

UNIVERSITI PUTRA MALAYSIA

PARALLEL BLOCK METHODS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS

PARALLEL BLOCK METHODS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS

By

ZANARIAH BT ABDUL MAJID

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

TO MY FAMILY

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

PARALLEL BLOCK METHODS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS

By

ZANARIAH BT ABDUL MAJID

June 2004
Chairman: Professor Dato' Mohamed bin Suleiman, Ph.D.
Faculty: Science and Environmental Studies

In this thesis, new and efficient codes are developed for solving Initial Value Problems (IVPs) of first and higher order Ordinary Differential Equations (ODEs) using variable step size. The new codes are based on the implicit multistep block methods formulae.

Subsequently, a more structured and efficient algorithm comprising the block methods was constructed for solving systems of first order ODEs using variable step size and order.

The new codes were then used for the parallel implementation in solving large systems of first and higher order ODEs. The sequential programs of these methods were executed on DYNIX/ptx operating system. The parallel programs were run on a Sequent Symmetry SE30 parallel computer.

The C^{q} stability in the multistep method was introduced and the focused was on the error propagation from a more practical angle.

The numerical results showed that the sequential implementation of the new codes could reduce the total number of steps and execution times even when solving small systems of first and higher order ODEs compared with the 1-point method and the existing 2PBVSO code in Omar (1999).

The parallel implementation of the codes was found to be most appropriate in solving large systems of first and higher order ODEs. It was also discovered that the maximum speed up of the parallel methods improved as the dimension of the ODEs systems increased.

In conclusion, the new codes developed in this thesis are suitable for solving systems of first and higher order ODEs.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KAEDAH BLOK SELARI BAGI MENYELESAIKAN PERSAMAAN PEMBEZAAN BIASA

Oleh
ZANARIAH BINTI ABDUL MAJID

Jun 2004

Pengerusi: Profesor Dato’ Mohamed bin Suleiman, Ph.D. Fakulti: \quad Sains dan Pengajian Alam Sekitar

Dalam tesis ini, suatu kod yang baru dan efisien dibentuk untuk menyelesaikan Masalah Nilai Awal (MNA) bagi sistem Persamaan Pembezaan Biasa (PPB) peringkat pertama dan tinggi menggunakan panjang langkah berubah. Kod baru ini berasaskan formula dari kaedah blok tersirat multilangkah.

Seterusnya, suatu algoritma dan kod yang lebih berstruktur dan efisien telah dibangunkan untuk menyelesaikan sistem PPB peringkat pertama menggunakan peringkat dan panjang langkah berubah.

Kod-kod baru ini dilanjutkan untuk pelaksanaan secara selari bagi sistem besar PPB peringkat pertama dan tinggi. Program jujukan dilaksana menggunakan sistem operasi DYNIX/ptx dan program selari menggunakan Sequent Symmetry SE30 iaitu komputer selari berkongsi ingatan.

Kestabilan C^{q} dalam kaedah multilangkah diperkenalkan dan tumpuan adalah pada penyebaran ralat dalam bentuk yang lebih praktikal.

Keputusan berangka menunjukkan pelaksanaan secara jujukan kod baru dapat mengurangkan langkah dan masa pelaksanaan penyelesaian walaupun melibatkan sistem kecil PPB peringkat pertama dan tinggi berbanding kaedah 1-titik dan kod 2PBVSO dalam Omar (1999).

Pelaksanaan secara selari kod baru tersebut amat sesuai bagi menyelesaikan sistem besar PPB peringkat pertama dan tinggi. Kelajuan maksimum kaedah blok selari dapat dicapai apabila dimensi sistem PPB meningkat.

Kesimpulannya, kod baru yang dibangunkan adalah sesuai bagi penyelesaian sistem PPB peringkat pertama dan tinggi.

ACKNOWLEDGEMENTS

In the Name of Allah

The Most Beneficent, The Most Merciful

First and foremost, I would like to express my sincere and deepest gratitude to the Chairman of the Supervisory Committee, YBhg. Prof. Dato' Dr. Mohamed bin Suleiman for his wise council, guidance, invaluable advice and constant encouragement throughout my research.

I am also very grateful to Associate Professor Dr. Fudziah bt Ismail and Associate Professor Dr Mohamed bin Othman who are also the member of the Supervisory Committee for their advice and motivation towards the completion of this thesis.

To the Ministry of Education, I am also indebted for the scholarship awarded and study leave granted that enables me to pursue with this research.

