GEOTECHNICAL BEHAVIOR OF SHELL FOOTINGS

By

ADEL AHMED AL-RAZIQI

Thesis Submitted to the School of Graduate Studies, University Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

October 2006
TO MY PARENTS, WIFE, SONS, BROTHERS AND SISTERS
Abstract of thesis presented to Senate of University Putra Malaysia in fulfilment of the requirement for the degree of Doctoral of Philosophy

GEOTECHNICAL BEHAVIOR OF SHELL FOOTINGS

By

ADEL AHMED AL-RAZIQI

October 2006

Chairman: Professor Bujang Kim Huat, PhD

Faculty : Engineering

Shell foundations have been considered as the best shallow foundations for transferring heavy load to weak soils, where a conventional shallow foundation undergoes excessive settlement. Due to its economic competitiveness or advantage in areas having high material-to-labor cost ratio, using shell foundations as an alternative to conventional foundations have gained acceptance or adoption in many countries. As it is not economical to study experimentally the geotechnical behaviour of various types of shell footing with different variables, an attempt was made to propose a 2-D non-linear finite element (FE) model by using a commercially available package to assess the geotechnical behaviour of shell footings. Due to configuration complexity of isolated pyramidal and conical shell footings, 3-D non-linear FE models have been proposed. Full-scale tests on shell footings under vertical load were judiciously planned to validate the proposed FE models for modified triangular strip shell footings. Present study also developed equation to estimate the ultimate bearing capacity of inverted triangular shell footings.
2-D and 3-D FE finite element (FE) models for different types of shell footings namely flat footings, triangular strip shell footings, inverted triangular strip shell footings, conical shell footing and pyramidal shell footings have been developed. Elasto-plastic behaviours of soil and foundation have been modelled by Drucker-Prager yield criterion and modified Von Mises Criterion. Comparative study between the proposed FE models and published data has been conducted on different existing types of strip shell footings. An experimental work on field has been conducted to study the real behaviour of the proposed shell footings (inverted triangular strip shell footings, triangular strip shell footing and flat footing) under the effects of load transferred from double story residential house. A theoretical model to predict the ultimate bearing capacity equation of the proposed inverted triangular strip shell footings has been developed using theoretical derivations and rupture surface obtained from the FE results.

Based on 2-D and 3-D results obtained, a modified shell footings (inverted triangular strip shell footings) has been proposed and found to be 15 % higher load carrying capacity compared to triangular shell footings. Results also showed that pyramidal shell footings have higher load carrying capacity by 20 % compared to the conical shell footings. The field test results showed that contact pressure of inverted triangular strip shell footings have better distributions when compared to triangular strip shell footings. The stress caused by inverted shell was 20% less than that obtained for triangular shell. An equation for predicting the ultimate bearing capacity of inverted triangular shell footings has been developed. The obtained results have been found in good agreement between FE simulations and field test results.

The results of this study suggest that shell footings should come into wider use in the geotechnical field as a serious alternative to shallow and even deep foundations.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KELAKUAN GEOTEKNIK ASAS SHELL

Oleh

ADEL AHMED AL-RAZIQI

Oktober 2006

Pengerusi: Profesor Bujang Kim Huat, PhD

Fakulti : Kejuruteraan

Asas shell didapati asas cetek yang terbaik bagi mengagihkan beban yang tinggi melalui tanah yang lemah, dimana asas cetek yang sedia ada selalunya mengalami mendapan yang berlebihan. Kawasan yang mempunyai persaingan ekonomi yang disebabkan oleh nisbah bahan kepada buruh yang tinggi, penggunaan asas shell telah diterima di kebanyakan negara sebagai alternatif kepada asas yang biasa digunakan. Oleh kerana tidak praktikal dan ekonomi untuk mengkaji kelakuan geoteknik asas shell yang berlainan jenis disamping variasi yang berlainan maka cubaan dengan menggunakan model unsur terhingga yang tak lurus (non-linear finite element-FEM) yang ada dipasaran telah digunakan untuk mengguji kelakuan geoteknik asas shell dengan darjah ketepatan yang munasabah. Ujian berskala penuh untuk asas shell dibawah beban paksi yang dirancang dengan bijak untuk menyokong model unsur terhingga yang disaran bagi asas shell jalur segitiga terubahsuai. Kajian semasa juga telah dibangunkan untuk menganggar keupanggal galas muktamad asas shell segitiga terbalik.

