PDF Deskew DEMO: Purchase from www.A-PDF.com to remove the watermark

UNIVERSITI PUTRA MALAYSIA

PARALLEL BLOCK METHODS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS

ZANARIAH BT ABDUL MAJID.

FSAS 2004 20

PARALLEL BLOCK METHODS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS

By

ZANARIAH BT ABDUL MAJID

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

June 2004

TO MY FAMILY

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

PARALLEL BLOCK METHODS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS

By

ZANARIAH BT ABDUL MAJID

June 2004

Chairman: Professor Dato' Mohamed bin Suleiman, Ph.D.

Faculty: Science and Environmental Studies

In this thesis, new and efficient codes are developed for solving Initial Value Problems (IVPs) of first and higher order Ordinary Differential Equations (ODEs) using variable step size. The new codes are based on the implicit multistep block methods formulae.

Subsequently, a more structured and efficient algorithm comprising the block methods was constructed for solving systems of first order ODEs using variable step size and order.

The new codes were then used for the parallel implementation in solving large systems of first and higher order ODEs. The sequential programs of these methods were executed on DYNIX/ptx operating system. The parallel programs were run on a Sequent Symmetry SE30 parallel computer.

The C^q stability in the multistep method was introduced and the focused was on the error propagation from a more practical angle.

The numerical results showed that the sequential implementation of the new codes could reduce the total number of steps and execution times even when solving small systems of first and higher order ODEs compared with the 1-point method and the existing 2PBVSO code in Omar (1999).

The parallel implementation of the codes was found to be most appropriate in solving large systems of first and higher order ODEs. It was also discovered that the maximum speed up of the parallel methods improved as the dimension of the ODEs systems increased.

In conclusion, the new codes developed in this thesis are suitable for solving systems of first and higher order ODEs.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KAEDAH BLOK SELARI BAGI MENYELESAIKAN PERSAMAAN PEMBEZAAN BIASA

Oleh

ZANARIAH BINTI ABDUL MAJID

Jun 2004

Pengerusi: Profesor Dato' Mohamed bin Suleiman, Ph.D.

Fakulti: Sains dan Pengajian Alam Sekitar

Dalam tesis ini, suatu kod yang baru dan efisien dibentuk untuk menyelesaikan Masalah Nilai Awal (MNA) bagi sistem Persamaan Pembezaan Biasa (PPB) peringkat pertama dan tinggi menggunakan panjang langkah berubah. Kod baru ini berasaskan formula dari kaedah blok tersirat multilangkah.

Seterusnya, suatu algoritma dan kod yang lebih berstruktur dan efisien telah dibangunkan untuk menyelesaikan sistem PPB peringkat pertama menggunakan peringkat dan panjang langkah berubah.

Kod-kod baru ini dilanjutkan untuk pelaksanaan secara selari bagi sistem besar PPB peringkat pertama dan tinggi. Program jujukan dilaksana menggunakan sistem operasi DYNIX/ptx dan program selari menggunakan Sequent Symmetry SE30 iaitu komputer selari berkongsi ingatan.

Kestabilan C^q dalam kaedah multilangkah diperkenalkan dan tumpuan adalah pada penyebaran ralat dalam bentuk yang lebih praktikal.

Keputusan berangka menunjukkan pelaksanaan secara jujukan kod baru dapat mengurangkan langkah dan masa pelaksanaan penyelesaian walaupun melibatkan sistem kecil PPB peringkat pertama dan tinggi berbanding kaedah 1-titik dan kod 2PBVSO dalam Omar (1999).

Pelaksanaan secara selari kod baru tersebut amat sesuai bagi menyelesaikan sistem besar PPB peringkat pertama dan tinggi. Kelajuan maksimum kaedah blok selari dapat dicapai apabila dimensi sistem PPB meningkat.

Kesimpulannya, kod baru yang dibangunkan adalah sesuai bagi penyelesaian sistem PPB peringkat pertama dan tinggi.

ACKNOWLEDGEMENTS

In the Name of Allah The Most Beneficent, The Most Merciful

First and foremost, I would like to express my sincere and deepest gratitude to the Chairman of the Supervisory Committee, YBhg. Prof. Dato' Dr. Mohamed bin Suleiman for his wise council, guidance, invaluable advice and constant encouragement throughout my research.