My special thanks and deepest appreciation goes to my husband, Mohd. Rusdi and our four lovely children, Farah Wahida, Nadia Diana, Muhammad Faris and Emilya Liyana; and my parents for their continuous understanding, caring, encouragement and most of all the everlasting love and patience that are the most essential ingredients and recipe to the completion of this thesis.

Last but not least I would also like to take this opportunity to convey my heartfelt thanks to my friends and all the people involved in helping me with this thesis. This thesis would not have been made possible without their assistance and support.

TABLE OF CONTENTS

Page
DEDICATION ii
ABSTRACT iii
ABSTRAK v
ACKNOWLEDGEMENTS vii
APPROVAL ix
DECLARATION xi
LIST OF TABLES xvi
LIST OF FIGURES xxii
LIST OF ABBREVIATIONS xxvii
CHAPTER
I INTRODUCTION 1
Literature Review 3
Objective of the Thesis 5
Outline of the Thesis 6
The Initial Value Problem 8
Linear Multistep Method 10
Lagrange Interpolation Polynomial 16
Parallel Processing 16
Parallel Algorithm 17
Parallel Architecture 18
The Sequent Symmetry SE30 21
Elements of Parallel Programming 23
Process Creation and Termination 24
Shared and Private Data 25
Scheduling 25
Synchronization and Mutual Exclusion 26
Identifying Independent Loops 27
Performance of Parallel Algorithm 29
II 2-POINT AND 3-POINT IMPLICIT BLOCK METHODS FOR SOLVING FIRST ORDER SYSTEMS OF ODES 31
Introduction 31
Derivation of 2-Point Implicit Block Method 33
Derivation of 3-Point Implicit Block Method 38
Absolute Stability 42
2-Point Implicit Block Method 43
3-Point Implicit Block Method 50
The C^{q} Stability 57
Implementation 62
Iterations of 2-Point Implicit Block Method 62
Iterations of 2-Point Implicit Block Method Half Gauss Seidel 63
Iterations of 3-Point Implicit Block Method 64
Iterations of 3-Point Implicit Block Method Half Gauss Seidel 65
Test Problems 65
Numerical Results 67
Discussion 76
III 2-POINT DIAGONALLY AND FULLY IMPLICIT BLOCK METHODS FOR SOLVING FIRST ORDER SYSTEMS OF ODEs 78
Introduction 78
Variable Step Size Technique 78
Derivation of 2-Point 1 Block Method 80
2-Point 1 Block Diagonally Implicit Method 80
2-Point 1 Block Fully Implicit Method 85
Derivation of 2-Point 2 Block Method 87
2-Point 2 Block Diagonally Implicit Method 87
2-Point 2 Block Fully Implicit Method 93
Derivation of 2-Point 3 Block Method 96
2-Point 3 Block Diagonally Implicit Method 97
2-Point 3 Block Fully Implicit Method 104
1-Point Implicit Method 107
Absolute Stability of 2-Point Diagonally and Fully Implicit Block Method 110
2-Point 1 Block Diagonally Implicit 111
2-Point 1 Block Fully Implicit 116
2-Point 2 Block Diagonally Implicit 120
2-Point 2 Block Fully Implicit 126
2-Point 3 Block Diagonally Implicit 131
2-Point 3 Block Fully Implicit 137
Test Problems 144
Numerical Results 147
Discussion 165
IV 3-POINT DIAGONALLY IMPLICIT AND FULLY IMPLICIT BLOCK METHODS FOR SOLVING FIRST ORDER SYSTEMS OF ODEs 169
Introduction 169
Derivation of 3-Point 1 Block Method 169
3-Point 1 Block Diagonally Implicit Method 169
3-Point 1 Block Fully Implicit Method 176
Derivation of 3-Point 2 Block Method 180
3-Point 2 Block Diagonally Implicit Method 181
3-Point 2 Block Fully Implicit Method 186
Derivation of 3-Point 3 Block Method 190
3-Point 3 Block Diagonally Implicit Method 191
3-Point 3 Block Fully Implicit Method 204
Absolute Stability of 3-Point Diagonally and Fully Implicit Block Method 214
3-Point 1 Block Diagonally Implicit 214
3-Point 1 Block Fully Implicit 221
3-Point 2 Block Diagonally Implicit 227
3-Point 2 Block Fully Implicit 235
3-Point 3 Block Diagonally Implicit 243
3-Point 3 Block Fully Implicit 255
Numerical Results 266
Discussion 283
V 4-POINT DIAGONALLY AND FULLY IMPLICIT BLOCK METHODS FOR SOLVING FIRST ORDER SYSTEMS OF ODEs 286
Introduction 286
Derivation of 4-Point 1 Block Method 287
4-Point 1 Block Diagonally Implicit Method 287
4-Point 1 Block Fully Implicit Method 297
Derivation of 4-Point 2 Block Method 302
4-Point 2 Block Diagonally Implicit Method 302
4-Point 2 Block Fully Implicit Method 311
Absolute Stability of 4-Point Diagonally and Fully Implicit Block Method 319
4-Point 1 Block Diagonally Implicit 319
4-Point 1 Block Fully Implicit 328
4-Point 2 Block Diagonally Implicit 336
4-Point 2 Block Fully Implicit 347
Numerical Results 359
Discussion 373
VI SOLVING FIRST ORDER SYSTEMS OF ODEs USING 2-POINT FULLY IMPLICIT BLOCK METHOD OF VARIABLE STEP SIZE AND ORDER 376
Introduction 376
The Integration Formulae 376
Estimating the Error 377
Order and Step Size Selection 379
Numerical Results 381
Discussion 395
VII SOLVING HIGHER ORDER SYSTEMS OF ODEs DIRECTLY USING 2-POINT FULLY IMPLICIT BLOCK METHOD 398
Introduction 398
Derivation of 2-Point 1 Block Fully Implicit Method for Solving Higher Order ODEs 399
Corrector 399
Predictor 407
1-Point Implicit Method for Solving Higher Order ODEs 419
Absolute Stability 422
Test Problems 432
Numerical Results 437
Discussion 454
VIII CONCLUSION 457
Summary 457
Future Work 465
BIBLIOGRAPHY 467
APPENDICES 473
BIODATA OF THE AUTHOR 515