Model 2-D dan 3-D unsur terhingga untuk asas shell yang berlainan jenis (asas rata, asas shell segitiga jalur, asas shell segitiga jalur terbalik) telah dijalankan. Tanah dan
asas telah dimodel sebagai masalah terikan biasa manakala kelakuan elastik-plastik tanah telah dimodel dengan kriteria alah Drucker-Prager dan criteria Von Mises terubahsuai. Kajian perbandingan antara model unsur terhingga yang disaran dan data yang diterbitkan telah dijalankan pada pelbagai asas shell jalur yang sedia ada. Kerja eksperimen tapak telah dijalankan untuk mengenalpasti kelakuan sebenar asas shell (asas shell segitiga terbalik, asas shell segitiga jalur dan asas pad) dibawah tindakan beban dari rumah dua tingkat. Satu model teori berdasarkan kelakuan tak lurus asas shell terbalik untuk meramal kapasiti tanggungan muktamad bagi asas shell jalur segitiga terbalik yang dicadang telah dibangunkan. Keputusan yang diperolehi mempunyai hubung kait yang baik antara simulasi unsur terhingga dan keputusan eksperimen. Berdasarkan pada keputusan 2-D dan 3-D yang diperolehi, asas shell terubahsuai (asas segitiga jalur terbalik) telah disarankan dan didapati mempunyai 15% keupayaan menanggung beban lebih tinggi daripada asas shell segitiga. Keputusan juga menunjukkan asas shell pyramid berupaya menanggung 20% beban lebih tinggi daripada asas shell kon. Keputusan ujian tapak menunjukkan tekanan sentuhan bagi asas shell segitiga terbalik mempunyai agihan yang lebih baik daripada asas shell segitiga jalur. Tegasan yang dihasilkan shell terbalik adalah 20% lebih rendah daripada shell segitiga. Satu persamaan mengganggar keupayaan galas muktamad telah dibangunkan.

Keputusan yang diperolehi mempunyai persamaan yang rapat dengan simulasi unsur terhingga dan keputusan ujian tapak. Keputusan kajian ini menunjukkan bahawa asas shell boleh digunakan secara meluas dalam bidang geoteknik sebagai salah satu alternatif bagi asas cetek dan asas dal.
ACKNOWLEDGEMENTS

First of all I would like to thank All Mighty Allah for giving me the strength, health and wisdom to complete this degree successfully.

I am extremely grateful to my supervisor Prof. Bujang Kim Huat for his excellent supervision, invaluable guidance, helpful discussions and continuous encouragement. My thanks also go to the members of my supervisory committee, Prof. Ir. Abang Abdullah Abang Ali and Associate Prof. Thamer Ahmed Mohammed for their invaluable discussions, comments, and help.

Also I would like to extend my thanks to all members of Dept. of Civil Engineering Faculty of Engineering, University Putra Malaysia, for their kind assistance during my studies. This particularly goes to Assoc. Prof. Dr. Mohd Saleh Jaafer, Head of Dept. of Civil Engineering, for his help and continuous encouragement, The support of the Housing Research Centre, (UPM) and Thamar University, (Yemen), research grant is gratefully acknowledge.

