

UNIVERSITI PUTRA MALAYSIA

STRUCTURAL MAGNETIC AND ELECTRICAL PROPERTIES OF LA0.67CA0.33MN03 PEROVSKITE SYNTHESIZED VIA CONVENTIONAL AND CO-PRECIPITATION METHODS

HAZAR ALI AHMED ALI SALAMA.

FSAS 2004 16

STRUCTURAL MAGNETIC AND ELECTRICAL PROPERTIES OF La_{0.67}Ca_{0.33}MnO₃ PEROVSKITE SYNTHESIZED VIA CONVENTIONAL AND CO-PRECIPITATION METHODS

By

HAZAR ALI AHMED ALI SALAMA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

June 2004

DEDICATION

To:

My Parents.....

My Brothers and sisters

My sister, Umyma

Anas It's all for you son...

My beloved new born, Mohamed

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science

STRUCTURAL MAGNETIC AND ELECTRICAL PROPERTIES OF La_{0.67}Ca_{0.33}MnO₃ PEROVSKITE SYNTHESIZED VIA CONVENTIONAL AND CO-PRECIPITATION METHODS

By

HAZAR ALI AHMED ALI SALAMA

June 2004

Chairman: Professor Abdul Halim bin Shaari, Ph.D.

Faculty : Science and Environmental Studies

The structural, magnetic and electrical properties of lanthanum manganites having a nominal composition of $La_{0.67}Ca_{0.33}MnO_3$ synthesized via co-precipitation method (COP) following sintering treatments at temperature ranging between 1100°C and 1350°C are reported. XRD pattern showed the monophasic orthorhombic structure of the sample sintered within the above temperature range for a sintering period of 24 hours. The SEM micrographs showed that the grains are well grown and clear grain boundaries are observed. The grain size increased significantly form 1.7µm to 10.3µm as the sintering temperature increases and were well compacted. Large grains growth with layered features is observed in samples sintered at higher temperature. Ferromagnetic-paramagnetic phase transition were observed in the χ '-temperature curves for all the sintered samples. The Curie temperature, T_c shifts to lower temperature as the sintering temperature, T_s increases. All the samples show the typical ferromagnetic-paramagnetic

phase transition, T_c in the range 267.9 K~259.7 K. The transport properties show the transition of semiconducting to metallic conductivity at T_p, the transition occurs within the range 276 K ~ 288 K which is higher compared with the data reported earlier. Based on the semiconducting model, $Ln(R) \propto (-E_a/K_BT)$ it was observed that the Activation energy, E_a value ranges from 100.40 to 118.73 meV. The colossal magnetoresistance effect appears at low temperature and the highest value of CMR effect was observed at temperature approaching T_p. The highest CMR value was observed near the insulatormetal transition. The maximum MR with a value of ~68.2% for H = 1.06 T is obtained in the sample prepared at 1200°C.

The specimens of La_{0.67}Ca_{0.33}MnO₃ prepared via COP method were compared to the specimen prepared by Conventional Powder method (CPM) for samples sintered at 1300°C. XRD spectrum for the samples exhibit orthorhombic distorted and single-phase perovskite structures. The Curie temperature, T_c and the metal-insulator transition temperature, T_p were obtained by ac susceptibility and four- point probe techniques. The results showed that T_c and T_p were 260 K and 276 K respectively for the COP specimen, which is higher than the results obtained by specimen prepared by CPM with T_c and T_p 245 K and 246 K respectively. These results are due to the high chemical homogeneity and high density for the COP specimen as compared to the CPM specimen. The CMR for the (COP) specimen is observed near the insulator- metal transition with the value of ~ 56% for H = 1.06 T while for the CPM the CMR value of ~34%

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

STRUKTUR, SIFAT MAGNETIK DAN ELEKTRIKAL La_{0.67}Ca_{0.33}MnO₃ PEROVSKITE YANG DISEDIAKAN MELALUI KAEDAH PEMENDAKAN

Oleh

HAZAR ALI AHMED ALI SALAMA

Jun 2004

Pengerusi: Profesor Abdul Halim bin Shaari, Ph.D.