LIST OF TABLES

Table Page
1 Hardware Configuration of Sequent SE30 22
2 Integration Coefficients of the First Point of the 2-Point Implicit Block Method 35
3 Integration Coefficients of the Second Point of the 2-Point Implicit Block Method 37
4 Integration Coefficients of the First Point of the 3-Point Implicit Block Method 40
$5 \quad$ Values of \bar{h} for AMM of order 7 and 9 in Definition 2.0 60
6 Magnitudes of the error at $\mathrm{h}=0.1$ for AMM of order 7 61
$7 \quad$ Magnitudes of the error at $\mathrm{h}=0.4$ for AMM of order 7 61
8 Magnitudes of the error at $\mathrm{h}=0.07$ for AMM of order 9 61
9 Magnitudes of the error at $\mathrm{h}=0.2$ for AMM of order 9 62
10 Comparison between the $2 \mathrm{PZ}, 2 \mathrm{PR}, 2 \mathrm{PZhG}, 3 \mathrm{PZ}, 3 \mathrm{PR}$ and 3 PZhG Methods for Solving Problem 2.1 71
11 Comparison between the $2 \mathrm{PZ}, 2 \mathrm{PR}, 2 \mathrm{PZhG}, 3 \mathrm{PZ}, 3 \mathrm{PR}$ and 3 PZhG Methods for Solving Problem 2.2 72
12 Comparison between the $2 \mathrm{PZ}, 2 \mathrm{PR}, 2 \mathrm{PZhG}, 3 \mathrm{PZ}, 3 \mathrm{PR}$ and 3 PZhG Methods for Solving Problem 2.3 73
13 Comparison between the 2PZ, 2PR, 2PZhG, 3PZ, 3PR and 3PZhG Methods for Solving Problem 2.4 74
14 Comparison between the $2 \mathrm{PZ}, 2 \mathrm{PR}, 2 \mathrm{PZhG}, 3 \mathrm{PZ}, 3 \mathrm{PR}$ and 3 PZhG Methods for Solving Problem 2.5 75
15 Step Size Ratio 79
16 Comparison between the 1PI, 1PVSO, 2P1DI, 2P1FI, 2P2DI, 2P2FI, 2P3DI, 2P3FI Methods for Solving Problem 3.1 150