I wish to express my thanks to all my friends, for their valuable assistance and help.
I certify that an Examination Committee has met on 13th October 2006 to conduct the final examination of Adel Ahmed Al-Raziqi on his Doctor of Philosophy thesis entitled “Geotechnical Behavior of Shell Footings” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Mohd. Saleh Jaafar, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Abdil Magid Hamouda, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Mohd. Razali Abdul Kadir, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

N. S. V Kameswar Rao, PhD
Professor
School of Engineering and Information Technology
Universiti Malaysia Sabah
(External Examiner)

HASANAH MOHD. GHAZALI, PhD
Professor / Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 21 DECEMBER 2006
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Bujang Kim Huat, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Abang Abdullah Abang Ali, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Thamer Ahmed Mohammed, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor / Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 16 JANUARY 2007
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

ADEL AHMED AL-RAZIQI

Date: 18 DECEMBER 2006
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 General 1
1.2 Shells in Foundation
 1.2.1 Strip Shell Foundations 2
 1.2.2 Conical Shell 2
 1.2.3 Pyramidal Shell 3
 1.2.4 Hyperbolic Paraboloid Foundation 4
 1.2.5 Spherical Shells 5
 1.2.6 Inverted Spherical Shell 6
 1.2.7 Funicular Shell Foundation 6
 1.2.8 Combined Shell Foundations 8
1.3 Advantage of Using Shell Foundations 9
1.4 Problem Statement 11
1.5 Objectives of the Study 11
1.6 Thesis Layout 14

2 LITERATURE REVIEW

2.1 Introduction 17
2.2 Development of Shell Footings 18
2.3 Experimental and Field Investigations 29
2.4 Analytical Studies
 2.4.1 Linear Analysis 39
 2.4.2 Soil Media Modeling 40
 2.4.3 Analysis of Shell Foundations 45
2.5 Conclusion 53
3 METHODOLOGY 54
3.1 Introduction 54
3.2 Numerical Investigations of Various Types of Shell Footing 56
 3.2.1 Finite Element Formulation 57
 3.2.2 Elasto-Plastic Constitutive Modeling 58
 3.2.3 Von Mises, Tresca 62
 3.2.4 Modified Von Mises 63
 3.2.5 Drucker-Prager 64
 3.2.6 Interface Elements 67
 3.2.7 Choice of Finite Element 70
 3.2.8 Comparative Studies 73
 3.2.9 Parametric Studies of the Selected Types of Shell Footing 74
3.3 Experimental Investigations of Selected Types of Shell Footing 82
 3.3.1 Materials and Fabrications of Test Specimens 82
 3.3.2 Fabrications and Castings of the Models 97
 3.3.3 Test Set Up and Procedures 100
3.4 Theoretical Model 108
3.5 Conclusion 110
4 2D NONLINEAR FINITE ELEMENT ANALYSIS 111
4.1 Introduction 111
4.2 Validations of the FE Model 112
 4.2.1 Flat Footing 112
 4.2.2 Triangular Strip Shell Footing 114
 4.2.3 Strip Conical Shell Footing 116
4.3 Selection of the Optimal Shell Footing 117
 4.3.1 Optimum Section of Triangular Shell Footings 118
 4.3.2 Optimum Section of Inverted Triangular Shell Footing 119
 4.3.3 Behavior of the Selected Shell Footing 122
4.4 Parametric Study of the Selected Shell Footing 131
 4.4.1 Triangular Strip Shell Footings 131
 4.4.2 Inverted Triangular Strip Shell Footings 135
4.5 Conclusions 139
5 3D NONLINEAR FINITE ELEMENT ANALYSIS 141
5.1 Introduction 141
5.2 Discartazation and Validations of the 3D FE Models 142
 5.2.1 Conical Shell Footing 142
 5.2.2 Pyramidal Foundations 146
 5.2.3 Triangular Strip Shell Footings 150
 5.2.3 Inverted Triangular Strip Shell Footings 152
5.3 Behaviour of 3D Shell Footings Models 155
 5.3.1 Load Settlement Distributions 157
5.3.2 Stress Distributions 163
5.3.3 Deformed Mesh 167
5.4 Comparison Between 2D and 3D FE Results 169
5.5 Conclusion 171

6 EXPERIMENTAL INVESTIGATIONS 172
6.1 Introduction 172
6.2 Soil Characteristics 172
6.3 Test Results 175
 6.3.1 Load Settlement Profile 175
 6.3.2 Stress Distribution Profile 179
 6.3.3 Bearing Capacity Diagram 182
6.4 Comparison of Results 189
 6.4.1 Load Stress Profile 189
 6.4.2 FEM and Field Test Results 190
6.5 Conclusion 192

