
 

 
 

UNIVERSITI PUTRA MALAYSIA 
 
 

STRUCTURAL MAGNETIC AND ELECTRICAL PROPERTIES OF 
LA0.67CA0.33MN03 PEROVSKITE SYNTHESIZED VIA 
CONVENTIONAL AND CO-PRECIPITATION METHODS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

HAZAR ALI AHMED ALI SALAMA. 
 
 

FSAS 2004 16 

http://www.a-pdf.com/?dw-demo


STRUCTURAL MAGNETIC AND ELECTRICAL PROPERTIES OF 
Lao.67Cao33Mn03 PEROVSKITE SYNTHESIZED VIA CONVENTIONAL AND 

CO-PRECIPITATION METHODS 

HAZAR ALI AHMED ALI SALAMA 

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, 
in Fulfilment of the Requirements for the Degree of Master of Science 

June 2004 



DEDICATION 

To: 

My Parents.. . . . .. 

My Brothers and sisters 

My sister, Umyma . . . . . 

Anas 
It's all for you son.. . 

My beloved new born, 
Mohamed 



Abstract of thesis presented to the Senate of Unkersiti Putra Malaysia in fulfilment of 
the requirements for the degree of Master of Science 

STRUCTURAL MAGNETIC AND ELECTRICAL PROPERTIES OF 
Lao.67Cao.33Mn03 PEROVSKITE SYNTHESIZED VIA CONVENTIONAL AND 

CO-PRECIPITATION METHODS 

HAZAR ALI AHMED ALI SALAMA 

June 2004 

Chairman: Professor Abdul Halim bin Shaari, Ph.D. 

Faculty : Science and Environmental Studies 

The structural, magnetic and electrical properties of lanthanum manganites having a 

nominal composition of Lao67C~.33Mn03 synthesized via co-precipitation method 

(COP) following sintering treatments at temperature ranging between 1100°C and 

1350°C are reported. XRD pattern showed the monophasic orthorhombic structure of the 

sample sintered within the above temperature range for a sintering period of 24 hours. 

The SEM micrographs showed that the grains are well grown and clear grain boundaries 

are observed. The grain size increased significantly form 1.7pm to 10.3pm as the 

sintering temperature increases and were well compacted. Large grains growth with 

layered features is observed in samples sintered at higher temperature. Ferromagnetic- 

paramagnetic phase transition were observed in the f-temperature curves for all the 

sintered samples. The Curie temperature, T, shifts to lower temperature as the sintering 

temperature, Ts increases. All the samples show the typical ferromagnetic-paramagnetic 



phase transition, Tc in the range 267.9 K-259.7 K. The transport properties show the 

transition of semiconducting to metallic conductivity at Tp, the transition occurs within 

the range 276 K - 288 K which is higher compared with the data reported earlier. Based 

on the semiconducting model, Ln(R) oc (- E, /K ,T )  it was observed that the Activation 

energy, E, value ranges from 100.40 to 118.73 meV. The colossal magnetoresistance 

effect appears at low temperature and the highest value of CMR effect was observed at 

temperature approaching Tp. The highest CMR value was observed near the insulator- 

metal transition. The maximum MR with a value of -68.2% for H = 1.06 T is obtained 

in the sample prepared at 1 200°C. 

The specimens of L a 0 . ~ ~ C a 0 ~ ~ h h 0 ~  prepared via COP method were compared to the 

specimen prepared by Conventional Powder method (CPM) for samples sintered at 

1300°C. XRD spectrum for the samples exhibit orthorhombic distorted and single-phase 

perovskite structures. The Curie temperature, Tc and the metal-insulator transition 

temperature, Tp were obtained by ac susceptibility and four- point probe techniques. The 

results showed that Tc and Tp were 260 K and 276 K respectively for the COP specimen, 

which is higher than the results obtained by specimen prepared by CPM with Tc and Tp 

245 K and 246 K respectively. These results are due to the high chemical homogeneity 

and high density for the COP specimen as compared to the CPM specimen. The CMR 

for the (COP) specimen is observed near the insulator- metal transition with the value of 

- 56% for H = 1.06 T while for the CPM the CMR value of -34% 





vii 

267.6 K - 259.7 K. Sifat pengangkutan menunjukkan peralihan semikonduktor ke sifat 

logam pada T,, peralihan terhasil pada julat 276 K - 288 K di mana ia lebih tinggi 

daripada data yang sebelumnya. Berdasarkan model semikonduktor, 

Ln(R) a (- E, / K , T )  kelihatan nilai tenaga teruja, E, pada julat 92.40 ke 1 18.73 meV. 

Nilai-nilai ini adalah lebih tinggi dengan signifikan daripada yang didapati. Kesan 

raksaksa magnetorintangan muncul pada suhu rendah dan nilai yang tertinggi untuk 

kesan CMR kelihatan pada suhu menghampiri Tp. Nilai CMR yang paling tinggi 

kelihatan menghampiri peralihan penebat-logam. Nilai MR maksimum dengan nilai 

-68.2% pada H = 1.06 T diperolehi pada sampel yang disediakan pada suhu 1200°C. 

