 79

5.2.2 LGCMO System

Structural properties 81
Magnetic properties 83
AC susceptibility analysis of LGCMO samples 83
Curie Weiss law analysis of LGCMO samples 86
Curie Temperature, T\textsubscript{C}, of LGCMO samples 89
Electrical Properties 91
Resistance and phase transition temperature, T\textsubscript{P} 91
The dR/dT analysis of LGCMO samples 96
Activation energy of LGCMO samples 99
Microstructure properties 102
Magnetoresistance properties of LGCMO samples 105
Phase diagram for LGCMO system 110

5.2.3 LACMO System

Structural Properties 112
Magnetic Properties 114
AC susceptibility analysis of LACMO samples 114
Curie Weiss law analysis of LACMO samples 117
Curie Temperature, T\textsubscript{C}, of LACMO samples 122
Electrical Properties 123
Resistance and phase transition temperature, T\textsubscript{P} 123
5.3 Effect of In, Ga and Al substitution for Ca site in La$_{2/3}$Ca$_{1/3}$MnO$_3$

5.3.1 LCIMO System

Structural properties
Magnetic properties
AC susceptibility analysis of LCIMO samples
Curie Weiss Law analysis of LCIMO samples
Curie Temperature, T$_C$, of LCIMO samples
Electrical properties
Resistance and phase transition temperature, T$_P$
The dR/dT analysis of LCIMO samples
Activation energy of LCIMO samples
Microstructure properties
Magnetoresistance properties of LCIMO samples
Phase diagram for LCIMO system

5.3.2 LCGMO System

Structural properties
Magnetic properties
AC susceptibility analysis of LCGMO samples
Curie Weiss law analysis of LCGMO samples
Curie temperature, T$_C$, of LCGMO samples
Electrical properties
Resistance and phase transition temperature, T$_P$
The dR/dT analysis of LCGMO samples
Activation energy of LCGMO samples
Microstructure properties
Magnetoresistance properties of LCGMO samples
Phase diagram of LCGMO system

5.3.3 LCAMO System

Structural properties
Magnetic properties
AC susceptibility analysis of LCAMO samples
Curie Weiss Law analysis of LCAMO samples
Curie Temperature, T$_C$, of LCAMO samples
Electrical properties
Resistance and phase transition temperature, T$_P$
The dR/dT analysis of LCAMO samples
Activation energy of LCAMO samples
Microstructure properties
Magnetoresistance properties of LCAMO samples
Phase diagram for LCAMO system

6 COMPARISON AMONG SIX SYSTEMS

6.1 Comparison among La site substitution samples

6.1.1 The phase transition temperature, T$_P$
LIST OF TABLES

<table>
<thead>
<tr>
<th>Tables</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>48</td>
</tr>
<tr>
<td>5.2</td>
<td>58</td>
</tr>
<tr>
<td>5.3</td>
<td>65</td>
</tr>
<tr>
<td>5.4</td>
<td>70</td>
</tr>
<tr>
<td>5.5</td>
<td>82</td>
</tr>
<tr>
<td>5.6</td>
<td>90</td>
</tr>
<tr>
<td>5.7</td>
<td>95</td>
</tr>
<tr>
<td>5.8</td>
<td>101</td>
</tr>
<tr>
<td>5.9</td>
<td>112</td>
</tr>
<tr>
<td>5.10</td>
<td>122</td>
</tr>
<tr>
<td>5.11</td>
<td>127</td>
</tr>
<tr>
<td>5.12</td>
<td>133</td>
</tr>
<tr>
<td>5.13</td>
<td>143</td>
</tr>
<tr>
<td>5.14</td>
<td>153</td>
</tr>
<tr>
<td>5.15</td>
<td>157</td>
</tr>
<tr>
<td>5.16</td>
<td>163</td>
</tr>
<tr>
<td>5.17</td>
<td>174</td>
</tr>
<tr>
<td>5.18</td>
<td>183</td>
</tr>
<tr>
<td>5.19</td>
<td>186</td>
</tr>
</tbody>
</table>

The lattice parameters for LICMO samples \(x=0.0\) to \(x=1.0\).