7 BEARING CAPACITY FOR INVERTED TRIANGULAR SHELL FOOTING 193
7.1 Introduction 193
7.2 Theoretical Model for Inverted Triangular Shell Foundation 194
7.3 Coefficient of Bearing Capacity 220
7.4 Conclusion 221

8 CONCLUSION AND RECOMMENDATION 222
8.1 Summary 222
 8.1.1 Geotechnical Behaviour of Strip Shell Footings 223
 8.1.2 Geotechnical Behaviour of Isolated Shell Footings 224
 8.1.3 Theoretical Model for Inverted Triangular Strip Shell Footing 225
8.2 Conclusions 225
 8.2.1 Geotechnical Behaviour of Strip Shell Footings 226
 8.2.2 Geotechnical Behaviour Conical Shell Footings 228
 8.2.3 Geotechnical Behaviour of Pyramidal Shell Footings 229
 8.2.4 Developed Ultimate Bearing Capacity Equation 229
8.3 Recommendations for Further Research 230

APPENDICES 231
REFERENCES 237
BIODATA OF THE AUTHOR 255
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Properties of Shell Foundations Model (Abdul-Rahman 1996)</td>
<td>37</td>
</tr>
<tr>
<td>2.2</td>
<td>Soil Properties of Clay Layer (Chen, 1990)</td>
<td>47</td>
</tr>
<tr>
<td>2.2</td>
<td>Properties of Shell Foundations Model (Mahraj, 2004)</td>
<td>51</td>
</tr>
<tr>
<td>3.1</td>
<td>Interface Elements Properties for Different Types of Footings</td>
<td>81</td>
</tr>
<tr>
<td>3.2</td>
<td>Summary of FE (Elasto-Plastic Analysis) Constitutive Models for Shell Footing (LUSAS, 2004)</td>
<td>81</td>
</tr>
<tr>
<td>3.3</td>
<td>Soil Properties</td>
<td>91</td>
</tr>
<tr>
<td>3.4</td>
<td>Properties of Concrete</td>
<td>91</td>
</tr>
<tr>
<td>3.5</td>
<td>Properties of Steel</td>
<td>91</td>
</tr>
<tr>
<td>4.1</td>
<td>Clay Properties (Chen, 1990)</td>
<td>112</td>
</tr>
<tr>
<td>5.1</td>
<td>Sand Properties</td>
<td>146</td>
</tr>
<tr>
<td>5.2</td>
<td>Soil and Concrete Properties</td>
<td>153</td>
</tr>
<tr>
<td>6.1</td>
<td>Index Properties of the Soil</td>
<td>175</td>
</tr>
<tr>
<td>6.2</td>
<td>Ultimate Load (Q_u) & Settlement for Plain Strain Conditions</td>
<td>176</td>
</tr>
<tr>
<td>6.3</td>
<td>Shell Efficiency Factor for Shell Footings</td>
<td>178</td>
</tr>
<tr>
<td>6.4</td>
<td>Ratio of (Q_1/Q_u) & (Q_b/Q_u) for Plain Strain Conditions</td>
<td>182</td>
</tr>
<tr>
<td>6.5</td>
<td>Location of Reference Points from the Centre of Footings (In Cm)</td>
<td>183</td>
</tr>
<tr>
<td>6.6</td>
<td>Contact Pressures for Strip Footing</td>
<td>184</td>
</tr>
<tr>
<td>7.1</td>
<td>Comparisons between Developed Equations Results and Field Test Results</td>
<td>221</td>
</tr>
<tr>
<td>A.1</td>
<td>Summary of Concrete Mix Design Computations</td>
<td>237</td>
</tr>
<tr>
<td>B.1</td>
<td>Sieve Analysis Test Result</td>
<td>238</td>
</tr>
<tr>
<td>B.2</td>
<td>Shear Box Test Results for Sample 1</td>
<td>238</td>
</tr>
</tbody>
</table>
B.3 Properties of Sample 1 238
B.4 Shear Box Test Results for Sample 2 239
B.5 Properties of Sample 2 239
B.6 Properties of Sample 3 239
B.7 Shear Box Test Results for Sample 3 240
B.8 Dimensions of the Samples in the Shear Box Test for Samples 240
F.1 Bearing Capacity Coefficient 247
F.2 Bearing Capacity Coefficient (Cont...) 248
F.3 Bearing Capacity Coefficient (Cont...) 249
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Strip Shell Footing (Abdel-Rahman, 1996)</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Conical Shell Foundation (He Chongzhang, 1984)</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Paraboloid Shell Foundations (Kurian, 1977)</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>Hyperbolic Paraboloid Shell Foundations (Kurian, 1977)</td>
