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The V/P/O catalysts were prepared by using (a) organic method (VPO); (b) via 

dihydrate phase (VPD) and (c) aqueous method (VPA). The effect of calcination time, 

preparation method and addition of metal cations as dopants to the physico-chemical 

properties were studied using nitrogen physisorption measurements, scanning electron 

microscopy (SEM), X-ray diffraction, inductively coupled plasma (ICP) 

spectroscopy, redox titration, temperature programmed desorption (TPD) and 

temperature programmed reduction (TPR). 

Surface areas of these mesoporous vanadium phosphorous oxides were apparently 

influenced by the length of calcination time, preparation method and incorporation of 

metal cations. The changes of surface areas were related to the changes of surface and 

bulk morphologies as evidenced by SEM. 

X-ray diffraction revealed that while all of the VIP10 were consisted of predominantly 

v4+ phase of (V0)2P207, minority v5+ phase which resumed many crystalline forms 

made up the remaining portion. Addition of metal cations to the basic matrix resulted 
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in slight loss of crystallinity for V/P/O by VPO method but a huge effect to VIP10 by 

VPD method which also accompanied by a marked increase in lattice strains. 

Average oxidation state of vanadium (determined by redox titration) can be altered by 

(i) increase time of calcinations, (ii) predisposed by the preparation method and (iii) 

incorporation of metal cations. 

The persistently lowering of the amount of oxygen atoms that were available 

thermally until stabilisation at around half a monolayer suggests that the catalytic 

activity, and hence the conversion of hydrocarbon is stabilised after 100 h. From the 

extra peak that appeared at higher temperature during TPR by HZ for VIP10 calcined 

for longer duration, it was postulated that the selective nature of equilibrated VPIO is 

originated from these oxygen atoms. 

Based on the above argument, it was suggested that the VPD type of preparation 

would result in VPIO with more active and selective nature than VPO and VPA. The 

addition of metal cations to bulk VPO was shown to increase the activity in the order 

of Zn > VPO (bulk) > Cr > Co and selectivity in the order of Co > Cr > Zn > VPO 

(bulk). While for VPD the activity and selectivity will be in the order of Co > VPD 

(bulk) > Cr > Zn and Zn > Cr > VPD (bulk) = Co, respectively. 



Abstrak thesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk Doktor Falsafah 

SINTESIS DAN PENCIRIAN MANGKIN VANADIUM FOSFORUS OKSIDA 

Oleh 

LOO1 MING HOONG 

Pengerusi: Taufiq Yap Yun Hin, PID.  

Fakulti: Sains dan Pengajian Alam Sekitar 

Mangkin VIP10 telah disintesis dengan menggunakan (a) kaedah organik (VPO); (b) 

melalui fasa dihidrat (VPD) dan (c) kaedah akuas (VPA). Kesan daripada ternpoh 

pengkalsinan, keadah sintesis dan penambahan kation-kation logam sebagai 

penggalak kepada ciri-ciri fiziko-kimia telah dikaji dengan menggunakan kaedah fizi- 

jerapan nitrogen, mikroskop irnbasan elektron (SEM), pembelauan sinar-X, 

spektroskopi plasma pasangan induktif (ICP), penitratan redoks, penyahjerapan suhu 

berprogram (TPD) dan penurunan suhu berprogram (TPR). 

Luas permukaan oksida-oksida vanadium fosforus yang berciri liang meso ini 

dipengaruhi oleh tempoh pengkalsinan, cara sintesis dan juga penarnbahan kation- 

kation logam. Perubahan has permukaan ini boleh dikaitkan dengan perubahan 

morfologi permukaan dan pukal seperti yang dikesan oleh SEM. 

Pembelauan sinar-X menunjukkan bahawa semua V/P/O terdiri daripada fasa v4+ 

dalam bentuk (V0)2P207 sebagai fasa majority dan fasa minoriti v5' yang menpunyai 

pelbagai bentuk kristal. Sel unit untuk prekursor dan mangkin telah ditentukan 

sebagai ortorombik dengan pemalar-pemalar kekisi yang menyerupai bahan piawai. 



Penambahan kation-kation logam kepada matriks asas menyebabkan sedikit 

pengurangan dalam kekristalan untuk V/P/O yang disintesis melalui kaedah VPO. 

Kesan yang nyata kepada sifat kekristalan dan panambahan regangan kekisi VP/O 

dengan kaedah VPD telah diperhatikan. 

Keadaan pengoksidaan purata untuk vanadium (dengan penitratan redoks) boleh 

diubah dengan (i) menambahkan tempoh pengkalsinan, (ii) kaedah sintesis dan (iii) 

penambahan kation-kation logam. 

Atom-atom oksigen yang diperolehi secara tenna sentiasa berkurangan sehingga 

tahap stabil pada lebih kurang setengah mono-lapisan mencadangakan bahawa aktiviti 

mangkin dan seterusnya penukaran hidrokarbon akan stabil selepas 100 j. Daripada 

puncak tambahan yang muncul pada suhu yang lebih tinggi semasa TPR dengan 

hydrogen untuk VR/O yang dikalsinkan dalam masa yang lebih panjang, cadangan 

bahawa sifat pemilihan V/P/O dalam keadaan keseimbangan berasal daripada atom- 

atom oksigen ini telah dibuat. 

Berasaskan kepada perbincangan di atas, kaedah VPD akan menghasilkan VP/O 

yang bersifat lebih aktif dan pemilih daripada kaedah VPO dan VPA. Penambahan 

kation-kation logam kepada pukal VPO akan meningkatkan aktiviti dalam susunan Zn 

> VPO (pukal) > Cr > Co dan pemilihan dalam susunan Co > Cr > Zn > VPO (pukal). 

Semetara untuk VPD pula, aktiviti dan pemilihan akan berada dalam susunan Co > 

VPD (pukal) > Cr > Zn dan Zn > Cr > VPD (pukal) = Co masing-masing. 
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