UNIVERSITI PUTRA MALAYSIA

INFLUENCE OF GAMMA RADIATION ON OPTICAL AND DIELECTRIC PROPERTIES OF DYED POLYVINYL ALCOHOL FILM DOSIMETERS

AJIS LEPIT.

FSAS 2004 10
INFLUENCE OF GAMMA RADIATION ON OPTICAL AND DIELECTRIC PROPERTIES OF DYED POLYVINYL ALCOHOL FILM DOSIMETERS

By

AJIS BIN LEPIT

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for Degree of Master of Science

February 2004
Dedication

"Proclaim! (or Read!) In the name of thy Lord and Cherisher, Who created, # Created man, out of a (mere) clot of congealed blood: # Proclaim! and thy Lord is Most Bountiful, # He Who taught (the use of) the Pen, # Taught man that which he knew not". Versus Al-alaq : 1-5

To my family

Zuraidah Adam
Muhammad Akmal Zulhilmi
Muhammad Akram Irfan
Fatin Najihah

Who has given all the patience, encouragement, love and support.
INFLUENCE OF GAMMA RADIATION ON OPTICAL AND DIELECTRIC PROPERTIES OF DYED POLYVINYL ALCOHOL FILM DOSIMETERS

By

AJIS BIN LEPIT

February 2004

Chairman: Associate Professor Elias Bin Saion, Ph.D.

Faculty: Science and Environmental Studies

The influence of γ-rays on the optical absorption and inelastic scattering, dielectric properties and conductivity of radiation-sensitive dyed polyvinyl alcohol (TB/PVA) film dosimeters containing chloral hydrate and acid-sensitive Thymol blue dye were evaluated for possible use as food irradiation indicators. The dyed PVA films of different concentrations of chloral hydrate were irradiated with the absorbed doses ranging up to 12 kGy using γ-rays from Cobalt-60. The dehydrochlorination of chloral hydrate and radiolysis of water molecules induced by ionising radiations accelerated the formation of hydrochloric acid in the polymer matrix, which caused the change in colour of the dosimeters from yellow to red at the critical doses depending on the concentration of chloral hydrate. This radiation-induced colour change was analysed using UV-Vis spectrometer, where the absorption spectra produced two visible maximal bands, peaking at 445 nm and 554 nm. The dose response at 445 nm and 554 nm increases and decreases respectively with absorbed dose. The inelastic Raman scattering spectra of photons corresponding to the Raman frequency shifts of unirradiated and irradiated films were measured using a dispersive Raman spectrometer, which provide direct evidence of molecular
structure changes induced by ionising radiation and the subsequent chemical effects. The spectral intensities of Raman shifts at 815, 1984, 2350 and 2560 cm\(^{-1}\) bands correspond to C-Cl, C=O, C=C and S-H bonds respectively were studied, which provide the dose response to the molecular vibration of the dosimeters. From dielectric and conductivity studies it is found that the dyed polymer dosimeters are ionic polymer materials. The dielectric constant (\(\varepsilon'\)), dielectric loss (\(\varepsilon''\)) and the electrical conductivity \(\sigma(\omega)\) characteristics of the dosimeters were measured at different frequencies ranging from 20 Hz to 1 MHz. The dielectric constant and dielectric loss increase with absorbed dose at low frequencies and are independent of dose at higher frequencies for all chloral hydrate concentration. The AC conductivity \(\sigma\) increases with absorbed dose and frequency due to the formation of radiation-induced free radicals, cations and anions in the polymer matrix and due to ejected electrons in the conduction bands. Thus, the resistance derived from the impedance measurement, decreases with absorbed dose. Finally, the films were subjected to stability tests using digital densitometry method at different time intervals during post-irradiation storage. The results show the change in optical density is minimal over the period of 70 days for all irradiated samples. This suggests the dosimeters have optical absorption stability characteristics for use as alternative radiation-sensitive dosimeters in irradiation facilities as long as they are shielded from sunlight or fluorescent lighting by wrapping with black plastic bag.
PENGARUH SINAR GAMMA KEATAS SIFAT-SIFAT OPTIK DAN DIELEKTRIK METERDOS FILEM WARNA POLYVINYL ALCOHOL