<td>5</td>
</tr>
<tr>
<td>1.5</td>
<td>Spherical Shell Foundations (Paliwal, et al., 1986)</td>
<td>5</td>
</tr>
<tr>
<td>1.6</td>
<td>Inverted Dome shell foundations (Paliwal, *et al.*1986)</td>
<td>6</td>
</tr>
<tr>
<td>1.7</td>
<td>Elliptic Paraboloid Shell Foundation (Iyer et al., 1970)</td>
<td>7</td>
</tr>
<tr>
<td>1.8</td>
<td>Paraboloid and Hyperboloid Shell Foundations (Kurian et. al. 1977)</td>
<td>8</td>
</tr>
<tr>
<td>1.9</td>
<td>Hyperbolic Paraboloid Combined Shell Footing (Kurian, 1982)</td>
<td>9</td>
</tr>
<tr>
<td>1.10</td>
<td>Load Transfer Characteristics of Shell and Flat Footings</td>
<td>10</td>
</tr>
<tr>
<td>2.1</td>
<td>Umbrella Shell Footings for Mexico City, (USA), (Enriquez and Fierro, 1963)</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>Barrel Shell Foundation, Mexico (Enriquez and Fierro, 1963)</td>
<td>20</td>
</tr>
<tr>
<td>2.3</td>
<td>Egg Underground Amphitheater in Paris, France (Engineering News Record, 1964).</td>
<td>21</td>
</tr>
<tr>
<td>2.4</td>
<td>Hypar Shell Footings on Timber Piles, India, (Anon, 1965)</td>
<td>22</td>
</tr>
<tr>
<td>2.5</td>
<td>Hypar Footing for St. Vincent Chapel, Mexico, (Kurian, 1982)</td>
<td>23</td>
</tr>
<tr>
<td>2.6</td>
<td>Hypar Shell for Shed in Lamex, Mexico (Kurian, 1982)</td>
<td>24</td>
</tr>
<tr>
<td>2.7</td>
<td>Inverted Cylindrical Shell Foundation, India (Kurian, 1982)</td>
<td>25</td>
</tr>
<tr>
<td>2.8</td>
<td>Hollow Conical Shell Substructure for Stuttgart TV Tower, Germany, (Jumikis, 1987)</td>
<td>27</td>
</tr>
<tr>
<td>2.9</td>
<td>Hollow Conical Shell Foundations, China (He Chongzhang, 1984)</td>
<td>28</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>2.10</td>
<td>Behavior of Shell Footings (Abdel-Rahamn, 1998)</td>
<td>35</td>
</tr>
<tr>
<td>2.11</td>
<td>Load Settlement Curve, (Abdel-Rahamn, 1996)</td>
<td>38</td>
</tr>
<tr>
<td>2.12</td>
<td>Viscoelastic Models, Dutta et al. (2002)</td>
<td>45</td>
</tr>
<tr>
<td>2.13</td>
<td>Analytical Model for Shallow Stratum of Clay (Chen, 1990)</td>
<td>48</td>
</tr>
<tr>
<td>2.14</td>
<td>Load Displacement Curve (Chen, 1990)</td>
<td>49</td>
</tr>
<tr>
<td>2.15</td>
<td>Discretization of Shell Modeling (Mahraj, 2004)</td>
<td>51</td>
</tr>
<tr>
<td>2.16</td>
<td>Load Settlement Curve (Mahraj, 2004)</td>
<td>52</td>
</tr>
<tr>
<td>3.1</td>
<td>Elasto-Plastic Models</td>
<td>61</td>
</tr>
<tr>
<td>3.2</td>
<td>Von Mises Failure Theory (LUSAS 2004)</td>
<td>63</td>
</tr>
<tr>
<td>3.3</td>
<td>Strain Hardening of Modified Von Mises Criterion (LUSAS 2004)</td>
<td>64</td>
</tr>
<tr>
<td>3.4</td>
<td>Drucker–Prager and Mohr-Coulomb Yield Surfaces (LUSAS 2004)</td>
<td>67</td>
</tr>
<tr>
<td>3.5</td>
<td>Yield Surface Criteria for Interface Model (LUSAS, 2004)</td>
<td>70</td>
</tr>
<tr>
<td>3.6</td>
<td>Types of 2D Plane Stain Elements (LUSAS, 2004)</td>
<td>71</td>
</tr>
<tr>
<td>3.8</td>
<td>Types of 3D Elements (LUSAS, 2004)</td>
<td>72</td>
</tr>
<tr>
<td>3.9</td>
<td>2D and 3D Interface Element</td>
<td>73</td>
</tr>
<tr>
<td>3.10</td>
<td>Cross Section for Triangular Shell Footing</td>
<td>75</td>
</tr>
<tr>
<td>3.11</td>
<td>FE Model for Triangular Strip Shell Footing</td>
<td>75</td>
</tr>
<tr>
<td>3.12</td>
<td>Cross Section for Inverted Shell Footing</td>
<td>78</td>
</tr>
<tr>