I am also very grateful to Associate Professor Dr. Fudziah bt Ismail and Associate Professor Dr Mohamed bin Othman who are also the member of the Supervisory Committee for their advice and motivation towards the completion of this thesis.

To the Ministry of Education, I am also indebted for the scholarship awarded and study leave granted that enables me to pursue with this research.

My special thanks and deepest appreciation goes to my husband, Mohd. Rusdi and our four lovely children, Farah Wahida, Nadia Diana, Muhammad Faris and Emilya Liyana; and my parents for their continuous understanding, caring, encouragement and most of all the everlasting love and patience that are the most essential ingredients and recipe to the completion of this thesis.

Last but not least I would also like to take this opportunity to convey my heartfelt thanks to my friends and all the people involved in helping me with this thesis. This thesis would not have been made possible without their assistance and support.

TABLE OF CONTENTS

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	v
ACKNOWLEDGEMENTS	vii
APPROVAL	ix
DECLARATION	xi
LIST OF TABLES	xvi
LIST OF FIGURES	xxii
LIST OF ABBREVIATIONS	xxvii

CHAPTER

I

INTRODUCTION	1
Literature Review	3
Objective of the Thesis	5
Outline of the Thesis	6
The Initial Value Problem	8
Linear Multistep Method	10
Lagrange Interpolation Polynomial	16
Parallel Processing	16
Parallel Algorithm	17
Parallel Architecture	18
The Sequent Symmetry SE30	21
Elements of Parallel Programming	23
Process Creation and Termination	24
Shared and Private Data	25
Scheduling	25
Synchronization and Mutual Exclusion	26
Identifying Independent Loops	27
Performance of Parallel Algorithm	. 29

II	2-POINT AND 3-POINT IMPLICIT BLOCK METHODS FOR	
	SOLVING FIRST ORDER SYSTEMS OF ODES	31
	Introduction	31
	Derivation of 2-Point Implicit Block Method	33
	Derivation of 3-Point Implicit Block Method	38
	Absolute Stability	42
	2-Point Implicit Block Method	43
	3-Point Implicit Block Method	50
	The C^q Stability	57
	Implementation	62

	Iterations of 2-Point Implicit Block Method Iterations of 2-Point Implicit Block Method Half Gauss	62
	Seidel	63
	Iterations of 3-Point Implicit Block Method Iterations of 3-Point Implicit Block Method Half Gauss	64
	Seidel	65
	Test Problems	65
	Numerical Results	67
	Discussion	76
III	2-POINT DIAGONALLY AND FULLY IMPLICIT BLOCK	
	METHODS FOR SOLVING FIRST ORDER SYSTEMS	
	OF ODEs	78
	Introduction	78
	Variable Step Size Technique	78
	Derivation of 2-Point 1 Block Method	80
	2-Point 1 Block Diagonally Implicit Method	80
	2-Point 1 Block Fully Implicit Method	85
	Derivation of 2-Point 2 Block Method	87
	2-Point 2 Block Diagonally Implicit Method	87
	2-Point 2 Block Fully Implicit Method	93
	Derivation of 2-Point 3 Block Method	96
	2-Point 3 Block Diagonally Implicit Method	97
	2-Point 3 Block Fully Implicit Method	104
	1-Point Implicit Method	107
	Absolute Stability of 2-Point Diagonally and Fully Implicit	
	Block Method	110
	2-Point 1 Block Diagonally Implicit	111
	2-Point 1 Block Fully Implicit	116
	2-Point 2 Block Diagonally Implicit	120
	2-Point 2 Block Fully Implicit	126
	2-Point 3 Block Diagonally Implicit	131
	2-Point 3 Block Fully Implicit	137
	Test Problems	144
	Numerical Results	147
	Discussion	165
IV	3-POINT DIAGONALLY IMPLICIT AND FULLY IMPLICIT	
	BLOCK METHODS FOR SOLVING FIRST ORDER SYSTEM	S
	OF ODEs	169
	Introduction	169
	Derivation of 3-Point 1 Block Method	169
	3-Point 1 Block Diagonally Implicit Method	169
	3-Point 1 Block Fully Implicit Method	176

Derivation of 3-Point 2 Block Method 180 3-Point 2 Block Diagonally Implicit Method 181