Fakulti : Sains dan Pengajian Alam Sekitar

Struktur, sifat magnet dan elektrik bagi lanthanum manganites dengan komposisi nominal La_{0.67}Ca_{0.33}MnO₃ yang disediakan melalui kaedah pemendakan diikuti dengan persinteran pada suhu di antara 1100°C ke 1350°C dilaporkan. Keputusan XRD menunjukkan struktur fasa tunggal orthorombik pada sampel yang disinter pada suhu tersebut pada kadar 24 jam. Mikrograf SEM menunjukkan saiz butiran yang jelas pembesaranaya dan sempadan butiran yang jelas. Saiz butiran bertambah secara signifikan dari 1.7 μ m ke 10.3 μ m berkadar langsung dengan suhu persinteran dan semakin padat. Butiran yang besar dan berlapis kelihatan pada sampel yang disinter pada lengkungan suhu χ ' untuk semua sampel yang disinter. Suhu Curie,T_c beranjak ke suhu yang lebih rendah berkadar songsang dengan suhu persinteran,T_s. Semua sampel menunjukkan fasa peralihan feromagnet-paramagnet,T_c yang tipikal pada julat

267.6 K ~ 259.7 K. Sifat pengangkutan menunjukkan peralihan semikonduktor ke sifat logam pada T_p, peralihan terhasil pada julat 276 K ~ 288 K di mana ia lebih tinggi daripada data yang sebelumnya. Berdasarkan model semikonduktor, $Ln(R) \propto (-E_a/K_BT)$ kelihatan nilai tenaga teruja, E_a pada julat 92.40 ke 118.73 meV. Nilai-nilai ini adalah lebih tinggi dengan signifikan daripada yang didapati. Kesan raksaksa magnetorintangan muncul pada suhu rendah dan nilai yang tertinggi untuk kesan CMR kelihatan pada suhu menghampiri T_p. Nilai CMR yang paling tinggi kelihatan menghampiri peralihan penebat-logam. Nilai MR maksimum dengan nilai ~68.2% pada H = 1.06 T diperolehi pada sampel yang disediakan pada suhu 1200°C.

Sampel La_{0.67}Ca_{0.33}MnO₃ yang disediakan melalui kaedah pemendakan dibandingkan dengan sampel yang disediakan dengan kaedah tindakbalas pepejal untuk sampel-sampel yang disinter pada suhu 1300°C. Spektrum XRD bagi sampel mempamerkan penyerotan orthorombik dan struktur perovskit fasa tunggal. Suhu Curie, T_c dan suhu peralihan logam-penebat, T_p diperolehi dengan kaedah kerintangan a.u dan teknik penduga empat titik. Keputusan menunjukkan T_c dan T_p adalah 260 K dan 276 K masing-masing untuk sampel COP, di mana nilainya adalah lebih tinggi daripada keputusan yang diperolehi oleh sampel CPM dengan T_c dan T_p adalah 245 K dan 246 K masing-masing. Keputusan ini adalah berkaitan dengan homogeniti dan ketumpatan tinggi pada sampel COP dibandingkan dengan sampel CPM. CMR pada sampel COP diperhatikan menghampiri peralihan penebat-logam dengan nilai ~ 56% untuk H = 1.06 T dan nilai CMR sampel CPM bernilai ~ 34%.

ACKNOWLEDGEMENTS

Firstly, I am very grateful to "Allah" For giving me the strength, and patient, to complete this research.

My greatest debt to my kind and respectful supervisor, Prof. Dr. Abdul Halim Shaari for his invaluable comments, excellent guidance, feedback, insights and knowledge, continuous supervision, which is greatly appreciated. Without him this thesis would never been completed.

I am highly indebted to all of my supervisory committee, Assoc. Prof. Dr. Zaidan Abdul Wahab and Dr. Noorhana Yahya for their guidance, follow up and knowledge which I received from them. Their help is very much valued and appreciated.

I would like to express my sincerer gratitude to a number of people for their support, collaboration and friendship. I would like to thanks the staff of, Faculty of Science and Environmental Studies UPM, especially the lecturers and staff of Physics Department. A lot of thanks to my entire lab mates whom I worked with them during this research all my colleagues who I worked with them in this lab; especially, Iftetan, Abdullah Chik, Huda, NoorJanah, Masrianis, Walter and Dr. Lim

I'm highly gratefully to all my friends who shared with me the ideas of my project. Special regards Dr. Hamadneh, Khabashi, and Zohra for their efforts and supports.