Oleh

AJIS BIN LEPIT

Februari 2004

Pengerusi: Profesor Madya Elias Bin Saion, Ph.D.
Fakulti: Sains dan Pengajian Alam Sekitar

Pengaruh sinar-γ ke atas penyerapan optikal dan serakan tidak elastik, sifat-sifat dielektrik dan konduktiviti bagi sinar-sensitif meterdos warna filem polyvinyl alcohol (TB/PVA) yang mengandungi kloral hidrat dan asid sensitif Thymol biru telah dikaji untuk aplikasi kemungkinan sebagai indikator penyinaran makanan. Filem-filem yang berbeza kepekatan bahan kloral hidrat disinarkan dengan dos-dos penyerapan sehingga 12 kGy menggunakan sinar-γ dari kobalt-60. Penyahidroklorinan kloral hidrat dan radiolisis molekul air diaruhkan oleh sinaran sebagai pemangkin melalui pembentukan asid hidroklorik dalam bahan polimer, yang menyebabkan meterdos berubah warna dari kuning ke merah pada dos kritikal yang bergantung kepada kepekatan bahan kloral hidrat. Perubahan warna ini telah dianalisa menggunakan spektrometer UV-Vis, dimana penyerapan spektrum menghasilkan dua jalur maksima dalam jutah cahaya-nampak pada 445 nm dan 554 nm. Dos tindakbalas pada 445 nm meningkat dan 554 nm menurun dengan kenaikan dos penyerapan. Serakan foton tidak elastik spektra Raman bagi filem bergantung kepada perubahan frekuensi Raman sebelum dan selepas penyinaran diukur menggunakan penyebaran spektrometer Raman, bagi menyediakan bukti secara terus...
ACKNOWLEDGEMENTS

All praise and admiration for Allah, the Almighty, Beneficial and the most Merciful, who has enabled me to submit this thesis.

The author gratefully acknowledged Assoc. Prof. Dr. Elias Saion of the Department of Physics, Faculty Science and Environmental Studies, Universiti Putra Malaysia for his assistance, helpful discussions, suggestions, constructive criticisms, motivation, encouragement and time throughout the duration of study. I would also like to thank the committee members Dr. Jumiah Hassan and Assoc. Prof. Dr. Mohd. Zaki Abdul Rahman for their guidance and encouragement. The author also acknowledged the assistance and helpful comments of Hasan Sham of Malaysian Institute for Nuclear Technology Research (MINT) at Bangi, Selangor. Thanks are also due to Mr Taiman Kadni Head of Secondary Standard Dosimetry Laboratory for providing High Dose of Gamma Irradiation facilities, J. L. Sheperd, Jalan Dengkil, Kajang. To the colleagues in Bio-Physics Lab, Department of Physics, Faculty of Sciences and Environmental Studies, UPM Serdang especially for providing the assistance, comments, for their willingness to share knowledge and information, references, etc.: is greatly appreciated. Special thanks go to Phang Kee Keong who is responsible for development of real time data acquisition in impedance measurement with LCR meter HP4284A. Lastly, I would like to thank the Malaysian Government and UiTM for granting me the study leave and providing staff scholarship during the course of this study.
I certify that an Examination Committee met on 19th February 2004 to conduct the final examination of Ajis Bin Lepit on his Master of Science thesis entitled “Influence of Gamma Radiation on Optical and Dielectric Properties of Dyed Polyvinyl Alcohol Film Dosimeter” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Zaidan Abdul Wahab, Ph.D.
Associate Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Chairman)