	3-Point 2 Block Fully Implicit Method	186
	Derivation of 3-Point 3 Block Method	190
	3-Point 3 Block Diagonally Implicit Method	191
	3-Point 3 Block Fully Implicit Method	204
	Absolute Stability of 3-Point Diagonally and Fully Implicit	
	Block Method	214
	3-Point 1 Block Diagonally Implicit	214
	3-Point 1 Block Fully Implicit	221
	3-Point 2 Block Diagonally Implicit	227
	3-Point 2 Block Fully Implicit	235
	3-Point 3 Block Diagonally Implicit	243
	3-Point 3 Block Fully Implicit	255
	Numerical Results	266
	Discussion	283
V	4-POINT DIAGONALLY AND FULLY IMPLICIT BLOCK	
	METHODS FOR SOLVING FIRST ORDER SYSTEMS	
	OF ODEs	286
	Introduction	286
	Derivation of 4-Point 1 Block Method	287
	4-Point 1 Block Diagonally Implicit Method	287
	4-Point 1 Block Fully Implicit Method	297
	Derivation of 4-Point 2 Block Method	302
	4-Point 2 Block Diagonally Implicit Method	302
	4-Point 2 Block Fully Implicit Method	311
	Absolute Stability of 4-Point Diagonally and Fully Implicit	
	Block Method	319
	4-Point 1 Block Diagonally Implicit	319
	4-Point 1 Block Fully Implicit	328
	4-Point 2 Block Diagonally Implicit	336
	4-Point 2 Block Fully Implicit	347
	Numerical Results	359
	Discussion	373
VI	SOLVING FIRST ORDER SYSTEMS OF ODEs USING	
	2-POINT FULLY IMPLICIT BLOCK METHOD OF	
	VARIABLE STEP SIZE AND ORDER	376
	Introduction	376
	The Integration Formulae	376
	Estimating the Error	377
	Order and Step Size Selection	379
	Numerical Results	381
	Discussion	395
VII	SOLVING HIGHER ORDER SYSTEMS OF ODEs DIRECTLY	

USING 2-POINT FULLY IMPLICIT BLOCK METHOD 398

.....

	Introduction	398
	Derivation of 2-Point 1 Block Fully Implicit Method for Solving	
	Higher Order ODEs	399
	Corrector	399
	Predictor	407
	1-Point Implicit Method for Solving Higher Order ODEs	419
	Absolute Stability	422
	Test Problems	432
	Numerical Results	437
	Discussion	454
VIII	CONCLUSION	457
	Summary	457
	Future Work	465
BIBL	IOGRAPHY	467
APPE	INDICES	473
BIOD	ATA OF THE AUTHOR	515

.....

.....

,

LIST OF TABLES

Table		Page
1	Hardware Configuration of Sequent SE30	22
2	Integration Coefficients of the First Point of the 2-Point Implicit Block Method	35
3	Integration Coefficients of the Second Point of the 2-Point Implicit Block Method	37
4	Integration Coefficients of the First Point of the 3-Point Implicit Block Method	40
5	Values of \overline{h} for AMM of order 7 and 9 in Definition 2.0	60
6	Magnitudes of the error at h=0.1 for AMM of order 7	61
7	Magnitudes of the error at h=0.4 for AMM of order 7	61
8	Magnitudes of the error at h=0.07 for AMM of order 9	61
9	Magnitudes of the error at h=0.2 for AMM of order 9	62
10	Comparison between the 2PZ, 2PR, 2PZhG, 3PZ, 3PR and 3PZhG Methods for Solving Problem 2.1	71
11	Comparison between the 2PZ, 2PR, 2PZhG, 3PZ, 3PR and 3PZhG Methods for Solving Problem 2.2	72
12	Comparison between the 2PZ, 2PR, 2PZhG, 3PZ, 3PR and 3PZhG Methods for Solving Problem 2.3	73
13	Comparison between the 2PZ, 2PR, 2PZhG, 3PZ, 3PR and 3PZhG Methods for Solving Problem 2.4	74
14	Comparison between the 2PZ, 2PR, 2PZhG, 3PZ, 3PR and 3PZhG Methods for Solving Problem 2.5	75
15	Step Size Ratio	79
16	Comparison between the 1PI, 1PVSO, 2P1DI, 2P1FI, 2P2DI, 2P2FI, 2P3DI, 2P3FI Methods for Solving Problem 3.1	150

