

UNIVERSITI PUTRA MALAYSIA

SYNTHESIS, CHARACTERISATION AND BIOLOGICAL ACTIVITIES OFMIXED-LIGAND COPPER@) COMPLEXES CONTAINING SACCHARIN

THAHIRA BEGUM

FPSK(M) 2005 21

SYNTHESIS, CHARACTERISATION AND BIOLOGICAL ACTIVITIES OF MIXED-LIGAND COPPER(II) COMPLEXES CONTAINING SACCHARIN

By

THAHIRA BEGUM

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

February 2005

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

SYNTHESIS, CHARACTERISATION & BIOLOGICAL ACTIVITIES OF MIXED-LIGAND COPPER(II) COMPLEXES CONTAINING SACCHARIN AS ONE OF THE LIGANDS

By

THAHIRA BEGUM

February 2005

Chairman: Professor Karen A.Crouse, PhD

Faculty: Science

New mixed-ligand copper(II) saccharinate complexes of HNNS Schiff bases of Smethyldithiocarbazate, S-benzyldithiocarbazate, S-2-picolyldithiocarbazate and S-4picolyldithiocarbazate were synthesized by reacting $[Cu(sac)_2(H_2O)_4]^2H_2O$ with the appropriate Schiff bases in water-ethanol-methanol mixtures. These complexes were characterized by elemental analysis, conductance, magnetic susceptibility, IR and electronic spectroscopic measurements. Magnetic and spectral results for the complexes support either a four or five-coordinate geometry in which the Schiff bases coordinate as NNS tridentate ligands and the saccharinate anion coordinates as a unidentate N-donor ligand. X-ray crystallographic structural analysis of the copper(II)saccharinate complex of S-methyl- β -N-(6-methylpyrid-2-yl)methylenedithiocarbazate shows that the complex has a distorted square-pyramidal structure in which the Schiff base is coordinated to the copper ion as a tridentate NNS chelating agent *via* the pyridine nitrogen atom, the azomethine nitrogen atom and the thiolate sulphur atom. The fourth and fifth coordination positions of the five-coordinate Cu(II) ion are occupied by the imino

nitrogen of the saccharinate anion and oxygen atom of the aqua ligand. X-ray crystallographic structural analysis of the copper(II)saccharinate complex of S-benzyl-β-N-(2-acetylpyridyl)methylenedithiocarbazate shows that this complex has a distorted square-planar structure in which the Schiff base is also coordinated to the copper ion as a tridentate NNS chelating agent with the fourth coordination position of the four-coordinate Cu(II) ion being occupied by the imino nitrogen of the saccharinate anion. The complexes have been evaluated for their biological activities against seven pathogenic microbials and three cancer cell lines, HL-60 (Human myeloid leukemic cells), MCF-7 (Human breast carcinoma cells with positive estrogen receptor) and Caov-3 (Human ovarian adenocarcinoma cancer cells). Most of the complexes exhibit marked cytotoxicity against the cell lines and display moderate activity against pathogenic bacteria and fungi.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia bagi memenuhi keperluan Ijazah Master Sains

SINTESIS, PENCIRIAN DAN AKTIVITI BIOLOGI BAGI KOMPLEKS KUPRUM(II) BERLIGAN CAMPURAN YANG MENGANDUNGI SAKARIN SEBAGAI SALAH SATU LIGAN

Oleh:

THAHIRA BEGUM

Februari 2005

Pengerusi: Profesor Karen A.Crouse, PhD

Fakulti: Sains

Kompleks kuprum(II) sakarinat baru yang mengandungi bes Schiff S-metilditiokarbazat, S-benzilditiokarbazat, S-2-pikolilditiokarbazat serta S-4-pikolilditiokarbazat telah disintesiskan melalui tindak balas diantara [Cu(sac)₂(H₂O)₄] 2H₂O dengan bes Schiff yang sesuai dalam pelarut campuran air-etanol-metanol. Kompleks ini telah dicirikan melalui analisis unsur dan konduktiviti, kerentanan magnetik, pengukuran spektroskopi elektronik dan IR. Kebanyakan komplex didapati berkoordinatan empat atau lima. Ini dibuktikan melalui nilai kerentanan magnetik dan spektra yang diperolehi. Bes Schiff berkoordinat sebagai ligan tridentat NNS dan ion sakarin berkoordinat sebagai ligan Npenderma unidentat. Analisis struktur hablur sinar X menunjukkan bahawa kompleks kuprum(II) sakarinat bes Schiff S-metil- β -N-(6-metilpirid-2-il) berstruktur piramid segiempat terherot di mana bes Schiff terkoordinat kepada ion kuprum sebagai agen kelat tridentat NNS melalui atom nitrogen piridin, atom nitrogen azometin dan atom sulfur

tiolat. Ligan yang keempat ialah ion sakarinat yang terkoordinat melalui nitrogen imino. Manakala kompleks yang terkoordinat lima, ligan yang kelima ialah air. Analisis struktur hablur sinar X bagi kompleks kuprum(II) sakarinat bes Schiff S-benzil-β-N-(2asetilpirid-2-il)metilinditiokarbazat menunjukkan bahawa kompleks ini mempunyai struktur segiempat planar terherot dimana bes Schiffnya juga terkoordinat kepada ion kuprum sebagai agen kelat tridentat NNS. Pengkoordinatan yang ke empat bagi ion kuprum(II) diduduki oleh nitrogen imino daripada anion sakarinat. Tujuh patogen mikrob terpilih dan tiga jenis sel kanser, [HL-60 (Sel leukemia myeloid), MCF-7 (Sel kanser payudara dengan reseptor estrogen positif) dan Caov-3 (sel kanser ovari adenocarcinoma)] telah digunakan untuk menilai keaktifan biologi. Kebanyakan kompleks tersebut menunjukkan tanda positif sitotoksik terhadap sel kanser dan menunjukkan keaktifan keatas bakteria dan fungi.

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude and appreciation to my supervisor, Prof. Karen A.Crouse and co-supervisor Dr.Mohamed Ibrahim Mohamed Tahir for their constant help and for all the advice, suggestions and morale booster talks during the course of my work. Many thanks also for all those after-lab activities that we enjoyed. To Dr Akbar Ali, Universiti Brunei Darussalam, mere thanks is not enough. I am indeed lucky to have you as one of my mentors. I am also indebted to the staff of the Chemistry Department of UPM for helping me with the various analyses of my samples.

To the Organometallica group (Teng Jin, Kar Beng, Eddy, Mat,Liza & Fiona) you guys are the best!! I'll never forget all the fun we had, both in the lab and outside. The trips to Penang, Kelantan and Port Dickson will be forever imprinted in my mind as part of the sweet memories in Malaysia. Special thanks to Teng Jin for all those car rides during the semester breaks and all the gruff advice that meant so much to me although I pretended that it just flew over my head⁽²⁾. Thanks also goes to Mat and Eddy for running the cytotoxic tests on my complexes, and Fiona and Liza for running the antimicrobial tests on my complexes.

To my family-without your support and encouragement, I would have never made it. To my father and mother, thank you for always wishing me the best and encouraging me, even when I have trouble believing in myself at times. To my sisters, Abidha – your advice and practical way of seeing things often pulled my feet back on the ground and made me realize my goals and ambitions. You're a great source of inspiration to me. To Husna, your wackiness often kept me from going mad over the little pitfalls I had during the course of my work. To Sharifa, for being so sweet and for making me smile. To Dhekra from Yemen, thank you so much for being the best friend I ever had in Malaysia. We went through a lot together. I will never forget you. Last, but certainly not least, I would like to thank Pradeep, my best friend, for being there for me, both physically and emotionally and for encouraging me to be the best I can be, and for wishing good things for me always. It means a lot to me. Thank you.