Abdul Halim Shaari, Ph.D.
Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

Zainal Abidin Sulaiman, Ph.D.
Associate Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

Md. Soot bin Hj. Ahmad, Ph.D.
Associate Professor
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
(Independent Examiner)

GULAM RUSUL RAHMAT ALI, Ph.D.
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 27 MAY 2004
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirements for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Elias Saion, Ph.D.
Associate Professor
Faculty Science and Environmental Studies
Universiti Putra Malaysia
(Chairman)

Mohd Zaki Abdul Rahman, Ph.D.
Associate Professor
Faculty Science and Environmental Studies
Universiti Putra Malaysia
(Member)

Jumiah Hassan, Ph.D.
Faculty Science and Environmental Studies
Universiti Putra Malaysia
(Member)

Taiman Kadni
Manager
Secondary Standard Dosimetry Laboratory
Malaysian Institute for Nuclear Technology Research (MINT)
(Member)

![Signature]

AINI IDERIS, Ph.D.
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 09 JUL 2004
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

AJIS BIN LEPIT

Date: 14.06.84
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS/SYMBOLS</td>
<td>xxiii</td>
</tr>
<tr>
<td>LIST OF GLOSSARY OF TERMS</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER

I INTRODUCTION

1. Scope of the Present Study
 3. Polyvinyl alcohol, Thymol Blue and Chloral Hydrate
 - Main Composition of Radiation-Sensitive Indicator
2. Problem Statement
3. Objective of Research
4. Significance of Study
5. Outline of the Thesis

II LITERATURE REVIEW

1. Historical Background of Use Ionizing Radiation for Food Preservation 11
2. Food Irradiation
3. The Food Irradiation-Process and Application
4. Related Work in Food Irradiation
5. Detection and Measurement of Ionizing Radiation
 - Methods of Dosimetry
6. Polymer Film, Dyes and Chemical as a Dosimetric System
7. Related Work in Dosimeter for Radiation Indicator of Food Irradiation
8. Measurement of Dose at Wide Range of Irradiation
 - by Visual Observation
 - Darkening of Film Dosimeter
 - Colour Changes
 - Dye Colour Bleachable System
9. Other Dosimetric System
 - Vinyl or Acrylics Film Dosimeter
10. Related Work Using Raman Spectroscopy
11. Related Work with Dielectric Properties to Study the Effect of Ionizing Radiation on some Materials
III THEORY OF RADIATION ACTIONS AND OPTICAL AND ELECTRICAL MEASUREMENTS OF RADIATION EFFECT 39
Interaction of Gamma Ray with Matter 39
Rayleigh Scattering 40
Photoelectric Absorption 41
Compton Scattering 42
Pair Production 44
Physical, Chemical and Biological Aspects of Radiation Actions 46
Illustration of the Radiation Action in Food Preservation 46
Physical Aspects 47
Chemical Aspects (Ionization, Excitation, and Free Radical Formation) 48
Biological Aspects 53
Irradiation of Food for Preservation 57
UV-Visible Absorption 59
Electronic Transition in Molecules 59
Optical Absorption Spectra 62
The Beer-Lambert’s Law 64
Raman Spectroscopy 66
Inelastic Scattering of Light 66
The Theory of Raman Effect 68
Dielectric Relaxation 72
Capacitance and Dielectrics 73
Dielectric Constant and Loss Factor 75
Conductivity 79
Frequency Dependence of Dielectric Constant 82
Polarization 84
Electronic Polarization 85
Ionic Polarization 87
Orientation or Dipolar Polarization 87
Space Charge Polarization 87