My fruitfully thanks to Malaysian community in general and UPM family in a particular for their kindness in giving me the opportunity to share the life with them.

My special thanks goes to my father Prof. Ali Salama, my mother for her praying for me and my kids, my lovely sisters and brothers and my sister Umyma who encourage me to complete my study. Thanks to my son Anas for the time he missed his mother.

TABLE OF CONTENTS

PERION TION	
DEDICATION	iii
ABSTRACT	iv
ABSTRAK	vi
ACKNOWLEGEMENTS	viii
APPROVAL	ix
DECLARATION	xi
LIST OF TABLES	xiv
LIST OF FIGURES	XV
LIST OF ABBREVIATIONS AND KEY WORD	xix

CHAPTER

I	INT	RODUCTION	1
	1.1	Colossal Magnetoresistance is a shared Phenomenon	7
	1.2	Basic properties	7
	1.3	Applications of the Effect	8
		1.3.1 Magnetic Random access memory (MRAM)	8
		1.3.2 Other Applications	11
	1.4	Research Objective	12
II	BAC	KGROUND OF COLOSSAL MAGNETORESISTANCE	13
	2.1	Early Theoretical Studies	16
	2.2	Manganites	17
		2.2.1 LaMnO ₃	17
		2.2.2 Doped manganites	18
	2.3	Preparation Methods of Lanthanum Manganite Ceramics	21
		2.3.1 Conventional Method	21
		2.3.2 Sol-Gel Methods	22
		2.3.3 Co-precipitation Methods	24
	· 2.4	Effect of Heat Treatment on CMR	26
III	THE	CORY	29
	3.1	Introduction to Magnetism	29
		3.1.1 Diamagnetism	30
		3.1.2. Paramagnetism	30
		3.1.3 Ferromagnetism	31
		3.1.4 Antiferromagnetism	31
	3.2	Magnetic Susceptibility	32
		3.2.1 Curie-Weiss Law	33
		3.2.2 Ferromagnetic susceptibility	33
	3.3	Colossal Magnetoresistance (CMR) Theory	35

		3.3.1 Double exchange	35
		3.3.2 Jahn-Teller Effect	39
		3.3.3 Tolerance Factor	41
VI	МЕТ	THODOLOGY	44
	4.1	Introduction	44
	4.2	Materials and Equipment	44
		4.2.1 Co-precipitation method (COP)	44
		4.2.2 Conventional Powder method (CPM)	47
	4.3	Sample Characterization	53
		4.3.1 Structural (physical) characterization	53
		4.3.2 Microstructure Analysis with Scanning Electron	
		Microscope (SEM)	56
		4.3.3 Electrical resistance at various temperatures	57
		4.3.4 AC Magnetic Susceptibility Measurement	58
		4.3.5 Magnetoresistance Measurements	61
V	RES	ULTS AND DISCUSSIONS	
	5.1	Properties of La _{0.67} Ca _{0.33} MnO ₃ synthesized via co-precipitation	65
		(COP) and Conventional Powder method (CPM) methods	
		5.1.1 XRD Patterns and Lattice Parameters	65
		5.1.2 Microstructure Properties	67
		5.1.3 Resistance, R and Phase Transition Temperature, T _p	69
		5.1.4 Magnetic and Electrical Phase Diagram	72
		5.1.5 Magnetoresistance	75
	5.2	Effect of sintering temperature on LCMO samples prepared	
		by COP method	79
		5.2.1 XRD Patterns and Lattice Parameters	79
		5.2.2 Microstructure Properties	83
		5.2.3 Resistance, R and Phase Transition Temperature, T _p	87
		5.2.4 Magnetic and Electrical Phase Diagram	91
		5.2.5 AC Susceptibility and Curie Temperature, T _c	92
		5.2.5 Magnetoresistance	96
VI	CON	ICLUSIONS AND SUGGESTIONS	104
	6.1	Conclusion	104
	6.2	Suggestions	107
REF	EREN	CES	109
APP	ENDIC	ES	115
BIO	DATA	OF THE AUTHOR	130