<td>3.13</td>
<td>2D FEM Discrimination for Inverted Shell Footings</td>
<td>78</td>
</tr>
<tr>
<td>3.14</td>
<td>3D FE Discrimination for Conical Shell Footing</td>
<td>78</td>
</tr>
<tr>
<td>3.15</td>
<td>3D FE Discrimination for Pyramidal Shell Footing</td>
<td>80</td>
</tr>
<tr>
<td>3.16</td>
<td>Isometric View for Triangular Shell Footing</td>
<td>83</td>
</tr>
<tr>
<td>3.17</td>
<td>Plan, Elevation, and Side View of the Triangular Shell Footing</td>
<td>83</td>
</tr>
</tbody>
</table>
3.18 Isometric View for Triangular Shell Footings and Masonry Block Wall 84
3.19 Isometric View for Inverted Triangular Shell Footing 85
3.20 Plan, Elevation and View for Inverted Triangular Strip Shell Footing 86
3.21 3D Isometric for Inverted Triangular Strip Shell Footing With Masonry Block Wall 87
3.22 Plan, Elevation and View for Flat footing, And Inverted 2 Shell Footing 88
3.23 Dimensions of the Strip Shell Footing Model 89
3.24 Dimensions of the Inverted Strip Shell Footing Model 90
3.25 Cross Section and Plan of the Pressure Cell 92
3.26 Close Up View for Pressure Cell. 93
3.27 Vibrating Wire Logger (Readout VW2104) 94
3.28 Load Cell 95
3.29 Read Out for of Load Cell 95
3.30 Platform Plate for Loads 96
3.31 Sensitive Levels for Settlement Measurement 96
3.32 Models for Triangular and Inverted Strip Shell Footing During Casting 97
3.33 Inverted Strip Shell Footing after Casting 98
3.34 Triangular Strip Shell Footing after Casting 98
3.35 Ring Beam after Casting 98
3.36 Shell Footing after Casting 99
3.37 Field Test Set Up of Triangular Strip Shell Footings 100
3.38 Field Test Set Up for Inverted Triangular Strip Shell Footing 101
3.39 Test Setup with Loading Stages 101
3.40 Final Set Up with Measurements 102
| 3.41 | Locations of Pressure Cells for Contact Pressure Measurement | 102 |
| 3.42 | Locations of Pressure Cells for Stress Measurement Under Footing | 103 |
| 3.43 | Pressure Cell Installation 1 m below the Centre of the Footing | 103 |
| 3.44 | Locations of Pressure Cells for Stress Measurement under Footing | 104 |
| 3.45 | Load Cell Installations for Triangular Strip Shell Footings | 105 |
| 3.46 | Load Cell Installations for Inverted Strip Shell Footings | 105 |
| 3.47 | Loading Platform Installations | 106 |
| 3.48 | Loading Sequence and Measurement | 109 |
| 4.1 | FEM Idealisation of Rigid Strip Footings | 113 |
| 4.2 | Pressure-Settlement Plot for Centre Point of the Footing | 113 |
| 4.3 | FEM Idealisation of Rigid Triangular Strip Footings | 115 |
| 4.4 | Loads-Displacement Plot for Triangular Strip Shell Footings | 115 |
| 4.5 | FEM Idealisation of Axi-symmetric Conical Shell Footings | 116 |
| 4.6 | Load-Settlement Plot for Centre Point of the Footing | 117 |
| 4.7 | Effects of Shell Thickness (t) on Load Settlement Curves | 118 |
| 4.8 | Effects of Shell Angle (θ) on Load Settlement Curves | 119 |
| 4.9 | 2D FE Idealization for Inverted Triangular Shell Footing | 120 |
| 4.10 | Effects of Shell Thickness (t) and Shell Thickness (θ) on Load Settlement Curves | 121 |
| 4.11 | FEM Discretization for Shell Footings | 122 |
| 4.12 | Load Settlement Curve for Shell Footing | 123 |
| 4.13 | Load–Stress Curve for Inverted Shell Footing | 124 |
| 4.14 | Settlement Distributions at the Ultimate Load (61 kN) for Triangular Shell | 125 |
| 4.15 | Settlement Distributions at the Ultimate Load (67.5 kN) | 125 |
for Inverted Triangular Shell