Comparison between the 1PI, 1PVSO, 2P1DI, 2P1FI, 2P2DI, 2P2FI, 2P3DI, 2P3FI Methods for Solving Problem 3.2
Comparison between the 1PI, 1PVSO, 2P1DI, 2P1FI, 2P2DI, 2P2FI, 2P3DI, 2P3FI Methods for Solving Problem 3.3 152
Comparison between the 1PI, 1PVSO, 2P1DI, 2P1FI, 2P2DI, 2P2FI, 2P3DI, 2P3FI Methods for Solving Problem 3.4 153
Comparison between the 1PI, 1PVSO, 2P1DI, 2P1FI, 2P2DI, 2P2FI, 2P3DI, 2P3FI Methods for Solving Problem 3.5 154
Numerical Results of 2P1FI Method for Solving Problem 3.6 When $\mathrm{N}=4000,8000$ and 18000 155
Numerical Results of 2P2FI Method for Solving Problem 3.6 When $N=4000,8000$ and 18000 156
Numerical Results of 2P3FI Method for Solving Problem 3.6 When $N=4000,8000$ and 18000 157
Numerical Results of 2P1FI Method for Solving Problem 3.7 When $\mathrm{N}=4000,8000$ and 18000 158
Numerical Results of 2P2FI Method for Solving Problem 3.7 When $\mathrm{N}=4000,8000$ and 18000 159
Numerical Results of 2P3FI Method for Solving Problem 3.7 When $\mathrm{N}=4000,8000$ and 18000 160
Numerical Results of 2P1FI Method for Solving Problem 3.8 When $\mathrm{N}=3000$ and 6000 161
Numerical Results of 2P2FI Method for Solving Problem 3.8 When $\mathrm{N}=3000$ and 6000 162
Numerical Results of 2P3FI Method for Solving Problem 3.8 When $\mathrm{N}=3000$ and 6000 163
The Speed Up and Efficiency of 2P1FI, 2P2FI and 2P3FI Methods for Solving Problem 3.6, 3.7 and 3.8 164
Comparison between the 3P1DI, 3P1FI, 3P2DI, 3P2FI, 3P3DI and 3P3FI Methods for Solving Problem 3.1 268
Comparison between the 3P1DI, 3P1FI, 3P2DI, 3P2FI, 3P3DI and 3P3FI
Methods for Solving Problem 3.2 269
33 Comparison between the 3P1DI, 3P1FI, 3P2DI, 3P2FI, 3P3DI and 3P3FI Methods for Solving Problem 3.3 270
34 Comparison between the 3P1DI, 3P1FI, 3P2DI, 3P2FI, 3P3DI and 3P3FI Methods for Solving Problem 3.4 271
35
Comparison between the 3P1DI, 3P1FI, 3P2DI, 3P2FI, 3P3DI and 3P3FI Methods for Solving Problem 3.5 272
36 Numerical Results of 3P1FI Method for Solving Problem 3.6 When $\mathrm{N}=120,3000$ and 18000 273
37
Numerical Results of 3P2FI Method for Solving Problem 3.6 When $\mathrm{N}=120,3000$ and 18000 274
38
Numerical Results of 3P3FI Method for Solving Problem 3.6 When $\mathrm{N}=120,3000$ and 18000 275
39
Numerical Results of 3P1FI Method for Solving Problem 3.7 When $\mathrm{N}=120,3000$ and 18000 276
40 Numerical Results of 3P2FI Method for Solving Problem 3.7 When $\mathrm{N}=120,3000$ and 18000 277
41 Numerical Results of 3P3FI Method for Solving Problem 3.7 When $\mathrm{N}=120,3000$ and 18000 278
42 Numerical Results of 3P1FI Method for Solving Problem 3.8 When $\mathrm{N}=3000$ and 6000 279
43 Numerical Results of 3P2FI Method for Solving Problem 3.8 When $\mathrm{N}=3000$ and 6000 280
44 Numerical Results of 3P3FI Method for Solving Problem 3.8 When When $\mathrm{N}=300$ and 3000 281
45 The Speed Up and Efficiency of 3P1FI, 3P2FI and 3P3FI Methods for Solving Problem 3.6, 3.7 and 3.8 282
46 Comparison between the 4P1DI, 4P1FI, 4P2DI and 4P2FI Methods for Solving Problem 3.1 361
47 Comparison between the 4P1DI, 4P1FI, 4P2DI and 4P2FI Methods for Solving Problem 3.2 362
48 Comparison between the 4P1DI, 4P1FI, 4P2DI and 4P2FI Methods for Solving Problem 3.3 363
49 Comparison between the 4P1DI, 4P1FI, 4P2DI and 4P2FI Methods for Solving Problem 3.4 364
50 Comparison between the 4P1DI, 4P1FI, 4P2DI and 4P2FI Methods for Solving Problem 3.5 365
