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The influence of y-rays on the optical absorption and inelastic scattering, dielectric 

properties and conductivity of radiation-sensitive dyed polyvinyl alcohol (TBIPVA) 

film dosimeters containing chloral hydrate and acid-sensitive Thymol blue dye were 

evaluated for possible use as food irradiation indicators. The dyed PVA films of 

different concentrations of chloral hydrate were irradiated with the absorbed doses 

ranging up to 12 kGy using y-rays from Cobalt-60. The dehydrochlorination of 

chloral hydrate and radiolysis of water molecules induced by ionising radiations 

accelerated the formation of hydrochloric acid in the polymer matrix, which caused 

the change in colour of the dosimeters from yellow to red at the critical doses 

depending on the concentration of chloral hydrate. This radiation-induced colour 

change was analysed using UV-Vis spectrometer, where the absorption spectra 

produced two visible maximal bands, peaking at 445 nm and 554 nm. The dose 

response at 445 nm and 554 nm increases and decreases respectively with absorbed 

dose. The inelastic Raman scattering spectra of photons corresponding to the Raman 

frequency shifts of unirradiated and irradiated films were measured using a 

dispersive Raman spectrometer, which provide direct evidence of molecular 



structure changes induced by ionising radiation and the subsequent chemical effects. 

The spectral intensities of Raman shifts at 815, 1984, 2350 and 2560 cm-' bands 

correspond to C-CI, C=O, C=C and S-H bonds respectively were studied, which 

provide the dose response to the molecular vibration of the dosimeters. From 

dielectric and conductivity studies it is found that the dyed polymer dosimeters are 

ionic polymer materials. The dielectric constant (E'), dielectric loss (E") and the 

electrical conductivity o(o) characteristics of the dosimeters were measured at 

different frequencies ranging from 20 Hz to I MHz. The dielectric constant and 

dielectric loss increase with absorbed dose at low frequencies and are independent of 

dose at higher frequencies for all chloral hydrate concentration. The AC conductivity 

(o) increases with absorbed dose and frequency due to the formation of radiation- 

induced free radicals, cations and anions in the polymer matrix and due to ejected 

electrons in the conduction bands. Thus, the resistance derived from the impedance 

measurement, decreases with absorbed dose. Finally, the films were subjected to 

stability tests using digital densitometry method at different time intervals during 

post-irradiation storage. The results show the change in optical density is minimal 

over the period of 70 days for all irradiated samples. This suggests the dosimeters 

have optical absorption stability characteristics for use as alternative radiation- 

sensitive dosimeters in irradiation facilities as long as they are shielded from sunlight 

or fluorescent lighting by wrapping with black plastic bag. 
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Pengaruh sinar-y ke atas penyerapan optikal dan serakan tidak elastik, sifat-sifat 

dielektrik dan konduktiviti bagi sinar-sensitif meterdos wama filem polyvinyl 

alcohol (TBIPVA) yang mengandungi kloral hidrat dan asid sensitif Thymol biru 

relah dikaji untuk aplikasi kemungkinan sebagai indikator penyinaran makanan. 

Filem-filem yang berbeza kepekatan bahan kloral hidrat disinarkan dengan dos-dos 

penyerapan sehingga 12 kGy menggunakan sinar-y dari kobalt-60. 

Penyahidroklorinan kloral hidrat dan radiolisis molekul air diaruhkan oleh sinaran 

sebagai pemangkin melalui pembentukan asid hidroklorik dalarn bahan polimer, 

yang menyebabkan meterdos berubah wama dari kuning ke merah pada dos kritikal 

yang bergantung kepada kepekatan bahan kloral hidrat. Perubahan wama ini telah 

dianalisa menggunakan spektrometer UV-Vis, dimana penyerapan spektrum 

menghasilkan dua jalur maksirna dalam julat cahaya-nampak pada 445 nm dan 554 

nm. Dos tindakbalas pada 445 nm meningkat dan 554 nm menurun dengan kenaikan 

dos penyerapan. Serakan foton tidak elastik spektra Raman bagi filem bergantung 

kepada perubahan frekuensi Raman sebelum dan selepas penyinaran diukur 

menggunakan penyebaran spektrometer Raman, bagi menyediakan bukti secara terus 



perubahan struktur molekul disebabkan oleh sinar mengion dan seterusnya kesan 

kimia. Keamatan spektra Raman pada jalur 815, 1984, 2350 dan 2560 cm-' adalah 

sejajar ikatan dengan C-CI, C=O, C=C dan S-H adalah telah dikaji, disebabkan 

tindakbalas dos getaran molekul-molekul meterdos. Dari kajian dielektrik dan 

konduktiviti didapati bahan meterdos polimer warna adalah bahan-bahan polimer 

ion. Pemalar dielektrik (d), kehilangan dielektrik (E") dan konduktiviti elektrik o(o) 