I certify that an Examination Committee met on 25th February 2005 to conduct the final examination of Thahira Begum on her Master of Science thesis entitled "Synthesis, Characterisation and Biological Activities of Mixed-Ligand Copper (II) Complexes Containing Saccharin" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Mohd Basyaruddin Abdul Rahman, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Sidik Silong, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Mohd Zaizi Desa, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Hapipah Mohd Ali, PhD

Associate Professor Faculty of Science Universiti Malaya (External Examiner)

GULAM RUSUL RAMMAT ALI, PhD Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 19 MAY 2005

The thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Karen A.Crouse, PhD

Professor Faculty of Science Universiti Putra Malaysia (Chairperson)

Mohamed Ibrahim Mohamed Tahir, D.Phil.

Lecturer Faculty of Science Universiti Putra Malaysia (Member)

eij

AINI IDERIS, PhD Professor/Dean School of Graduate Studies Universiti Putra Malaysia

Date: 0 9 JUN 2005

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or any other institution.

Muanirabegun THAHIRA BEGUM

Date: 18 05. 2005

TABLE OF CONTENTS

Page

ABSTRACT	2
ABSTRAK	4
ACKNOWLEDGEMENTS	6
APPROVAL	7
DECLARATION	9
LIST OF ABBREVIATIONS	13
LIST OF TABLES	16
LIST OF FIGURES	17
EQUATIONS	22

CHAPTER

Ι	INTRODUCTION	23
	Saccharin - Structure and Historical Background	23
	Metal-Saccharinate Complexes - Their Biological Relevance	26
	Properties Associated with Sulphur and Nitrogen as Donor Ligands	28
	Cytotoxicity of Some Sulphur-Nitrogen Ligands and	
	Their Metal Complexes	29
	OBJECTIVES	32
II	LITERATURE REVIEW	33
	Coordination Chemistry of the Saccharinate Anion in Various	
	Transition-Metal Complexes	33
	Coordination Chemistry and Bioactivities of Tridentate	
	NNS Schiff Bases and Their Metal Complexes	43
III	MATERIALS AND METHODS	49
	Chemicals	49
	Preparation of Ligands	
	S-benzyldithiocarbazate	50
	S-methyldithiocarbazate	50
	S-2-picolyldithiocarbazate	51
	S-4 - picolyldithiocarbazate	52
	Preparation of Schiff Bases	53
	S-R-β-N-(2-pyridyl)dithiocarbazate	
	(R= benzyl or methyl or S-2-picolyl or S-4-picolyl)	53

S-R-β-N-(6-methylpyrid-2-yl)dithiocarbazate	
(R=benzyl or methyl or S-2-picolyl or S-4-picolyl)	53
S-R-β-N-(Di-2-pyridylketone)dithiocarbazate	
(R= benzyl or methyl or S-2-picolyl or S-4-picolyl)	54
S-R-β-N-(2-acetylpyridyl)dithiocarbazate	
(R= benzyl or methyl or S-2-picolyl or S-4-picolyl)	54
S-R-β-N-(2-benzoylpyridyl)dithiocarbazate	
(R= benzyl/methyl/S-2-picolyl/ S-4-picolyl)	55
Preparation of $[Cu(sac)_2(H_2O)_4]$. $2H_2O$	55
Preparation of [Cu(sac)(NNS)] Complexes	56
General Preparation of [Cu(S2P-2)(sac)] and [Cu(S2P-4)(sac)]	56
Physical Measurements and Elemental Analyses	57
Melting Points	57
CHNS Analyses	57
Determination of Metal Content	57
Conductivity Measurements	58
Magnetic Susceptibility Measurements	58
Ultraviolet/ Visible(UV/Vis) Spectra	58
Fourier Transform-Infrared (FT-IR) Spectra	59
Single Crystal Structure Determination	59
Determination of Biological Activity	60
Qualitative Antimicrobial Assay	60
Quantitative Antimicrobial Assay	61
Culture of Cells and Cytotoxic Assay	61
RESULTS AND DISCUSSION	62
Microanalytical Data for the Conner(II) Saccharinate Complexes	64
Molar Conductance and Magnetic Data for the	01
Conner(II) Saccharinate Complexes	66
Electronic Spectral Data for the HNNS Schiff Bases	00
and Their Copper(II) Saccharinate Complexes	70
Fourier-Transform Infrared Data for the HNNS Schiff Bases	
and Their Copper(II) Saccharinate Complexes	77
X ray Crystallographic Analysis of [Cu(SM-2)(sac)(H ₂ O)]	
and [Cu(SB-4)(sac)]	87
X-ray Crystal Structure of the [Cu(SM-2)(sac)(H ₂ O)]	
Complex	87
X-ray Crystal Structure of the [Cu(SB-4)(sac)] Complex	92
Biological Activities	99
Qualitative Antimicrobial Activities of the HNNS Schiff	
Bases and Their Copper(II) Saccharinate Complexes	99
Quantitative Antimicrobial Activities of the HNNS Schiff	
Bases and Their Copper(II) Saccharinate Complexes	108
Cytotoxic Activities of the HNNS Schiff Bases and	
Their Copper(II) Saccharinate Complexes	110