51 Numerical Results of 4P1FI Method for Solving Problem 3.6 When $\mathrm{N}=4000,8000$ and 12000 366
52 Numerical Results of 4P2FI Method for Solving Problem 3.6 When $\mathrm{N}=120,4000$ and 12000 367
53 Numerical Results of 4P1FI Method for Solving Problem 3.7 When $N=4000,8000$ and 18000 368
54 Numerical Results of 4P2FI Method for Solving Problem 3.7 When $\mathrm{N}=120,4000$ and 18000 369
55 Numerical Results of 4P1FI Method for Solving Problem 3.8 When $\mathrm{N}=3000$ and 6000 370
56 Numerical Results of 4P2FI Mcthod for Solving Problem 3.8 When $\mathrm{N}=100$ and 2000 371
57 The Speed Up and Efficiency of 4P1FI and 4P2FI Methods for Solving Problem 3.6, 3.7 and 3.8 372
58 Comparing results of 2PFVSO and 2PBVSO Methods for Solving Problem 3.1 383
59 Comparing results of 2PFVSO and 2PBVSO Methods for Solving Problem 3.2 384
60 Comparing results of 2PFVSO and 2PBVSO Methods for Solving Problem 3.3 385
61 Comparing results of 2 PFVSO and 2PBVSO Methods for Solving Problem 3.4 386
62 Comparing results of 2PFVSO and 2PBVSO Methods for Solving Problem 3.5 387
63 Comparing results of 2PFVSO and 2PBVSO Methods
64 Comparing results of 2PFVSO and 2PBVSO Methods for Solving Problem 3.6 When $\mathrm{N}=1000$ and $[0,10$] 389
65 Numerical Results of 2PFVSO Method for Solving Problem 3.6 When $\mathrm{N}=8000$ and 18000 390
66 Numerical Results of 2PFVSO Method for Solving Problem 3.7 When $\mathrm{N}=1000,8000$ and 18000 391
67 Numerical Results of 2PFVSO Method for Solving Problem 3.8 When $\mathrm{N}=2000$ and 4000 392
68 The Ratio Execution Times of the Sequential and Parallel 2PFVSO Method to the 2PBVSO Method for Solving Problem 3.1 to 3.6 393
69 The Speed Up and Efficiency of the 2PFVSO Method for Solving Problem 3.6, 3.7 and 3.8 394
70 The Ratio Execution Times of the Sequential 2PFVSO Method to the 2P1FI, 2P2FI and 2P3FI Methods for Solving Problem 3.1 to 3.5 395
71 Numerical results of 1PIDIR, 1PVSO, 2P1FI, 2P1FDIR and 2PBVSO Methods for Solving Problem 7.1 439
72 Numerical results of 1PIDIR, 1PVSO, 2P1FI, 2P1FDIR and 2PBVSO Methods for Solving Problem 7.2 440
73 Numerical results of 1PIDIR, 1PVSO, 2P1FI, 2P1FDIR and 2PBVSO Methods for Solving Problem 7.3 441
74 Numerical results of 1PIDIR, 1PVSO, 2P1FI, 2P1FDIR and 2PBVSO Methods for Solving Problem 7.4 442
75 Numerical results of 1PIDIR, 1PVSO, 2P1FI, 2P1FDIR and 2PBVSO Methods for Solving Problem 7.5 443
76 Numerical results of 1PIDIR, 1PVSO, 2P1FI, 2P1FDIR and 2PBVSO Methods for Solving Problem 7.6 444
77 Numerical results of 2P1FI, 2P1FDIR and 2PBVSO Methods for Solving Problem 7.7 445
78 Numerical results of 2P1FI, 2P1FDIR and 2PBVSO Methods for Solving Problem 7.8 446
79 Numerical results of 2P1FDIR and 2PBVSO Methods for Solving Problem 7.9 When $\mathrm{N}=10$ in interval $[0,10]$ 447
80 Numerical results of 2P1FDIR and 2PBVSO Methods for Solving Problem 7.9 When $\mathrm{N}=100$ in interval $[0,10]$ 448
81 Numerical results of 2P1FDIR and 2PBVSO Methods for Solving Problem 7.9 When $\mathrm{N}=200$ in interval $[0,10]$ 449
82 Numerical results of 2P1FDIR Method for Solving Problem 7.9 When $\mathrm{N}=1000$ and 2000 450
83 Numerical results of 2P1FDIR Method for Solving Problem 7.10 When $\mathrm{N}=101$ 451
84 The Ratio Execution Times of the Sequential and Parallel 2P1FDIR Method to the 2PBVSO Method for Solving Problem 7.1 to 7.10 452
85 The Speed Up and Efficiency of the 2P1FDIR Method for Solving Problem 7.9 and 7.10 453

