Structural and luminescent diversities of Eu3+ activated Gd2O3 nanophosphors

ABSTRACT

In this work we investigated both structural and optical characteristic of erbium doped ternary TeO_2 - TiO_2 - Bi_2O_3 tellurite oxide based glasses, synthesized via melt-quench method. The X-ray diffraction (XRD) and differential scanning calorimetry (DSC) confirmed its glassy nature and stability. Raman analysis revealed the presence of various coordination state TeO_2 network consisting stretching/bending vibrations of Te-O bonds in the $[TeO_4]$ trigonal bipyramid units and fraction of $[TeO_3, TeO_{3+1}]$ trigonal pyramids. From optical absorption measurement both optical band gap and Judd-Ofelt analysis (intensity parameters Ω_t (t=2, 4, 6), transition probabilities, and radiative lifetimes of the Er^{3+} ions) have been performed for both host and doped glasses respectively. Photoluminescence studies for upconversion and near-infrared emissions analysis (under 980 nm excitation at room temperature. Both optical transition mechanism which involved nonradiative energy transfer between Er^{3+} ions through cross-relaxation and energy migration were also explained in detailed.

Keyword: Photoluminescent; Hydrothermal synthesis and nanowires