Sampel L%&ao 33Mn03 yang disediakan melalui kaedah pemendakan dibandingkan 

dengan sampel yang disediakan dengan kaedah tindakbalas pepejal untuk sampel-sampel 

yang disinter pada suhu 1300°C. Spektrum XRD bagi sampel mempamerkan penyerotan 

orthorombik dan struktur perovskit fasa tunggal. Suhu Curie, T, dan suhu peralihan 

logam-penebat, Tp diperolehi dengan kaedah kerintangan a.u dan teknik penduga empat 

titik. Keputusan menunjukkan T, dan Tp adalah 260 K dan 276 K masing-masing untuk 

sampel COP, di mana nilainya adalah lebih tinggi daripada keputusan yang diperolehi 

oleh sampel CPM dengan T, dan T, adalah 245 K dan 246 K masing-masing. Keputusan 

ini adalah berkaitan dengan homogeniti dan ketumpatan tinggi pada sampel COP 

dibandingkan dengan sampel CPM. CMR pada sampel COP diperhatikan menghampiri 

peralihan penebat-logam dengan nilai - 56% untuk H = 1.06 T dan nilai CMR sampel 

CPM bernilai - 34%. 
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CHAPTER I 

INTRODUCTION 

Since the discovery of high T, superconductivity in copper oxides, in 1986, transition- 

metal oxides of perovskite structure are receiving much attention. A few years after the 

initial discovery, in 1993, more excitement greeted reports that certain manganese 

oxides showed a huge change in electrical resistivity when a magnetic field was applied. 

This effect is generally known as magnetoresistance, but the resistivity change observed 

in these oxides was so large that it could not be compared with any other forms of 

magnetoresistance. The effect observed in these materials "the manganese perovskites" 

was therefore dubbed "colossal" magnetoresistance to distinguish it from the giant 

magnetoresistance (GMR) observed in magnetic multilayers and granular films. 

The discovery; first reported by researchers at Siemens in Germany and a little later by a 

group at Bell Labs in New Jersey raised expectations of a new generation of magnetic 

devices and sensors, and launched a frenetic scientific race to understand the cause of- 

the effect. Today, the promise of great strides in technology remains a challenge, but the 

perovskites are receiving a lot of attention in their own right (Fontcuberta, 1999). 

One reason for this growing interest is the rare-earth manganese oxides, the manganites. 

In the beginning of the 1990's it was found that some manganites could exhibit a 

magnetic phase transition close to room temperature, which were accompanied by a 



magnetic field driven -metal-insulator transition (Chahara et al, 1993, Helmolt et al, 

1993, Jin et al, 1994). 

In general, magnetoresistance is a measure of the change in electrical resistance as 

function of the magnetic field Hand is usually calculated as: 

where R(H) denotes the field dependent resistance and R(0) the resistance at zero 

magnetic field. 

There can be many different physical effects causing magnetoresistance; some of the 

most common ones are shown in Figure. 1.1. In the mid 1 9 ' ~  century it was pointed out 

that the electric resistance in magnetic materials depends on the orientation of an applied 

magnetic field relative to the orientation of the crystal itself, (Thomson, 1857). A 

phenomenon given the name anisotropic magnetoresistance is shown in Figure. 1. la. On 

the other hand, the ordinary magnetoresistance (Figure 1.1 b), which is related to the Hall 

Effect, originates from the impact of the Lorentz-force on moving charge carriers. In 

absolute numbers, the magnitudes of the anisotropic and the ordinary 

magnetoresistances are moderate and typically not more than a few percent. In the end 

of the 1980's it was discovered that multi-layers of magnetic and nonmagnetic metallic 

materials could show a magnetoresistance of much higher magnitude than previously 

observed (Baibich et al., 1988). The prefix giant was then used to describe the 

magnetoresistance (Figure 1. lc). Only about half a decade later it was discovered that 

doped rare-earth manganese oxides by themselves could possess even higher 



magnetoresistance (in some cases close to 100%) (Chahara et al., 1993; Helmolt et a]., 

1993; Jin et al., 1994) The physical origin of the magnetoresistance in manganites was 

completely different from the giant magnetoresistance effect, and hence the term 

colossal was used to describe the effect. The general behavior of colossal 

magnetoresistance is shown in Figure. 1.1 d. 

In magnetic tunnel junctions there is another type of magnetoresistance, known as 

tunnelling magnetoresistance or sometimes junction magnetoresistance, Figure 1. le and 

Figure 1. lf. The resistance of a magnetic tunnel junction is lower when the 

magnetization of the electrodes is parallel than in the antiparallel configuration. It is the 

ability to switch between these two configurations that is the origin of the tunnel 

magnetoresistance. 



(b) Ordinary MR 

(c) Giant MR 

I 
PoH (T) 

(d) Colossal MR 

(e) Tunnelling MR 

(f) Tunnelling MR (bulk) 

Figure 1.1 : A summary of the most common types of magnetoresistance (MR). The 
anisotropic, ordinary and colossal MR can be considered as intrinsic effects of the 
material, while giant and tunnelling MR depend on extrinsic parameters. The 
tunnelling MR in e) appears in magnetic tunnel junctions, so called spin-valves, while 
intergrain tunneling in powder and polycrystalline bulk causes a smearing as shown in 
panel f). Note the different magnitude of the scales. 
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Anisotropic Magnetoresistance (AMR) measure the change in resistance seen when the 

current flowing through a sample changes from being parallel to internal magnetization 

to being perpendicular to it. The materials that exhibit AMR include Permalloy (NiFe) 

and iron filings. The Tunneling Magnetoresistance (TMR) affect a large change in the 

electrical resistance upon the application of a magnetic field of two magnetic layers 

separated by an insulating layer. The Giant Magnetoresistance (GMR) which describes 

the behavior of materials that have alternating layers of ferromagnetic and nonmagnetic 

materials deposited on an insulated substrate.   he very Large Magnetoresistance 

(VLMR) effect is seen in homogenous material, and is very similar to GMR. 

Tablel.1: Comparison of MR Types 

Type of MR Increase in Resistance % 

AMR 20 

GMR 

CMR 

200 

100,000 