bagi meterdos, diukur julat frekuensi yang berbeza dari 20 Hz hingga 1 MHz. 

Pemalar dielektrik dan kehilangan dielektrik bertambah dengan dos penyerapan pada 

frekuensi rendah dan tidak bergantung pada dos ketika frekuensi tinggi bagi semua 

kepekatan kloral hidrat. Konduktiviti a.u (o ) bertambah dengan dos penyerapan dan 

frekuensi dihasilkan oleh pembentukan radikal bebas sinar-teraruh, kation dan anion 

di dalam matrik polimer yang disebabkan elektron disuntik keluar dalam jalur 

konduksi. Oleh itu rintangan diperolehi dari pengukuran impedan, menurun dengan 

dos serapan. Akhir sekali, sampel filem dikehendaki untuk ujian kestabilan 

menggunakan digital meterketumpatan pada tempoh masa yang berbeza semasa 

simpanan selepas disinarkan. Keputusan menunjukkan bahawa perubahan 

ketumpatan optik adalah rendah sepanjang masa 70 hari disimpan untuk semua 

bahan yang telah disinarkan. Ini boleh dicadangkan meterdos itu mempunyai ciri-ciri 

kestabilan optik untuk digunakan sebagai meterdos sinar-sensitif alternatif dalam 

prasarana penyinaran selagi ianya disimpan dan dilindungi daripada cahaya matahari 

atau flouresen dengan membungkus dengan plastik berwama hitam. 
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GLOSSARY 

This glossary to define a few words in common use in this thesis. Many other quantities 
and term are defined in appropriate locations in the text. 

Absorbed dose Amount of energy deposited by ionizing radiation in a material per 
unit mass of the material. Usually expressed in the special radiological unit rad or in the 
SI unit Gray. 

Anti-Stokes Raman Scattering Light scattering in which the photons gain energy 
as a result of photon-molecule collisions. 

Chromophore Molecule or part of the molecule that absorbed light. 

Dielectric Dielectric is a material in which energy can be stored by the polarization 
of the molecules. It is a material that increases the capacitance or charge storage ability 
of a capacitor. Ideally it is a non-conductor of electrical charge so that an applied field 
does not cause a flow of charge but instead a relative displacement of opposite bound 
charges and hence polarization of the medium. 

Dipolar (orientational) polarization arises when randomly oriented polar molecules in 
a dielectric are rotated and aligned by the application of a field so as to give rise to a net 
average dipole moment per molecule. In the absence of the field the dipoles (polar 
molecules) are randomly oriented and there is no average dipole moment per molecule. 
In the presence of the field the dipoles rotated, some partially and some fully, to align 
with the field and hence give rise to net dipole moment per molecule. 

Dose (D) Used broadly for energy deposited in matter from radiation. Used in 
dosimetry for the energy absorbed per unit mass of material, usually by ionization 
processes. Units are the rad and the Gray (Gy), which are equivalent, respectively, to 
ergslg and 1 JIKg. There, 1 rad = 11100 Gray or cGy. 

Dosimetry The calculation, measurements and other activities required for 
determining the radiation dose to be delivered. 

Electronic polarization Electr~nic polarization is the displacement of the electron 
cloud of an atom with respect to the positive nucleus. Its contribution to the relative 
permittivity of a solid is usually small. 

Excitation The addition of energy to a system, transferring it from its ground state to 
an excited state. Excitation of a nucleus, an atom, or a molecule can result from 
absorption of photons or from inelastic collision with other particles. 

Free Radical A highly reactive chemical species carrying no charge and having 
a single unpaired electron in an orbital. 
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