The magnetic transition temperature and the paramagnetic Curie temperature for LICMO samples \(x=0.0\) to \(x=0.7\).

Phase transition temperature for LICMO system.

Activation energies of LICMO samples by fitting using adiabatic small polaron and thermally activated models.

The lattice parameters for LGCMO samples.

The magnetic transition temperature and the paramagnetic Curie temperature for LGCMO samples \(x=0.0\) to \(x=0.7\).

Phase transition temperature for LGCMO system.

Activation energies of LGCMO samples by fitting using adiabatic small polaron.

The lattice parameters for LACMO samples.

The magnetic transition temperature for LACMO samples \(x=0.0\) to \(x=0.9\).

Phase transition temperature for LACMO system.

Activation energies of LACMO samples by fitting using adiabatic small polaron models.

The lattice parameters for LCIMO samples.

The magnetic transition temperature and the paramagnetic Curie temperature for LCIMO samples \(x=0.0\) to \(x=1.0\).

Phase transition temperature for LCIMO system.

Activation energies of LCIMO samples by fitting using adiabatic small polaron models.

The lattice parameters for LCGMO samples.

The magnetic transition temperature for LCGMO samples \(x=0.0\) to \(x=0.9\).

Phase transition temperature for LCGMO system.
5.20 Activation energies of LGCMO samples by fitting using adiabatic small polaron models.

5.21 The lattice parameters for LCAMO samples.

5.22 The magnetic transition temperature for LACMO samples
x=0.0 to x=0.9.

5.23 Phase transition temperature for LCAMO system.

5.24 Activation energies of LCAMO samples by fitting using adiabatic small polaron models.

A.1 Apparatus uncertainties for this PhD’s project.

B.1 The uncertainties of quantities measured in this PhD’s project.
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figures</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The ideal perovskite structure is cubic $T_{1/3}D_{3/4}MnO_3$</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>(a) The O type orthorhombic GdFeO$_3$ structure. This is the distorted version of the ideal cubic perovskite structure with a buckling of the oxygen octahedral to accommodate smaller A cation. (b) The O' type orthorhombic LaMnO$_3$ structure with a Jahn Teller distortion of the oxygen octahedral.</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>The splitting of crystal field of the five fold degenerate 3d levels in a Mn$^{3+}$ atom.</td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>The schematic illustration of orbital overlap in the perovskite structure.</td>
<td>14</td>
</tr>
<tr>
<td>2.5</td>
<td>Jahn Teller distortion lifting the degeneracy of the 3d orbitals in Mn$^{3+}$.</td>
<td>14</td>
</tr>
<tr>
<td>2.6</td>
<td>Phases diagram for La${1/3}$Ca${1/3}$MnO$_3$. The states shown are antiferromagnetic insulator (AFI), ferromagnetic insulator (FI), ferromagnetic metallic (FM), charge ordered insulating (COI), and antiferromagnetic insulator (AFI).</td>
<td>16</td>
</tr>
<tr>
<td>2.7</td>
<td>(a) Types of antiferromagnetic order in the perovskite structure (b) Spin, charge, and orbital ordering pattern of the CE type observed for manganites with doping level $x=1/2$.</td>
<td>16</td>
</tr>
<tr>
<td>2.8</td>
<td>The temperature dependence of resistivity of La${2/3}$(Pb,Ca)${1/3}$ MnO$_3$ single crystals at various applied magnetic field. Inset shows magnetization in the transition region.</td>
<td>17</td>
</tr>
<tr>
<td>2.9</td>
<td>Phase diagram of temperature versus tolerance factor for $T_{0.7}D_{0.3}MnO_3$ where T is a trivalent ion and D is a divalent ion.</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>Examples of superexchange mechanisms in manganites.</td>
<td>26</td>
</tr>
<tr>
<td>3.2</td>
<td>Double exchange mechanism involving simultaneous transfer of electron from Mn$^{3+}$ to O$^{2-}$ and from O$^{2-}$ to Mn$^{4+}$.</td>
<td>28</td>
</tr>
<tr>
<td>3.3</td>
<td>Semicovalence mechanism involving (a) antiferromagnetic, (b) ferromagnetic interactions between two neighboring Mn ions.</td>
<td>29</td>
</tr>
</tbody>
</table>
A small polaron formed by an electron self trapped by the equilibrium atomic displacement pattern around it.