IV

V	CONCLUSION	116
	BIBLIOGRAPHY	118
	APPENDICES	125
	BIODATA OF THE AUTHOR	162

LIST OF ABBREVIATIONS

sac	Saccharinate	anion

1D	One-dimensional
FT-IR	Fourier-transform Infrared
B.M	Bohr magneton
LMCT	Ligand to metal charge transfer
MLCT	Metal to ligand charge transfer
DMSO	Dimethylsulphoxide
CD ₅₀	Cytotoxic Dose at 50%
DNA	Deoxyribonucleic acid
HL-60	Human myeloid leukemic cells
MCF-7	Human breast carcinoma cells with positive estrogen receptor
Caov-3	Human ovarian adenocarcinoma cancer cells
CHNS	Carbon,Hydrogen, Nitrogen & Sulphur
NNS	Nitrogen-nitrogen-sulphur
UV/Vis	Ultraviolet/ Visible Spectroscopy
L	Ligand
Вру	Bipyridine
PPh ₃	Triphenylphosphine
Ap-SBz	2-acetylpyridine Schiff base of S-benzyldithiocarbazate
HSB-1	S-benzyl- β -N-(pyridine-2-yl)methylenedithiocarbazate.
HSB-2	S-benzyl- β -N-(6-methylpyrid-2-yl)methylenedithiocarbazate.

- HSB-3 S-benzyl- β -N-(di-2-pyridylketone)methylenedithiocarbazate.
- HSB-4 S-benzyl- β -N-(2-acetylpyridyl)methylenedithiocarbazate.
- HSB-5 S-benzyl- β -N-(2-benzoylpyridyl)methylenedithiocarbazate.
- HSM-2 S-methyl- β -N-(6-methylpyrid-2-yl)methylenedithiocarbazate.
- HSM-3 S-methyl- β -N-(di-2-pyridylketone)methylenedithiocarbazate.
- HSM-4 S-methyl- β -N-(2-acetylpyridyl)methylenedithiocarbazate.
- HSM-5 S-methyl- β -N-(2-benzoylpyridyl)methylenedithiocarbazate.
- HS2P-1 S-2-picolyl-β-N-(pyridine-2-yl)methylenedithiocarbazate.
- HS2P-3 S-2-picolyl- β -N-(di-2-pyridylketone)methylenedithiocarbazate.
- $HS2P-5 \qquad S-2-picolyl-\beta-N-(2-benzoylpyridyl) methylenedithiocarbazate.$
- HS4P-1 S-4-picolyl-β-N-(pyridine-2-yl)methylenedithiocarbazate.
- HS4P-2 S-4-picolyl- β -N-(6-methylpyrid2-yl)methylenedithiocarbazate.
- HS4P-3 S-4-picolyl- β -N-(Di-2-pyridylketone)methylenedithiocarbazate.
- HS4P-4 S-4-picolyl- β -N-(2-acetylpyridyl)methylenedithiocarbazate.
- HS4P-5 S-4-picolyl- β -N-(2-benzoylpyridyl)methylenedithiocarbazate.
- [Cu(SB-1)(sac)] Copper(II) Saccharinate Complex of S-benzyl-β-N-(pyridine-2yl)methylenedithiocarbazate
- [Cu(SB-2)(sac)] Copper(II) Saccharinate Complex of S-benzyl-β-N-(6methylpyrid-2-yl)methylenedithiocarbazate
- [Cu(SB-3)(sac)] Copper(II) Saccharinate Complex of S-benzyl-β-N-(di-2pyridylketone) methylenedithiocarbazate
- [Cu(SB-4)(sac)] Copper(II) Saccharinate Complex of S-benzyl-β-N-(2acetylpyridyl)methylenedithiocarbazate
- [Cu(SB-5)(sac)] Copper(II) Saccharinate Complex of S-benzyl-β-N-(2benzoylpyridyl)methylenedithiocarbazate