⁻xiii

LIST OF TABLES

Table		Page
1.1:	Comparison of MR Types	.5
4.1:	Demagnetization factors, D (SI) for cylinders as a function of the ratio of length to diameter, l/d	. 60
5.1.1:	Lattice Parameter and Unite- Cell Volume of LCMO specimens	65
5.1.2:	The geometric density (mass/volume), theoretical density and porosity of the LCMO samples	67
5.2.1:	Lattice Parameter and Unit- Cell Volume of sintered LCMO specimens	80
5.2.2:	Activation energies for the LCMO sintered samples	89

xiv

LIST OF FIGURES

Figure		Page
1.1:	A summary of the most common types of magnetoresistance (MR)	4
1.2:	Temperature dependence of resistvity	6
1.3:	MRAM basics	10
2.1:	Resistivity of $Nd_{0.5}$ Pb _{0.5} Mn O ₃ as a function of temperature and magnetic fields	15
2.2:	Temperature dependence of resistivity of $La_{2/3}Ba_{1/3}MnO_3$ thin film at 0 and 5 T	15
2.3:	Schematic structure of an ideal perovskite	18
2.4:	Sketched phase diagram of La _{1-x} Ca _x MnO ₃	20
3.1:	Schematic magnetic phenomena in a crystal	32
3.2:	Curie- Weiss law shows the presence of paramagnetic phase	34
3.3:	(a) Zener (1951) model of double exchange (DE), (b) The mobility of e_g electrons improves if the localized spins are polarized	36
3.4:	Schematic diagram of the double exchange mechanism involving two manganese ions and one oxygen ion	38
3.5:	Sketch of a spin-canted state	38
3.6:	Crystal field lifts the degeneracy of the d^5 -electrons of the Mn^{3+} - ions	40
3.7:	Phase diagram at constant doping $x=0.3$ as a function of tolerance factor	43
4.1:	Flow chart of (La _{0.67} Ca _{0.33} MnO ₃) prepared by co-precipitation method	46
4.2:	Sample preparation via Conventional Powder method	48
4.3:	Temperature setting for calcinations stage	52
4.4:	Temperature setting for final sintering stage	52

xv

4.5:	Schematic illustration of fundamental process in XRD measurement	55
4.6:	Philips X-ray diffraction unit	55
4.7:	JEOL 6400 scanning electron microscope	56
4.8:	Dc resistivity measurements (four-point probe methods)	57
4.9:	Four point probe resistance machine	58
4.10:	Lakeshore AC Susceptometer (model 700)	59
4.12:	Schematic diagram of magnetoresistance measurement	62
4.13:	Schematic diagram of the magnetoresistance setup	63
4.14:	Magnetoresistance measurement system	64
5.1.1:	XRD Spectrum for COP and CPM specimens	66
5.1.2:	SEM image of the fracture surfaces of LCMO samples prepared by COP and CPM	68
5.1.3:	the resistance as a function of temperature for (a) COPspecimens, (b) CPM specimens	70
5.1.4:	Ln (R) as a function of 1/T of LCMO specimens	71
5.1.5:	Temperature dependant of AC Susceptibility of La _{0.67} Ca0. ₃₃ MnO ₃ (a) COP specimen, (b) CPM specimen	. 73
5.1.6:	Inverse susceptibility against temperature of LCMO specimens prepared by CPM and COP	74
5.1.7:	CMR curves as a function of magnetic field of $La_{0.67}Ca_{0.33}MnO_3$ sample Prepared by (a) COP and (b) CPM methods	77
5.1.8:	CMR curve of La _{0.67} Ca _{0.33} MnO ₃ prepared via COP and CPM samples as a function of temperature at 1.06 Tesla	78
5.2.1:	XRD Spectrum for all the samples of $La_{2/3}Ca_{1/3}$ MnO ₃ sintered at 1100°C, 1200°C, 1250°C, 1300°C and 1350°C	81
5.2.2:	Lattice parameters and the unit-cell volume of LCMO system	81