17	Comparison between the 1PI, 1PVSO, 2P1DI, 2P1FI, 2P2DI, 2P2FI, 2P3DI, 2P3FI Methods for Solving Problem 3.2	151
18	Comparison between the 1PI, 1PVSO, 2P1DI, 2P1FI, 2P2DI, 2P2FI, 2P3DI, 2P3FI Methods for Solving Problem 3.3	152
19	Comparison between the 1PI, 1PVSO, 2P1DI, 2P1FI, 2P2DI, 2P2FI, 2P3DI, 2P3FI Methods for Solving Problem 3.4	153
20	Comparison between the 1PI, 1PVSO, 2P1DI, 2P1FI, 2P2DI, 2P2FI, 2P3DI, 2P3FI Methods for Solving Problem 3.5	154
21	Numerical Results of 2P1FI Method for Solving Problem 3.6 When N=4000, 8000 and 18000	155
22	Numerical Results of 2P2FI Method for Solving Problem 3.6 When N=4000, 8000 and 18000	156
23	Numerical Results of 2P3FI Method for Solving Problem 3.6 When N=4000, 8000 and 18000	157
24	Numerical Results of 2P1FI Method for Solving Problem 3.7 When N=4000, 8000 and 18000	158
25	Numerical Results of 2P2FI Method for Solving Problem 3.7 When N=4000, 8000 and 18000	159
26	Numerical Results of 2P3FI Method for Solving Problem 3.7 When N=4000, 8000 and 18000	160
27	Numerical Results of 2P1FI Method for Solving Problem 3.8 When N=3000 and 6000	161
28	Numerical Results of 2P2FI Method for Solving Problem 3.8 When N=3000 and 6000	162
29	Numerical Results of 2P3FI Method for Solving Problem 3.8 When N=3000 and 6000	163
30	The Speed Up and Efficiency of 2P1FI, 2P2FI and 2P3FI Methods for Solving Problem 3.6, 3.7 and 3.8	164
31	Comparison between the 3P1DI, 3P1FI, 3P2DI, 3P2FI, 3P3DI and 3P3FI Methods for Solving Problem 3.1	268
32	Comparison between the 3P1DI, 3P1FI, 3P2DI, 3P2FI, 3P3DI and 3P3FI	

xvii

-	Methods for Solving Problem 3.2	269
33	Comparison between the 3P1DI, 3P1FI, 3P2DI, 3P2FI, 3P3DI and 3P3FI Methods for Solving Problem 3.3	270
34	Comparison between the 3P1DI, 3P1FI, 3P2DI, 3P2FI, 3P3DI and 3P3FI Methods for Solving Problem 3.4	271
35	Comparison between the 3P1DI, 3P1FI, 3P2DI, 3P2FI, 3P3DI and 3P3FI Methods for Solving Problem 3.5	272
36	Numerical Results of 3P1FI Method for Solving Problem 3.6 When N=120, 3000 and 18000	273
37	Numerical Results of 3P2FI Method for Solving Problem 3.6 When N=120, 3000 and 18000	274
38	Numerical Results of 3P3FI Method for Solving Problem 3.6 When N=120, 3000 and 18000	275
39	Numerical Results of 3P1FI Method for Solving Problem 3.7 When N=120, 3000 and 18000	276
40	Numerical Results of 3P2FI Method for Solving Problem 3.7 When N=120, 3000 and 18000	277
41	Numerical Results of 3P3FI Method for Solving Problem 3.7 When N=120, 3000 and 18000	278
42	Numerical Results of 3P1FI Method for Solving Problem 3.8 When N=3000 and 6000	279
43	Numerical Results of 3P2FI Method for Solving Problem 3.8 When N=3000 and 6000	280
44	Numerical Results of 3P3FI Method for Solving Problem 3.8 When When N=300 and 3000	281
45	The Speed Up and Efficiency of 3P1FI, 3P2FI and 3P3FI Methods for Solving Problem 3.6, 3.7 and 3.8	282
46	Comparison between the 4P1DI, 4P1FI, 4P2DI and 4P2FI Methods for Solving Problem 3.1	361
47	Comparison between the 4P1DI, 4P1FI, 4P2DI and 4P2FI Methods for Solving Problem 3.2	362