One-dimensional picture of both magnetic and non magnetic disorder in manganites including Coulomb potential variation (solid line).

Schematics of solid state reaction method for preparing ceramic samples.

Schematic representation of calcinations stage.

Schematic representation of sintering stage.

Schematic representation of magnetoresistance measurement.

The x ray diffractogram for LICMO systems.

The cell volume of LICMO system.

Thermal variation of normalized ac susceptibility for LICMO samples (a) for samples x=0.0 to 0.9, (b) x=0.0 to 0.3, (c) x=0.4 to 0.6, (d) x=0.5, (e) x=0.6 to 0.9.

The inverse of magnetic susceptibility versus temperature for selected (a) x=0.0 to 0.9, (b) x=0.0 to 0.3, (c) x=0.4 to 0.6 (d) x=0.7 to 0.9.

The deviation from the Curie Weiss expression for LICMO samples x=0.0 to x=0.5.

The magnetic transition temperature of LICMO samples.

The temperature dependent normalized resistance of LICMO samples (a) x=0.0 to 0.9, (b) x=0.0 to 0.2, (c) x=0.3 to 0.5, (d) x=0.6 to 0.7, (e) x=0.8 to 0.9.

The In concentration dependence of Tp for LICMO samples.

The dR/dT vs temperature for LICMO systems (a) x=0.0, 0.1, 0.2, (b) x=0.3, x=0.4 x=0.5 (c) x=0.6, x=0.7 (d) x=0.8 to x=0.9.

The fitting of LICMO samples using adiabatic small polaron hopping model.