[Cu(SM-2)(sac)]	$Copper(II) Saccharinate Complex of S-methyl-\beta-N-(6-methylpyrid-2-yl) methylenedithiocarbazate$
[Cu(SM-3)(sac)]	Copper(II) Saccharinate Complex of S-methyl- β -N-(di-2-pyridylketone)methylenedithiocarbazate
[Cu(SM-4)(sac)]	Copper(II) Saccharinate Complex of S-methyl- β -N-(2-acetylpyridyl)methylenedithiocarbazate
[Cu(SM-5)(sac)]	$Copper(II) Saccharinate Complex of S-methyl-\beta-N-(2-benzoylpyridyl) methylenedithiocarbazate$
[Cu(S2P-1)(sac)]	Copper(II) Saccharinate Complex of S-2-picolyl- β -N-(pyridine-2-yl)methylenedithiocarbazate
[Cu(S2P-2)(sac)]	Copper(II) Saccharinate Complex of S-2-picolyl- β -N-(6-methylpyrid-2-yl)methylenedithiocarbazate
[Cu(S2P-3)(sac)]	$Copper(II) Saccharinate Complex of S-2-picolyl-\beta-N-(di-2-pyridylketone) methylenedithiocarbazate$
[Cu(S2P-4)(sac)]	$Copper(II) Saccharinate Complex of S-2-picolyl-\beta-N-(2-acetylpyridyl) methylenedithiocarbazate$
[Cu(S2P-5)(sac)]	$Copper(II) Saccharinate Complex of S-2-picolyl-\beta-N-(2-benzoylpyridyl) methylenedithiocarbazate$
[Cu(S4P-1)(sac)]	Copper(II) Saccharinate Complex of S-4-picolyl- β -N-(pyridine-2-yl)methylenedithiocarbazate
[Cu(S4P-2)(sac)]	Copper(II) Saccharinate Complex of S-4-picolyl- β -N-(6-methylpyrid-2-yl)methylenedithiocarbazate
[Cu(S4P-3)(sac)]	Copper(II) Saccharinate Complex of S-4-picolyl- β -N-(di-2-pyridylketone)methylenedithiocarbazate
[Cu(S4P-4)(sac)]	Copper(II) Saccharinate Complex of S-4-picolyl- β -N-(2-acetylpyridyl)methylenedithiocarbazate
[Cu(S4P-5)(sac)]	$Copper(II) Saccharinate Complex of S-4-picolyl-\beta-N-(2-benzoylpyridyl) methylenedithiocarbazate$
$[Cu(sac)_2(OH_2)_4].2H_2$	O Copper(II) Saccharinate