IV EXPERIMENTAL PROCEDURES FOR SYNTHESIS AND CHARACTERISATION 88
Sample Preparations 88
Preparation of Stock of Indicator 88
Preparation of Dye PVA Film Dosimeters 89
Irradiation Source 91
Irradiation of Dosimeters 92
Spectra Measurement 93
Raman Inelastic Scattering Spectra 93
Raman Spectra Measurement 94
UV-VIS Absorption Spectra 96
Method of Samples Measurement with CAMSPEC M350 Double Beam Scanning Spectrophotometer 98
Stability Measurement 99
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Advisory Technological Dose Limit for Good Irradiation Practice.</td>
</tr>
<tr>
<td>4.1</td>
<td>Percentage of light transmittance and calculated optical densities.</td>
</tr>
<tr>
<td>5.1</td>
<td>Raman assignments of dye PVA film dosimeters of those peaks are listed.</td>
</tr>
<tr>
<td>6.1</td>
<td>Values of activation doses D_o for various amount chloral hydrate (g) of PVA film indicators.</td>
</tr>
<tr>
<td>1.1</td>
<td>Specification of Thymol Blue.</td>
</tr>
<tr>
<td>5.2</td>
<td>Infrared and Raman Characteristics Frequencies of organic</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Chemical structures of Thymol blue dye in basic and acidic form.</td>
<td>4</td>
</tr>
<tr>
<td>3.1</td>
<td>The scattered photon has less energy than the incident photon and may be scattered through any angle. The recoil electron is always scattered in a 'forward' direction.</td>
<td>44</td>
</tr>
<tr>
<td>3.2</td>
<td>Contribution of γ-ray interactions in a medium.</td>
<td>46</td>
</tr>
<tr>
<td>3.3</td>
<td>Three stages for the action of ionizing radiation on biological materials.</td>
<td>47</td>
</tr>
<tr>
<td>3.4</td>
<td>Mechanism of energy transfer for γ-ray or x-ray (Compton Effect).</td>
<td>50</td>
</tr>
<tr>
<td>3.5</td>
<td>Possible pathway for cellular response to ionizing radiation</td>
<td>55</td>
</tr>
<tr>
<td>3.6</td>
<td>Biological survival curves.</td>
<td>56</td>
</tr>
<tr>
<td>3.7</td>
<td>The possible transition of π, σ and η orbital electrons in molecules.</td>
<td>62</td>
</tr>
<tr>
<td>3.8</td>
<td>Absorption spectra of dyed PVA film dosimeters at different doses.</td>
<td>63</td>
</tr>
<tr>
<td>3.9</td>
<td>Simple model illustrating Stokes and Anti-Stokes Raman scattering.</td>
<td>69</td>
</tr>
<tr>
<td>3.10</td>
<td>Energy level diagrams illustrating Raman scattering.</td>
<td>70</td>
</tr>
<tr>
<td>3.11</td>
<td>(a) The charge stored on capacitor plates for a vacuum (b) the increased charged storing capacity resulting from the polarization of dielectric materials.</td>
<td>74</td>
</tr>
<tr>
<td>3.12</td>
<td>Representation of non-ideal capacitor (b) Representation of the phase angle θ and loss tangent δ.</td>
<td>78</td>
</tr>
<tr>
<td>3.13</td>
<td>Dipole orientation.</td>
<td>83</td>
</tr>
<tr>
<td>3.14</td>
<td>Frequency response of dielectric mechanisms.</td>
<td>83</td>
</tr>
</tbody>
</table>
film indicators containing 2.0 g of Chloral Hydrate.

5.6 Dose response curve for absorption spectra of Thymol Blue dyed PVA film indicator containing 2.5 g of Chloral Hydrate.

5.7 The change in absorbance at 554 nm of Thymol Blue dyed PVA indicator at different amount of Chloral Hydrate as a function of absorbed dose.

5.8 The change in absorbance at 454 nm of Thymol Blue dyed PVA indicator at different amounts of Chloral Hydrate as a function of absorbed dose.