LIST OF FIGURES

Figure Page
1 Shared Memory Parallel Computer 22
2 2-Point Implicit Block Method 31
3 3-Point Implicit Block Method 32
4 Stability Region for 2-Point Implicit Block Method When $\mathrm{r}=0$ 46
5 Stability Region for 2-Point Implicit Block Method When $\mathrm{F}=1$ 48
6 Stability Region for 2-Point Implicit Block Method When $\mathrm{r}=2$ 50
7 Stability Region for 3-Point Implicit Block Method When $r=0$ 52
8 Stability Region for 3-Point Implicit Block Method When r=1 54
9 Stability Region for 3-Point Implicit Block Method When r=2 57
10 2-Point 1 Block Method 80
11 2-Point 2 Block Method 87
12 2-Point 3 Block Method 97
13 1-Point Implicit Method 107
14 Stability Region for 2-Point 1 Block Diagonally Implicit Method When $\mathrm{r}=1$ 113
15 Stability Region for 2-Point 1 Block Diagonally Implicit Method When $\mathrm{r}=2$ 114
16 Stability Region for 2-Point 1 Block Diagonally Implicit Method When $\mathrm{r}=\frac{1}{2}$ 116
17 Stability Region for 2-Point 1 Block Fully Implicit Method When $\mathrm{r}=1$ 117
18
Stability Region for 2-Point 1 Block Fully Implicit Method

$$
\text { When } r=2
$$

19 Stability Region for 2-Point 1 Block Fully Implicit Method When $\mathrm{r}=\frac{1}{2}$120

20 Stability Region for 2-Point 2 Block Diagonally Implicit Method When $\mathrm{r}=1, \mathrm{q}=1$122

21 Stability Region for 2-Point 2 Block Diagonally Implicit Method When $r=2, q=2$124

22 Stability Region for 2-Point 2 Block Diagonally Implicit Method When $\mathrm{r}=1, \mathrm{q}=\frac{1}{2}$

Stability Region for 2-Point 2 Block Fully Implicit Method
When $\mathrm{r}=1, \mathrm{q}=1$
Stability Region for 2-Point 2 Block Fully Implicit Method When $r=2, q=2$129

25 Stability Region for 2-Point 2 Block Fully Implicit Method When $\mathrm{r}=1, \mathrm{q}=\frac{1}{2}$

Stability Region for 2-Point 3 Block Diagonally Implicit Method
When $r=1, q=1, p=1$
27 Stability Region for 2-Point 3 Block Diagonally Implicit Method When $r=2, q=2, p=2$ 135

28 Stability Region for 2-Point 3 Block Diagonally Implicit Method When $\mathrm{r}=1, \mathrm{q}=1, \mathrm{p}=\frac{1}{2}$
Stability Region for 2-Point 3 Block Fully Implicit Method When $\mathrm{r}=1, \mathrm{q}=1, \mathrm{p}=1$ 139

30 Stability Region for 2-Point 3 Block Fully Implicit Method When $\mathrm{r}=2, \mathrm{q}=2, \mathrm{p}=2$141

31 Stability Region for 2-Point 3 Block Fully Implicit Method When $\mathrm{r}=1, \mathrm{q}=1, \mathrm{p}=\frac{1}{2}$
3-Point 1 Block Method 169
33
3-Point 2 Block Method 180
34
3-Point 3 Block Method 191
35
Stability Region for 3-Point 1 Block Diagonally Implicit Method When $\mathrm{r}=1$ 217
36
Stability Region for 3-Point 1 Block Diagonally Implicit Method When $\mathrm{r}=2$ 21937 Stability Region for 3-Point 1 Block Diagonally Implicit MethodWhen $\mathrm{r}=\frac{1}{2}$221
38
Stability Region for 3-Point 1 Block Fully Implicit Method When $\mathrm{r}=1$ 223
39
Stability Region for 3-Point 1 Block Fully Implicit Method When $\mathrm{r}=2$ 225
40
Stability Region for 3-Point 1 Block Fully Implicit Method When $\mathrm{r}=\frac{1}{2}$ 22741 Stability Region for 3-Point 2 Block Diagonally Implicit MethodWhen $\mathrm{r}=1, \mathrm{q}=1$230
42Stability Region for 3-Point 3 Block Diagonally Implicit MethodWhen $\mathrm{r}=1, \mathrm{q}=1, \mathrm{p}=1$246