LIST OF TABLES

Table		Page
1	Microanalytical Data for the Copper(II) Saccharinate Complexes	64
2	Molar Conductance and Magnetic Data of the Copper(II) Saccharinate Complexes	69
3	Electronic Spectral Data for the HNNS Schiff Bases and Their Copper(II) Saccharinate Complexes	73
4	FT-IR Data for the HNNS Schiff Bases and their Copper(II) Saccharinate Complexes	81
5	Crystallographic Data and Structure Refinement Details for [Cu(SM-2)(sac)(H ₂ O)]	89
6	Selected Bond Lengths (Å) and Bond Angles for Cu(SM-2)(sac)(H ₂ O)]	90
7	Crystallographic Data and Structure Refinement Details for [Cu(SB-4)(sac)]	94
8	Selected Bond Lengths (Å) and Bond Angles for [Cu(SB-4)(sac)]	95
9	Comparison of Bond Lengths in Some Copper(II) Saccharinate Complexes	97
10	Qualitative Antimicrobial Assay	105
11	Quantitative Antimicrobial Assay (MIC value, µg ml ⁻³)	109
12	Cytotoxic Activities of the Schiff Bases and Their Copper(II) Saccharinate Complexes	114

LIST OF FIGURES

Figure		Page
1	Structure of Saccharin	23
2	Structure of Pyridine-2-carboxaldehyde Thiosemicarbazone	29
3	Structure of Kethoxal(bis)thiosemicarbazone	30
4	Structure of the Saccharinate Anion	33
5	Structure of $[Cu(C_7H_4NO_3S)_2(H_2O)_4]$	34
, 6	Reaction Scheme of the Copper(II) Complexes with Saccharin and the Auxiliary Ligands H ₂ O, PPh ₃ and NH ₃	36
7	ORTEP Diagram of [CuL(sac)(H ₂ O)].0.5 H ₂ O	38
8	ORTEP Diagram of [CuL(bpy)](sac).2H ₂ O	38
9	General Structure of the Pyridine-2-carboxaldehyde Schiff Base of S-Methyldithiocarbazate and 6-Methyl-2-pyridinecarbaldehyde thiosemicarbazone	39
10	Thioketo Form of Pyridine-2-carboxaldehyde Schiff Base of SBDT	C 43
11	Thiol Form of Pyridine-2-carboxaldehyde Schiff Base of SBDTC	43
12	ORTEP Diagram of [Cu(Ap-SBz)(NO ₃)]	45
13	ORTEP Diagram of [Cu(NNS) ₂]	47
14	Thione-Thiol Tautomerism of the HNNS Schiff Bases	63
15	Expected Structures for the Copper(II) Saccharinate Complexes	63
16	Structure of the Copper(II) Saccharinate Complex of Nicotinamide	68
17	Electronic Spectrum of HSB-4	75
18	Electronic Spectrum of [Cu(SB-4)(sac)]	75
19	d-d Transition of [Cu(SB-4)(sac)]	75
20	Electronic Spectrum of HSM-2	76
21	Electronic Spectrum of[Cu(SM-2)(sac)(H ₂ O)]	76
22	d-d Transition of [Cu(SM- 2)(sac)(H ₂ O)]	76
23	Coordination Sites of the HNNS Schiff Bases	77
24	FT-IR Spectrum of HSB-4	85
25	FT-IR Spectrum of [Cu(SB-4)(sac)]	85

26	FT-IR Spectrum of HSM-2	86
27	FT-IR Spectrum of [Cu(SM-2)(sac)(H ₂ O)]	86
28	ORTEP Diagram of $C_{16}H_{14}N_4S_3O_4Cu$ (with 50% probability displacement ellipsoids) with atomic numbering scheme.	91
29	ORTEP Diagram of $C_{22}H_{18}CuN_4O_3S_3$ (with 50% probability displacement ellipsoids) with atomic numbering scheme.	96