5.9 Change in the colour of indicator film at the 6.8 kGy absorbed dose for 0.1 g of Chloral Hydrate added to the film.

5.10 Change in the colour of indicator film at the 5 kGy absorbed dose for 0.5 g of Chloral Hydrate added to the film.

5.11 Change in the colour of indicator film at the 4.5 kGy absorbed dose for 1.0 g of Chloral Hydrate added to the film.

5.12 Change in the colour of indicator film at the 3.0 kGy absorbed dose for 2.0 g of Chloral Hydrate added to the film.

5.13 Change in the colour of indicator film at the 1.5 kGy absorbed dose for 2.5 g of Chloral Hydrate added to the film.

5.14 Critical dose versus amount of chloral hydrate.

5.15 Optical density of Thymol blue/PVA films stored before and after irradiation for 70 days.

5.16 Stability of Thymol blue/PVA films before irradiation stored at
different temperatures.

5.17 Stability of Thymol blue dyed PVA film dosimeter stored at 5°C after irradiation.

5.18 Stability of Thymol blue/PVA films stored at 23°C after irradiation.

5.19 Stability of Thymol blue/PVA films stored at 55°C after irradiation.

5.20 Post-irradiation stability of Thymol Blue dyed PVA films at absorbed dose 12 kGy stored at different temperatures.

5.21 Pre and Post-irradiation stability of Thymol Blue dyed PVA films stored and exposed at ambient conditions.

5.22 Relative Raman spectra of TB/PVA film dosimeter for C-Cl bond with different absorbed dose of γ-irradiation.

5.23 Decreasing of relative Raman intensity for C-Cl (815 cm⁻¹) vibration bonds depending on the weight of Chlal Hydrate.

5.24 Vibrational Raman spectra for C=C, C=O and S-H bonds for different absorbed doses.

5.25 Relative Raman intensity at 1984 cm⁻¹ of C=C vibration band of film dosimeters at different amount of chloral hydrate as a function of absorbed dose.

5.26 Relative Raman intensity at 2350 cm⁻¹ of C=O vibration band of film dosimeters at different amount of chloral hydrate as a function of absorbed dose.

5.27 Relative Raman intensity at 2560 cm⁻¹ of S-H vibration band of film dosimeters at different amount of chloral hydrate as a function of absorbed dose.
dosimeters at different amount of chloral hydrate as a function of absorbed dose.

6.0 Dielectric constant of pure PVA films irradiated at different doses

6.1 Dielectric constant of unirradiated PVA film indicators at different concentrations of chloral hydrate.

6.2 Dielectric constant of PVA film indicator doped with 1.0 g chloral hydrates at different absorbed doses.

6.3 Dielectric constant of PVA film indicator doped with 2.0 g chloral hydrates at different absorbed doses.

6.4 Dielectric constant of PVA film indicator doped with 0.5 g chloral hydrates at different absorbed doses.

6.5 Dielectric constant of PVA film indicator doped with 2.5 g chloral hydrates at different absorbed doses.

6.6 Dielectric constant for PVA film indicator for different concentrations of chloral hydrate and at absorbed dose of 12 kGy.

6.7 Dielectric constant for PVA film indicator for different concentrations of chloral hydrate and at absorbed dose of 8 kGy.

6.8 Relative constant as a function of absorbed dose with 0.1 g of chloral hydrate for five fixed frequencies.

6.9 Frequency-dependent dielectric loss $\varepsilon''(\omega)$ of pure PVA film irradiated with different absorbed doses.

6.10 Relative dielectric loss of PVA film indicator containing 2.5 g of chloral hydrates at different doses.
6.11 Relative dielectric loss of PVA film indicator containing 1.0 g of chloral hydrates at different doses.

6.12 Relative dielectric loss of PVA film indicators at absorbed dose of 12 kGy and at different concentrations of chloral hydrate.

6.13 Relative dielectric loss of PVA film indicators at absorbed dose of 8 kGy and at different concentrations of chloral hydrate.