The activation energies of LICMO samples fitted using small polaron hopping.
5.12 Sample density of LICMO system. 71
5.13 SEM image of the fracture surface of LICMO system. 73
5.14 The temperature variation of magnetoresistance of LICMO samples for applied field 1.0 Tesla at (a) 100K, (b) 150K, (c) 200K, (d) 250K, (e) 300K, (f) 100 to 300K. 78
5.15 The phase diagram of the LICMO system. 80
5.16 The x ray diffractogram for LGCMO system. 81
5.17 The cell volumes of the LGCMO samples. 82
5.18 Thermal variation of normalized ac susceptibility for LGCMO samples (a) for samples x=0.0 to 0.9, (b) x=0.0 to 0.3 (c) x=0.3 to 0.6 (d) x=0.6 to 0.9. 85
5.19 The inverse of magnetic susceptibility versus temperature for (a) x=0.0 to 0.9 (b) x=0.0 to 0.3, (b) x=0.4 to 0.6, (c) x=0.7 to 0.9. 88
5.20 The deviation from the Curie Weiss expression for LGCMO samples x=0.0 to x=0.5. 89
5.21 The Curie temperature, T_{C}, the Neel temperature, T_{N}, freezing temperature, T_{f}, of LGCMO samples. 90
5.22 The temperature variation normalized resistance of LGCMO samples from (a) x=0.0 to 0.8 (b) x=0.0 to 0.2, (c) x=0.3 to 0.5, (d) x=0.6 to 0.8 (e) x=0.8. 94
5.23 The temperature variation of maximum normalized resistance versus Ga concentration x. 96
5.24 The dR/dT vs temperature for LGCMO systems (a) x=0.0, 0.1, (b) x=0.3, x=0.4, (c) x=0.5 and 0.6, (d) x=0.7, (e) x=0.8 99
5.25 The fitting of LGCMO samples using adiabatic small polaron hopping model. 100
5.26 The activation energies for small polaron hopping for LGCMO samples. 101
5.27 Sample density of LGCMO system. 102
5.28 SEM image of the fracture surface of LGCMO system. 104
5.29 The temperature variation of magnetoresistance of LGCMO samples for applied field 1.0 Tesla. 108
5.30 The phase diagram of the LGCMO system. 111
5.31 The x ray diffractogram for LACMO system. 113
5.32 The evolution of cell volumes of the LACMO samples. 114
5.33 Thermal variation of normalized ac susceptibility for LACMO samples (a) for samples x=0.0 to 0.9, (b) samples x=0.0 to 0.3 (c) samples x=0.4 to 0.6, (d) samples x=0.7 to 0.9. 117
5.34 The inverse of magnetic susceptibility versus temperature for selected LACMO samples (a) x=0.0 to 0.1. (b) x=0.2 to 0.6 (c) x=0.7 to 0.9. 120
5.35 The deviation from the Curie Weiss expression for LACMO samples. 121
5.36 The T_M versus Al concentration x for LACMO samples 123
5.37 The temperature variation normalized resistance of LACMO samples from (a) x=0.0 to 0.8, (b) x=0.0 to 0.1, (c) x=0.2 to 0.4, (d) x=0.5 to 0.6, (e) x=0.7, (f) x=0.8. 126
5.38 The phase transition temperature versus Al concentration x for LACMO system. 128
5.39 The dR/dT vs temperature for LACMO systems (a) x=0.0, 0.1, (b) x=0.2, x=0.3, (c) x=0.4 and 0.5, (d) x=0.6, (e) x=0.7to x=0.8 . 131
5.40 The fitting of LACMO samples using adiabatic small polaron hopping model 132
5.41 The activation energies for small polaron hopping for LACMO samples. 133
5.42 Sample density of LACMO system. 134
5.43 SEM image of the fracture surface of LACMO system. 136
5.44 The magnetoresistance of LACMO samples at temperature (a) 100K, (b) 150K, (c) 200K, (d) 250K, (e) 300K, (f) 100K to 300K with applied field 1.0 Tesla. 141
5.45 The phase diagram of the LACMO system. 142
The x ray diffractogram for LCIMO system.

The evolution of cell volumes of the LCIMO samples.

Thermal variation of normalized ac susceptibility for LCIMO samples (a) for samples $x=0.0$ to 1.0, (b) samples $x=0.0$ to 0.4 (c) samples $x=0.5$ to 0.7, (d) samples $x=0.8$ to 1.0.

The inverse of magnetic susceptibility versus temperature for selected LCIMO samples (a) $x=0.0$ to 1.0, (b) $x=0.0$ to 0.3 (c) $x=0.4$ to 0.6 (d) $x=0.7$ to 1.0.

The deviation from the Curie Weiss expression for LCIMO samples.

The Curie temperature, T_C, versus In content x for LCIMO samples.

The temperature variation normalized resistance of LCIMO samples from (a) $x=0.0$ to 1.0, (b) $x=0.0$ to 0.3, (c) $x=0.4$ to 0.6, (d) $x=0.7$ to 1.0.

The phase transition temperature versus In concentration x for LCIMO system.

The dR/dT vs temperature for LCIMO systems (a) $x=0.0$, 0.2, (b) $x=0.3$ to $x=0.5$, (c) $x=0.6$ to 0.9, (d) $x=1.0$.

The plot of $\ln(R/T)$ vs temperature for LCIMO samples.

The activation energies for small polaron hopping for LCIMO samples.

Sample density of LCIMO system.

SEM image of the fracture surface of LCIMO system.

The Applied field variations fo MR% for various temperatures, (a) 100K, (b) 150K, (c) 200K, (d) 250K and (e) 300K.

The temperature variation of magnetoresistance of LCIMO samples for applied field 1.0 Tesla.

The phase diagram of the LCIMO system.

The x ray diffractogram for LCGMO system.

The evolution of cell volumes of the LCGMO samples.