xviii

48	Comparison between the 4P1DI, 4P1FI, 4P2DI and 4P2FI Methods for Solving Problem 3.3	363
49	Comparison between the 4P1DI, 4P1FI, 4P2DI and 4P2FI Methods for Solving Problem 3.4	364
50	Comparison between the 4P1DI, 4P1FI, 4P2DI and 4P2FI Methods for Solving Problem 3.5	365
51	Numerical Results of 4P1FI Method for Solving Problem 3.6 When N=4000, 8000 and 12000	366
52	Numerical Results of 4P2FI Method for Solving Problem 3.6 When N=120, 4000 and 12000	367
53	Numerical Results of 4P1FI Method for Solving Problem 3.7 When N=4000, 8000 and 18000	368
54	Numerical Results of 4P2FI Method for Solving Problem 3.7 When N=120, 4000 and 18000	369
55	Numerical Results of 4P1FI Method for Solving Problem 3.8 When N=3000 and 6000	370
56	Numerical Results of 4P2FI Method for Solving Problem 3.8 When N=100 and 2000	371
57	The Speed Up and Efficiency of 4P1FI and 4P2FI Methods for Solving Problem 3.6, 3.7 and 3.8	372
58	Comparing results of 2PFVSO and 2PBVSO Methods for Solving Problem 3.1	383
59	Comparing results of 2PFVSO and 2PBVSO Methods for Solving Problem 3.2	384
60	Comparing results of 2PFVSO and 2PBVSO Methods for Solving Problem 3.3	385
61	Comparing results of 2PFVSO and 2PBVSO Methods for Solving Problem 3.4	386
62	Comparing results of 2PFVSO and 2PBVSO Methods for Solving Problem 3.5	387
(2)	Company was the of OPEVCO and OPPVCO Matheda	

63 Comparing results of 2PFVSO and 2PBVSO Methods

xix

	for Solving Problem 3.6 When N=10, 100 and 200	388
64	Comparing results of 2PFVSO and 2PBVSO Methods for Solving Problem 3.6 When N=1000 and [0, 10]	389
65	Numerical Results of 2PFVSO Method for Solving Problem 3.6 When N=8000 and 18000	390
66	Numerical Results of 2PFVSO Method for Solving Problem 3.7 When N=1000, 8000 and 18000	391
67	Numerical Results of 2PFVSO Method for Solving Problem 3.8 When N=2000 and 4000	392
68	The Ratio Execution Times of the Sequential and Parallel 2PFVSO Method to the 2PBVSO Method for Solving Problem 3.1 to 3.6	393
69	The Speed Up and Efficiency of the 2PFVSO Method for Solving Problem 3.6, 3.7 and 3.8	394
70	The Ratio Execution Times of the Sequential 2PFVSO Method to the 2P1FI, 2P2FI and 2P3FI Methods for Solving Problem 3.1 to 3.5	395
71	Numerical results of 1PIDIR, 1PVSO, 2P1FI, 2P1FDIR and 2PBVSO Methods for Solving Problem 7.1	439
72	Numerical results of 1PIDIR, 1PVSO, 2P1FI, 2P1FDIR and 2PBVSO Methods for Solving Problem 7.2	440
73	Numerical results of 1PIDIR, 1PVSO, 2P1FI, 2P1FDIR and 2PBVSO Methods for Solving Problem 7.3	441
74	Numerical results of 1PIDIR, 1PVSO, 2P1FI, 2P1FDIR and 2PBVSO Methods for Solving Problem 7.4	442
75	Numerical results of 1PIDIR, 1PVSO, 2P1FI, 2P1FDIR and 2PBVSO Methods for Solving Problem 7.5	443
76	Numerical results of 1PIDIR, 1PVSO, 2P1FI, 2P1FDIR and 2PBVSO Methods for Solving Problem 7.6	444
77	Numerical results of 2P1FI, 2P1FDIR and 2PBVSO Methods for Solving Problem 7.7	445
78	Numerical results of 2P1FI, 2P1FDIR and 2PBVSO Methods for Solving Problem 7.8	446

79	Numerical results of 2P1FDIR and 2PBVSO Methods for Solving Problem 7.9 When N=10 in interval [0, 10]	447
80	Numerical results of 2P1FDIR and 2PBVSO Methods for Solving Problem 7.9 When N=100 in interval [0, 10]	448
81	Numerical results of 2P1FDIR and 2PBVSO Methods for Solving Problem 7.9 When N=200 in interval [0, 10]	449
82	Numerical results of 2P1FDIR Method for Solving Problem 7.9 When N=1000 and 2000	450
83	Numerical results of 2P1FDIR Method for Solving Problem 7.10 When N=101	451
84	The Ratio Execution Times of the Sequential and Parallel 2P1FDIR Method to the 2PBVSO Method for Solving Problem 7.1 to 7.10	452
85	The Speed Up and Efficiency of the 2P1FDIR Method for Solving Problem 7.9 and 7.10	453