6.14 Tan δ versus absorbed dose at various frequencies for pure PVA films without chloral hydrate.

6.15 Tan δ versus absorbed dose at various frequencies of PVA film containing 2.0 g of chloral hydrate.

6.16 Tan δ versus absorbed dose at various frequencies of PVA film containing 1.0 g of chloral hydrate.

6.17 Dissipation factor for PVA film indicator at absorbed dose 8 kGy with different concentration of chloral hydrate.

6.18 Dissipation factor for PVA film indicator at absorbed dose 12 kGy with different concentration of chloral hydrate.

6.19 Real $M'(\omega)$ spectra as a function frequency for pure PVA film without chloral hydrate at different absorbed doses.

6.20 Imaginary $M''(\omega)$ spectra as a function frequency for pure PVA film without chloral hydrate at different absorbed doses.

6.21 Real $M'(\omega)$ spectra as a function of frequency for PVA film doped with 2.0 g chloral hydrate at different absorbed doses.
6.22 Imaginary $M''(\omega)$ spectra as a function of frequency for PVA film doped with 2.0 g chloral hydrate at different absorbed doses.

6.23 Real $M'(\omega)$ spectra as a function of frequency for PVA film doped with 1.0 g chloral hydrate at different absorbed doses.

6.24 Imaginary $M''(\omega)$ spectra as a function of frequency for PVA film doped with 1.0 g chloral hydrate at different absorbed doses.

6.25 Arrhenius diagram of the relaxation time as function of D^{-1} for PVA film indicators at amount of chloral hydrate.

6.26 Frequency-dependent ac conductivity of pure PVA film indicators at different absorbed doses.

6.27 Frequency-dependent ac conductivity of pure PVA film indicators at different absorbed doses.

6.28 Conductivity versus frequency of dyed PVA films with 1.0 g chloral hydrate at different absorbed doses.

6.29 Conductivity versus frequency of unirradiated dyed PVA film indicators doped with chloral hydrate at different concentrations.

6.30 Conductivity versus frequency of dyed PVA film indicators irradiated with absorbed dose 4 kGy.

6.31 Conductivity versus frequency of dyed PVA film indicators irradiated with absorbed dose 8 kGy.

6.32 Conductivity versus frequency of dyed PVA film indicators irradiated with absorbed dose 12 kGy.

6.33 Imaginary component (Z'') versus real component (Z) of complex xxv
 impedance for all frequencies for PVA films doped with different amount of chloral hydrate and irradiated with the absorbed dose of 4 kGy.

6.34 Imaginary component (Z'') versus real component (Z') of complex impedance for all frequencies for PVA films doped with different amount of chloral hydrate and irradiated with the absorbed dose of 12 kGy.

6.35 The complex plane plots Z'' versus Z' for all frequencies as a function of absorbed dose for pure PVA films.

6.36 The complex plane plots Z'' versus Z' for all frequencies as a function of absorbed dose for PVA film indicators doped with 2.0 g amount of chloral hydrate.

1.1 Chemical structure of Thymol Blue.

5.22a Raman spectra of chloral hydrate salts using Dispersive Raman Spectrometer.