xvi

5.2.3:	geometric density and theoretical density as a function of T_s for LCMO specimens	82
5.2.4:	the porosity as a function of T _s for LCMO specimens	82
5.2.5:	SEM image of the fracture surfaces of LCMO samples sintered at 1100°C, 1200°C, 1250°C, 1300°C and 1350°C with magnification 2000X and 7,500X	86
5.2.6:	Sintering temperature dependence on grain size for La _{0.67} Ca _{0.33} MnO ₃	86
5.2.7:	Temperature dependence of resistance of LCMO samples with T_s	88
5.2.8:	T _p as a function of T _s of LCMO samples	88
5.2.9:	Ln (R) as a function of 1/T of LCMO specimens	90
5.2.10:	Activation energy, E_a as a function of T_s of LCMO sintered specimens	90
5.2.11:	T_p and T_c as a function of T_s of LCMO samples	91
5.2.12:	Temperature dependence of a. c Susceptibility of LCMO specimens sintered at 1100°C, 1200°C, 1250°C, 1300°Cand 1350°C at H=10.0 Oe	93
5.2.13:	Sintering temperature, T_s dependence of Curie temperature, T_c for LCMO specimens sintered at 1100°C, 1200°C, 1250°C, 1300°C and 1350°C	93
5.2.14:	Inverse susceptibility against temperature of LCMO specimens sintered at 1100°C, 1200°C, 1250°C, 1300°C and 1350°C	94
5.2.15:	T_c and Θ as a function of sintering temperature T_s , for LCMO specimens sintered at 1100°C, 1200°C, 1250°C, 1300°C and 1350°C	95
5.2.16:	CMR curve of LCMO sintered specimens as a function of applied magnetic field at 90 K	97
5.2.17:	CMR curve of LCMO sintered specimens as a function of applied magnetic field at 100 K	97
5.2.18	CMR curve of LCMO sintered specimens as a function of applied magnetic field at 160 K	99
5.2.19	CMR curve of LCMO sintered specimens as a function of applied magnetic field at 200 K	99

xvii

5.2.20: 0 r	CMR curve of LCMO sintered specimens as a function of applied nagnetic field at 260 K	101
5.2.21: C r	CMR curve of LCMO sintered specimens as a function of applied magnetic field at 280 K	101
5.2.22: C	CMR curve of LCMO sintered specimens as a function of applied magnetic field at 300 K	102
5.2.23: 0 s	CMR curve of as a function of magnetic field of $La_{0.67} Ca_{0.33} MnO_3$ sample sintered at $1200^{\circ}C$	103
5.2.24: a	CMR curves of LCMO sintered Samples as a function of Temperature at 1 Tesla.	103

xviii

LIST OF ABREVIATIONS AND KEY WORDS

<a>	Average ionic radius
a, b, c	Lattice Parameter
AFI	Antiferromagnetic insulator
AFM	Antiferromagnetic
AMR .	Anisotropic Magnetoresistance
CMR	Colossal Magnetoresistance
СОР	Co precipitation
CPM	Conventional Powder Method
DE	Double exchange
d _{hk1}	Distance between atom and selected 2θ
d_{La-O}	La-O bond distance
d _{Mn-O}	Mn-O bond distance
Ea	Activation energy
EMR	Extraordinary Magnetoresistance
f	Frequency.
FMI	Ferromagnetic insulator
GMR	Giant Magnetoresistance
Н	Applied magnetic field
hkl	Miller indices
JT	Jahn-Teller
k _B	Boltzman constant

LCMO	La-Ca-Mn-O system
Μ	Magnetization
MI	Metal to insulator
MIT	Metal-insulator transition
MR	Magnetoresistance
PMI	Paramagnetic insulator
R (0)	The resistance in zero magnetic field
R (H)	The resistance in the magnetic field
S	Spin electron
SEM	Scanning Electron Microscope
Т	Temperature in Kelvin
t	Tolerance factor
T _c	Curie temperature
TMR	Tunnelling Magnetoresistance
T _p	Phase transition temperature.
T _s	Sintering temperature.
VLMR	Very Large Magnetoresistance
XRD	X-ray diffraction
Θ	Paramagnetic Curie point
χ	Susceptibility

CHAPTER I

INTRODUCTION

Since the discovery of high T_c superconductivity in copper oxides, in 1986, transitionmetal oxides of perovskite structure are receiving much attention. A few years after the initial discovery, in 1993, more excitement greeted reports that certain manganese oxides showed a huge change in electrical resistivity when a magnetic field was applied. This effect is generally known as magnetoresistance, but the resistivity change observed in these oxides was so large that it could not be compared with any other forms of magnetoresistance. The effect observed in these materials "the manganese perovskites" was therefore dubbed "colossal" magnetoresistance to distinguish it from the giant magnetoresistance (GMR) observed in magnetic multilayers and granular films.