APPENDIX A

A1	Electronic Spectrum of HSB-1	125
A2	Electronic Spectrum of [Cu(SB-1)(sac)]	125
A3	View of d-d Transition of [Cu(SB-1)(sac)]	126
A4	Electronic Spectrum of HSB-2	127
A5	Electronic Spectrum of [Cu(SB-2)(sac)]	127
A6	View of d-d transition of [Cu(SB-2)(sac)]	127
A7	Electronic Spectrum of HSB-3	128
A8	Electronic Spectrum of [Cu(SB-3)(sac)]	128
A9	View of d-d Transition of [Cu(SB-3)(sac)]	128
A10	Electronic Spectrum of HSB-4	129
A11	Electronic Spectrum of [Cu(SB-4)(sac)]	129
A12	View of d-d Transition of [Cu(SB-4)(sac)]	129
A13	Electronic Spectrum of HSB-5	130
A14	Electronic Spectrum of [Cu(SB-5)(sac)]	130
A15	View of d-d Transition of [Cu(SB-5)(sac)]	130
A16	Electronic Spectrum of HSM-2	131
A17	Electronic Spectrum of [Cu(SM-2)(sac)]	131
A18	View of d-d Transition of [Cu(SM-2)(sac)]	131
A19	Electronic Spectrum of HSM-3	132
A20	Electronic Spectrum of [Cu(SM-3)(sac)]	132
A21	View of d-d Transition of [Cu(SM-3)(sac)]	132
A22	Electronic Spectrum of HSM-4	133
A23	Electronic Spectrum of [Cu(SM-4)(sac)]	133
A24	View of d-d Transition of [Cu(SM-4)(sac)]	133
A25	Electronic Spectrum of HSM-5	134
A26	Electronic Spectrum of [Cu(SM-5)(sac)]	134
A27	View of d-d Transition of [Cu(SM-5)(sac)]	134
A28	Electronic Spectrum of HS2P-1	135
A29	Electronic Spectrum of [Cu(S2P-1)(sac)]	135
A30	Electronic Spectrum of [Cu(S2P-2)(sac)]	136

A31	Electronic Spectrum of HS2P-3	137
A32	Electronic Spectrum of [Cu(S2P-3)(sac)]	137
A33	View of d-d Transition of [Cu(S2P-3)(sac)]	137
A34	Electronic Spectrum of [Cu(S2P-4)(sac)]	136
A35	Electronic Spectrum of HS2P-5	138
A36	Electronic Spectrum of [Cu(S2P-5)(sac)]	138
A37	View of d-d Transition of [Cu(S2P-5)(sac)]	138
A38	Electronic Spectrum of HS4P-1	139
, A39	Electronic Spectrum of [Cu(S4P-1)(sac)]	139
A40	Electronic Spectrum of HS4P-2	140
A41	Electronic Spectrum of [Cu(S4P-2)(sac)]	140
A42	View of d-d Transition of [Cu(S4P-2)(sac)]	140
A43	Electronic Spectrum of HS4P-3	141
A44	Electronic Spectrum of [Cu(S4P-3)(sac)]	141
A45	Electronic Spectrum of HS4P-4	142
A46	Electronic Spectrum of [Cu(S4P-4)(sac)]	142
A47	Electronic Spectrum of HS4P-5	143
A48	Electronic Spectrum of [Cu(S4P-5)(sac)]	143
A49	View of d-d Transition of [Cu(S4P-5)(sac)]	143

APPENDIX B

B1	FT-IR Spectrum of HSB-1	144
B2	FT-IR Spectrum of [Cu(SB-1)(sac)]	144
B3	FT-IR Spectrum of HSB-2	145
B4	FT-IR Spectrum of [Cu(SB-2)(sac)]	145
B5	FT-IR Spectrum of HSB-3	146
B6	FT-IR Spectrum of [Cu(SB-3)(sac)]	146
B7	FT-IR Spectrum of HSB-4	147
B8	FT-IR Spectrum of [Cu(SB-4)(sac)]	147

.