5.22b Vibrational spectra of Raman using FT-Raman.
LIST OF ABBREVIATIONS/SYMBOLS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ-ray</td>
<td>-</td>
<td>Gamma Ray</td>
</tr>
<tr>
<td>BPB</td>
<td>-</td>
<td>Bromophenol Blue</td>
</tr>
<tr>
<td>CR</td>
<td>-</td>
<td>Cresol Red</td>
</tr>
<tr>
<td>DCP</td>
<td>-</td>
<td>2,6 dichloro phenol indophenol sodium salt</td>
</tr>
<tr>
<td>PVA</td>
<td>-</td>
<td>Polyvinyl alcohol</td>
</tr>
<tr>
<td>PVB</td>
<td>-</td>
<td>Polyvinyl butyral</td>
</tr>
<tr>
<td>PVC</td>
<td>-</td>
<td>Polyvinyl chloride</td>
</tr>
<tr>
<td>PS</td>
<td>-</td>
<td>Polystyrene</td>
</tr>
<tr>
<td>PMMA</td>
<td>-</td>
<td>Polymethyl methacrylate</td>
</tr>
<tr>
<td>TB</td>
<td>-</td>
<td>Thymol blue</td>
</tr>
<tr>
<td>ε'</td>
<td>-</td>
<td>Dielectric Constant</td>
</tr>
<tr>
<td>ε''</td>
<td>-</td>
<td>Dielectric Loss</td>
</tr>
<tr>
<td>tan δ</td>
<td>-</td>
<td>Dielectric Loss Tangent</td>
</tr>
<tr>
<td>τ</td>
<td>-</td>
<td>Time constant or relaxation time</td>
</tr>
<tr>
<td>σ</td>
<td>-</td>
<td>Conductivity</td>
</tr>
<tr>
<td>WHO</td>
<td>-</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>MINT</td>
<td>-</td>
<td>Malaysia Institute for Nuclear Technology Research</td>
</tr>
<tr>
<td>IAEA</td>
<td>-</td>
<td>International Atomic Energy Agency</td>
</tr>
<tr>
<td>FAO</td>
<td>-</td>
<td>Food & Agriculture Organization</td>
</tr>
<tr>
<td>UV-Vis</td>
<td>-</td>
<td>Ultraviolet – Visible</td>
</tr>
<tr>
<td>GIP</td>
<td>-</td>
<td>Good Irradiation Practice</td>
</tr>
<tr>
<td>kGy</td>
<td>-</td>
<td>kiloGray</td>
</tr>
<tr>
<td>IR</td>
<td>-</td>
<td>Infrared</td>
</tr>
<tr>
<td>NaOH</td>
<td>-</td>
<td>Natrium hydroxide</td>
</tr>
</tbody>
</table>
GLOSSARY

This glossary to define a few words in common use in this thesis. Many other quantities and term are defined in appropriate locations in the text.

Absorbed dose Amount of energy deposited by ionizing radiation in a material per unit mass of the material. Usually expressed in the special radiological unit rad or in the SI unit Gray.

Anti-Stokes Raman Scattering Light scattering in which the photons gain energy as a result of photon-molecule collisions.

Chromophore Molecule or part of the molecule that absorbed light.

Dielectric Dielectric is a material in which energy can be stored by the polarization of the molecules. It is a material that increases the capacitance or charge storage ability of a capacitor. Ideally it is a non-conductor of electrical charge so that an applied field does not cause a flow of charge but instead a relative displacement of opposite bound charges and hence polarization of the medium.

Dipolar (orientational) polarization arises when randomly oriented polar molecules in a dielectric are rotated and aligned by the application of a field so as to give rise to a net average dipole moment per molecule. In the absence of the field the dipoles (polar molecules) are randomly oriented and there is no average dipole moment per molecule. In the presence of the field the dipoles rotated, some partially and some fully, to align with the field and hence give rise to net dipole moment per molecule.

Dose (D) Used broadly for energy deposited in matter from radiation. Used in dosimetry for the energy absorbed per unit mass of material, usually by ionization processes. Units are the rad and the Gray (Gy), which are equivalent, respectively, to ergs/g and 1 J/Kg. There, 1 rad = 1/110 Gray or cGy.

Dosimetry The calculation, measurements and other activities required for determining the radiation dose to be delivered.

Electronic polarization Electronic polarization is the displacement of the electron cloud of an atom with respect to the positive nucleus. Its contribution to the relative permittivity of a solid is usually small.

Excitation The addition of energy to a system, transferring it from its ground state to an excited state. Excitation of a nucleus, an atom, or a molecule can result from absorption of photons or from inelastic collision with other particles.

Free Radical A highly reactive chemical species carrying no charge and having a single unpaired electron in an orbital.