The discovery; first reported by researchers at Siemens in Germany and a little later by a group at Bell Labs in New Jersey raised expectations of a new generation of magnetic devices and sensors, and launched a frenetic scientific race to understand the cause of the effect. Today, the promise of great strides in technology remains a challenge, but the perovskites are receiving a lot of attention in their own right (Fontcuberta, 1999).

One reason for this growing interest is the rare-earth manganese oxides, the manganites. In the beginning of the 1990's it was found that some manganites could exhibit a magnetic phase transition close to room temperature, which were accompanied by a

1

magnetic field driven metal-insulator transition (Chahara et al, 1993, Helmolt et al, 1993, Jin et al, 1994).

In general, magnetoresistance is a measure of the change in electrical resistance as function of the magnetic field H and is usually calculated as:

$$MR\% = \frac{R(H) - R(0)}{R(0)} \times 100$$
 1.1

where R(H) denotes the field dependent resistance and R(0) the resistance at zero magnetic field.

There can be many different physical effects causing magnetoresistance; some of the most common ones are shown in Figure. 1.1. In the mid 19th century it was pointed out that the electric resistance in magnetic materials depends on the orientation of an applied magnetic field relative to the orientation of the crystal itself, (Thomson, 1857). A phenomenon given the name anisotropic magnetoresistance is shown in Figure. 1.1a. On the other hand, the ordinary magnetoresistance (Figure 1.1b), which is related to the Hall Effect, originates from the impact of the Lorentz-force on moving charge carriers. In the anisotropic numbers, the magnitudes of and the ordinary absolute magnetoresistances are moderate and typically not more than a few percent. In the end of the 1980's it was discovered that multi-layers of magnetic and nonmagnetic metallic materials could show a magnetoresistance of much higher magnitude than previously observed (Baibich et al., 1988). The prefix giant was then used to describe the magnetoresistance (Figure 1.1c). Only about half a decade later it was discovered that doped rare-earth manganese oxides by themselves could possess even higher

magnetoresistance (in some cases close to 100%) (Chahara et al., 1993; Helmolt et al., 1993; Jin et al., 1994) The physical origin of the magnetoresistance in manganites was completely different from the giant magnetoresistance effect, and hence the term *colossal* was used to describe the effect. The general behavior of colossal magnetoresistance is shown in Figure. 1.1d.

In magnetic tunnel junctions there is another type of magnetoresistance, known as tunnelling magnetoresistance or sometimes junction magnetoresistance, Figure 1.1e and Figure 1.1f. The resistance of a magnetic tunnel junction is lower when the magnetization of the electrodes is parallel than in the antiparallel configuration. It is the ability to switch between these two configurations that is the origin of the tunnel magnetoresistance.

Figure 1.1: A summary of the most common types of magnetoresistance (MR). The anisotropic, ordinary and colossal MR can be considered as intrinsic effects of the material, while giant and tunnelling MR depend on extrinsic parameters. The tunnelling MR in e) appears in magnetic tunnel junctions, so called spin-valves, while intergrain tunneling in powder and polycrystalline bulk causes a smearing as shown in panel f). Note the different magnitude of the scales.

4

5

Anisotropic Magnetoresistance (AMR) measure the change in resistance seen when the current flowing through a sample changes from being parallel to internal magnetization to being perpendicular to it. The materials that exhibit AMR include Permalloy (NiFe) and iron filings. The Tunneling Magnetoresistance (TMR) affect a large change in the electrical resistance upon the application of a magnetic field of two magnetic layers separated by an insulating layer. The Giant Magnetoresistance (GMR) which describes the behavior of materials that have alternating layers of ferromagnetic and nonmagnetic materials deposited on an insulated substrate. The very Large Magnetoresistance (VLMR) effect is seen in homogenous material, and is very similar to GMR.

Table1.1:	Comparison	of MR	Types
-----------	------------	-------	-------

Type of MR	Increase in Resistance %
MR	1
AMR	20
GMR	200
CMR	100,000