LIST OF FIGURES

Figure	2	Page
1	Shared Memory Parallel Computer	22
2	2-Point Implicit Block Method	31
3	3-Point Implicit Block Method	32
4	Stability Region for 2-Point Implicit Block Method When r=0	46
5	Stability Region for 2-Point Implicit Block Method When r=1	48
6	Stability Region for 2-Point Implicit Block Method When r=2	50
7	Stability Region for 3-Point Implicit Block Method When r=0	52
8	Stability Region for 3-Point Implicit Block Method When r=1	54
9	Stability Region for 3-Point Implicit Block Method When r=2	57
10	2-Point 1 Block Method	80
11	2-Point 2 Block Method	87
12	2-Point 3 Block Method	97
13	1-Point Implicit Method	107
14	Stability Region for 2-Point 1 Block Diagonally Implicit Method When r=1	113
15	Stability Region for 2-Point 1 Block Diagonally Implicit Method When r=2	114
16	Stability Region for 2-Point 1 Block Diagonally Implicit Method When $r=\frac{1}{2}$	116
17	Stability Region for 2-Point 1 Block Fully Implicit Method When r=1	117
18	Stability Region for 2-Point 1 Block Fully Implicit Method	

	When r=2	118
19	Stability Region for 2-Point 1 Block Fully Implicit Method When $r=\frac{1}{2}$	120
20	Stability Region for 2-Point 2 Block Diagonally Implicit Method When r=1, q=1	122
21	Stability Region for 2-Point 2 Block Diagonally Implicit Method When $r=2$, $q=2$	124
22	Stability Region for 2-Point 2 Block Diagonally Implicit Method When r=1, q= $\frac{1}{2}$	125
23	Stability Region for 2-Point 2 Block Fully Implicit Method When r=1, q=1	127
24	Stability Region for 2-Point 2 Block Fully Implicit Method When $r=2$, $q=2$	129
25	Stability Region for 2-Point 2 Block Fully Implicit Method When r=1, q= $\frac{1}{2}$	130
26	Stability Region for 2-Point 3 Block Diagonally Implicit Method When $r=1, q=1, p=1$	133
27	Stability Region for 2-Point 3 Block Diagonally Implicit Method When r=2, q=2, p=2	135
28	Stability Region for 2-Point 3 Block Diagonally Implicit Method When r=1, q=1, $p=\frac{1}{2}$	137
29	Stability Region for 2-Point 3 Block Fully Implicit Method When $r=1$, $q=1$, $p=1$	139
30	Stability Region for 2-Point 3 Block Fully Implicit Method When r=2, q=2, p=2	141
31	Stability Region for 2-Point 3 Block Fully Implicit Method When r=1, q=1, $p=\frac{1}{2}$	143

32	3-Point 1 Block Method	169
33	3-Point 2 Block Method	180
34	3-Point 3 Block Method	191
35	Stability Region for 3-Point 1 Block Diagonally Implicit Method When r=1	217
36	Stability Region for 3-Point 1 Block Diagonally Implicit Method When r=2	219
37	Stability Region for 3-Point 1 Block Diagonally Implicit Method When $r=\frac{1}{2}$	221
38	Stability Region for 3-Point 1 Block Fully Implicit Method When r=1	223
39	Stability Region for 3-Point 1 Block Fully Implicit Method When r=2	225
40	Stability Region for 3-Point 1 Block Fully Implicit Method When $r=\frac{1}{2}$	227
41	Stability Region for 3-Point 2 Block Diagonally Implicit Method When r=1, q=1	230
42	Stability Region for 3-Point 2 Block Diagonally Implicit Method When r=2, q=2	232
43	Stability Region for 3-Point 2 Block Diagonally Implicit Method When r=1, q= $\frac{1}{2}$	235
44	Stability Region for 3-Point 2 Block Fully Implicit Method When r=1, q=1	237
45	Stability Region for 3-Point 2 Block Fully Implicit Method When r=2, q=2	240
46	Stability Region for 3-Point 2 Block Fully Implicit Method When r=1, $q=\frac{1}{2}$	242
47	Stability Region for 3-Point 3 Block Diagonally Implicit Method When r=1, q=1, p=1	246

.......