4.16 Stress Distributions for Triangular Strip Shell Footing 127
4.17 Stress Distributions for Inverted Strip Shell Footing 127
4.18 Vertical Stress Distribution for Shell Footing along the Vertical Distance 128
4.19 Vertical Stress Distribution for Shell Footing along the Horizontal Distance 128
4.20 Deformed Mesh for Triangular Strip Shell Footing 129
4.21 Deformed Mesh for Inverted Triangular Strip Shell Footing 130
4.22 Effects of Adding Edge Beam in Load-Settlement Curve 132
4.23 Effects of Edge Beam Locations in Load-Settlement Curve 132
4.24 Effect of the Embedment Ratio on the Load Carrying Capacity of Shell Footing 133
4.25 Effect of the Elasticity Modulus on the Load Carrying Capacity 134
4.26 Effect of the Stiffener Number on the Load 135
4.27 Effects of Adding Edge Beam in Load-Settlement Curve on Inverted Shell 136
4.28 Effect of the Embedment Ratio on the Load Carrying Capacity of Inverted Shell Footing 137
4.29 Effect of the Elasticity Modulus on the Load Carrying Capacity of Inverted Shell 138
4.30 Effect of the Stiffener Number on the Load-Settlement Curve of Inverted Shell 139
4.26 Load Settlement Curve for Shell Footing 134
4.27 Load Settlement Curve for Shell Footing 134
4.28 Load Settlement Curve at the Centre Line 135
4.29 Effect of The Embedment Ratio on the Load Carrying Capacity 136
4.30 Effect Of The Elasticity Modulus on the Load Carrying Capacity 137
4.31 Load Settlement Curve for Shell Footings
5.1 Plan for 3D Finite Element Model for Conical Shell
5.2 Isometric of 3D Finite Element Model for Conical Shell
5.3 3D Finite element Model for Conical shell
5.4 Front View 3D Finite Element Model for Conical Shell
5.5 Side View of 3D Finite Element Model for Conical Shell
5.6 Load -Settlement Plot for Point of the Footing.
5.7 Plan for 3D Finite Element Model for Pyramidal Shell
5.8 Isometric for 3D Finite Element Model for Pyramidal Shell with Soil
5.9 3D Finite Element Modelling for Pyramidal Shell Zoom A-A
5.10 3D FE Idealisation of Pyramidal Shell Footing
5.11 Load - Displacement Plot for Pyramidal Shell Footing
5.12 3D Finite Element Modelling for Triangular Shell Footing
5.13 3D FE Idealisation of Triangular Shell Footing
5.14 Loads - Displacement Plot for Triangular Shell Footing
5.15 Top View FEM Model for Inverted Triangular Shell
5.16 Front View FEM Model of Inverted Triangular Shell
5.17 3D FE Mesh for Inverted Triangular Strip Shell Footing
5.18 Load - Displacement Plot for Inverted Triangular Shell Footing
5.19 3D FE Models Discretization for Shell Footing
5.20 Load Settlement Curve for 3D FE Models
5.21 3D FE Results for Inverted Triangular Shell and Triangular Shell
5.22 Displacement Sy (cm) for Conical Shell
5.23 3D Cross Section (0.5 m) Below the Ground Surface of the Soil Mass