B9	FT-IR Spectrum of HSB-5	148
B10	FT-IR Spectrum of [Cu(SB-5)(sac)]	148
B11	FT-IR Spectrum of HSM-2	149
B12	FT-IR Spectrum of [Cu(SM-2)(sac)]	149
B13	FT-IR Spectrum of HSM-3	150
B14	FT-IR Spectrum of [Cu(SM-3)(sac)]	150
B15	FT-IR Spectrum of HSM-4	151
B16	FT-IR Spectrum of [Cu(SM-4)(sac)]	151
B17	FT-IR Spectrum of HSM-5	152
B18	FT-IR Spectrum of [Cu(SM-5)(sac)]	152
B19	FT-IR Spectrum of HS2P-1	153
B20	FT-IR Spectrum of [Cu(S2P-1)(sac)]	153
B21	FT-IR Spectrum of [Cu(S2P-2)(sac)]	154
B22	FT-IR Spectrum of HS2P-3	155
B23	FT-IR Spectrum of [Cu(S2P-3)(sac)]	155
B24	FT-IR Spectrum of [Cu(S2P-4)(sac)]	154
B25	FT-IR Spectrum of HS2P-5	156
B26	FT-IR Spectrum of [Cu(S2P-5)(sac)]	156
B27	FT-IR Spectrum of HS4P-1	157
B28	FT-IR Spectrum of [Cu(S4P-1)(sac)]	157
B29	FT-IR Spectrum of HS4P-2	158
B30	FT-IR Spectrum of [Cu(S4P-2)(sac)]	158
B31	FT-IR Spectrum of HS4P-3	159
B32	FT-IR Spectrum of [Cu(S4P-3)(sac)]	159
B33	FT-IR Spectrum of HS4P-4	160
B34	FT-IR Spectrum of [Cu(S4P-4)(sac)]	160
B35	FT-IR Spectrum of HS4P-5	161
B36	FT-IR Spectrum of [Cu(S4P-5)(sac)]	161

EQUATIONS

No.	P	age
1	$[ML^{-}Cl] + DMSO^{}[ML(DMSO)]^{+} + Cl^{-}$	48
	[M=Ni(II), Cu(II), Zn(II) and Sn(II), L= NNS]	
2	$[M'(NNS)Cl_2 H_2O] +3DMSO \longrightarrow [M'(NNS)(DMSO)_3]^{2+} + 2 Cl^2 + H_2O$	48
	[M' = Cr(III), Sb(III)]	

CHAPTER I

INTRODUCTION

Saccharin - Structure and Historical Background

The structure of saccharin (sac), 1,2-benzisothiazoline-3-(2H)one 1,1-dioxide or osulphobenzoimide is shown in Figure 1.

Figure 1: Structure of Saccharin

Saccharin is the world's oldest low-calorie sweetener and is 500 times as sweet as sugar. It was discovered in 1879 by researchers lead by Prof. Ira Remsen at John Hopkins University. Initially, consumption of saccharin was primarily confined to diabetics who could then enjoy sweetened foods without the extra calories, or glucose reaction associated with many sweeteners (Watkins(a), 2004). Subsequently, because of sugar rationing during the World Wars, a strong need for a sugar substitute both in the U.S and Europe developed and this need was met by saccharin. Even after World War II, saccharin continued to be used as a popular alternative to sugar, as people's interest in weight control developed. Its usefulness remained significant until the 1970s. Due to the synergistic and functional properties of saccharin, and its low cost, it remains a valuable

low-calorie sweetener today. Saccharin continues to be important for a wide range of low-calorie and sugar-free food and beverage applications (Watkins(a), 2004).

Saccharin has been the subject of extensive scientific research. It is one of the most studied food ingredients. Although evidence indicates that saccharin is safe for human consumption, there has been controversy over its safety. The basis for the controversy was the indication of the development of bladder tumors in male rats fed high doses of sodium saccharinate. Consequently, a ban was imposed on saccharin and its usage, although the male rats used in the study were fed the human equivalent of the sodium saccharinate in hundreds of cans of diet soft drink a day for a lifetime (Watkins(b),2004). However, extensive research on human populations has established no association between saccharin and cancer even at consumption levels above that of the average user of less than one ounce of the sweetener each year (Watkins(c), 2004).

The scientific data supporting safety of saccharin include the following:

1. Extensive research on human populations has established no association between saccharin and cancer. More than 30 human studies have been completed and indicate saccharin's safety at human levels of consumption.

2. In fourteen single-general animal studies involving several species of animals, saccharin was not shown to induce cancer in any organ, even at exceptionally high doses.