xxi
5.24 Settlement Distribution (Sz cm) for Pyramidal Shell 160
5.25 Settlement Distribution Sy (m) for Triangular Strip Shell 161
5.26 Settlement Distribution Sy (m) for Inverted Strip Shell 162
5.27 Stress Distributions for Conical Shell for Load 7.5 kN 164
5.28 Stress Distributions or Pyramidal Shell for Ultimate Load 165
5.29 Stress Distributions for Triangular Shell at Load 58 kN 166
5.30 Stress Distributions for Inverted Triangular Shell for Load 68 kN 166
5.31 3D Deformed Mesh of Conical Shell 167
5.32 3D Deformed Mesh of Pyramidal Shell 168
5.33 3D Deformed Mesh of Triangular Shell 168
5.34 3D Deformed Mesh of Inverted Triangular Shell 169
5.35 Load Settlement Curve for Triangular Shell Footing 170
5.36 Load Settlement Curve for Inverted 1 Triangular Shell Footing 170
6.1 Mechanical Sieve Analysis Graph 173
6.2 Shear Stress versus Horizontal Displacement from Shear Box Test 174
6.3 Shear Stress versus Normal Stress from Direct Shear Box Test 174
6.4 Load-Settlement Curve for 3 Types of Footing 176
6.5 Load-Settlement Curves for Inverted Shell Footings 177
6.6 Load - Stress Curve for Flat Footing 179
6.7 Load - Stress Curve for Triangular Strip Shell Footings 180
6.8 Load Stress Curve for Inverted 1 Triangular Strip Shell Footings 181
6.9 Load Stress Curve for Inverted 2 Triangular Strip Shell Footings 181
6.10 Stress Pressure Diagram for Flat Footings 185
6.11 Stress Pressure Diagram for Triangular Strip Shell Footing 186
6.12 Stress Pressure Diagram for Inverted 1 Triangular Strip Shell Footing 187
6.13 Stress Pressure Diagram for Inverted 2 Triangular Strip Shell Footing 188
6.14 Load Stress Envelope for Shell Footings 189
6.15 Load Settlement Curve for Triangular Shell Footings 190
6.16 Load Stress Curve for Inverted 1 Triangular Shell Footings 191
6.16 Load Stress Curve for Inverted 2 Triangular Shell Footings 191
7.1 Inverted Triangular Shell Footings (Cross Section) 195
7.2 Rupture Surface of Inverted Triangular Shell Footing (Adopted from 2D FE Analysis) 195
7.3 Rupture Surface Equilibrium Force for Inverted Triangular Shell Footing 198
7.4 Mohr-Coulomb’s Failure Criteria 199
7.5 Equilibrium According to Kotter’s Equation 199
7.6 Equilibrium of Force under Inverted Shell Footing 213
B.1 Sieve Analysis Testing and Vibrating 240
B.2 Shear Box Test 241
B.3 Location of Field Test 241
C.1 Ground Floor Plan 242
C.2 First Floor Plan 243
C.3 Side View 244
C.4 Front View 244