UNIVERSITI PUTRA MALAYSIA

EXPRESSION OF TUMOUR-ASSOCIATED ANTIGENS AND CHARACTERISTICS OF T CELL RESPONSES IN BREAST CARCINOMA

LEONG PO01 PO01

FPSK(M) 2005 8
EXPRESSION OF TUMOUR-ASSOCIATED ANTIGENS AND
CHARACTERISTICS OF T CELL RESPONSES IN BREAST CARCINOMA

LEONG POOI POOI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia
in Fulfilment of Requirements for the Degree of Master of Science

March 2005
Specially dedicated to,

My mother, husband, sister and brother

For their love, understanding, encouragement and patience

Good luck to you all.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for degree of Master of Science

March 2005
EXPRESSION OF TUMOUR-ASSOCIATED ANTIGENS AND CHARACTERISTIC OF T CELL RESPONSES IN BREAST CARCINOMA

By

LEONG POOI POOI

March 2005

Chairman : Professor Seow Heng Fong, PhD
Faculty : Medicine and Health Sciences

Breast cancer is the most common cancer among women in Malaysia. The standard conventional clinical management procedures use chemotherapy, radiotherapy and mastectomy. In the past decade, intense research towards the use of T-cell based immunotherapy as a treatment alternative has been made. The goals of our study are first to identify some of the tumour-associated antigens present in our tumour specimens from patients with infiltrating ductal carcinoma (IDC) of the breast, followed by antigenic peptide selection in order to develop an in vitro T-cell based cytotoxicity assay. At the same time, we also identified immunophenotypes of the tumour infiltrating lymphocytes (TILs) in the breast tumours. Isolated peripheral blood mononuclear cells (PBMCs) from patients with IDC were specifically stimulated with three combinations of cytokines and antibodies that were specific to the co-stimulatory molecule and HLA-A02 restricted antigen-specific peptides. Stimulated PBMCs were then used as effector cells in cytotoxicity assay using calcein-AM in which the MCF-7 breast adenocarcinoma cell line served as the target cells. Phenotypic investigation of tumour cell suspension was carried out by using specific lymphocyte cell differentiation markers. By using paraffin-embedded breast
tissues (n=49), immunohistochemistry studies showed significant expression of survivin (80.1%, p<0.001), cytoplasmic MUC-1 (38.3%, p<0.05) and membranous MUC-1 (63.8%, p<0.001) in the tumour area as compared to the apparently normal adjacent tissues. These results provided a guide for antigenic peptide selection for stimulating the T cells from the blood of the patients. Together in the presence of rIL-2 and rIL-7, 4 out of 9 peripheral blood mononuclear cells (PBMCs) from the patients responded to either survivin-derived peptide (S2) or Her2/neu specific peptide (H2) in a HLA-A02 restricted manner in order to produce sufficient amounts of effector cells for the subsequent cytotoxic assay. As effector/target (E/T) ratio increased, cytolytic activity of the effector cells became more efficient. For immunophenotypic analysis, CD8+ TILs at 23.4 ± 2.1% was found to be the major population in TILs and the presence of its effector counterpart, CD8+CD28+ TILs significantly correlated with low incidence of metastasis (p<0.05). At the same time, we noticed the predominance of CD4+CD25+ regulatory T cells (Treg) at 55.9 ± 3.9% in the Treg pool and its presence was significantly found in post-menopausal patients (p<0.05). In conclusion, survivin and MUC-1 (cytoplasmic and membranous) were over-expressed in breast cancer tissues. Further investigations are needed to determine the reasons as to why only a portion of PBMCs from the patients (4/9) responded to the specific peptide-based stimulation and showed effective cytolytic activity towards the target breast adenocarcinoma MCF-7 cell line. It is possible that other cytokine cocktails are needed to enhance the cytolytic property of the PBMCs. We also found that infiltration of effector TILs, CD8+CD28+, significantly reduced the metastatic event. Lastly, we noted that older women (≥ 50 years old) tend to possess higher amount of CD4+CD25+ Treg in TILs as compared to the younger patients (< 50 years old). The higher CD4+CD5+ Treg
in TILs may implicate poor disease outcome in older patients. We proposed that these Treg cells contribute to tumour escape mechanism.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Sarjana Sains

TINDAK BALAS SEL T TERHADAP ANTIGEN YANG BERKAITAN DENGAN KANSER PAYU DARA

Oleh

LEONG POOI POOI

March 2005

Pengerusi : Profesor Seow Heng Fong, PhD
Fakulti : Perubatan dan Sains Kesihatan

Barah payudara merupakan kanser yang paling umum di kalangan wanita di Malaysia. Kaedah-kaedah perubatan klinikal yang biasa digunakan adalah kimia terapi, radioterapi dan pembedahan. Dalam dekad yang lalu, banyak penyelidikan terhadap penggunaan imunoterapi sebagai kaedah perubatan alternatif telah dijalankan. Tujuan kajian ini adalah, pertama, untuk mengenalpasti beberapa antigen yang berkaitan dengan kanser (TAA) dalam specimen-specimen pesakit yang mengalami penyebaran sel-sel kanser ke salur duktur payudara (IDC), dan kedua, untuk memilih peptid antigen agar esei sitotoksik sel T dapat dilaksanakan. Pada masa yang sama, kami juga mengenalpasti imunofinotip dalam sel-sel limfosit yang tersebar dalam kanser payudara (TILs). Sel-sel mononuklear periperal darah (PBMC) yang diasingkan dari pesakit yang mengalami penyebaran sel-sel kanser ke salur duktur payudara telah dirangsangkan dengan menggunakan kombinasi sitokin dan antibodi yang spesifik terhadap perangsangan berpandu dan peptid spesifik terhadap antigen terhad HLA-A02. PBMC yang terangsang digunakan sebagai sel efektor dalam esei sitotoksik calcein-AM di mana sel kultur...
adenokarsinoma payudara MCF-7 digunakan sebagai sel target. Penyelidikan finotip terhadap sel-sel limforsit yang tersebar dalam kanser payudara dijalankan dengan menggunakan sel-sel kanser yang telah diceraai oleh enzim dan tanda-tanda perbezaan sel limfosit yang spesifik. Dalam tisu kanser payudara yang berparafin (n=49), kajian imunohistokimia memaparkan ekspresi yang nyata terhadap survivin (80%, P<0.001), MUC-1 di sitoplasma (38.3%, P<0.05) and MUC-1 di membran (63.8%, P<0.001) di dalam kawasan sel-sel kanser berbanding dengan sel-sel normal yang bersebelahan. Keputusan ini memberi panduan dalam pemilihan antigen peptid untuk merangsang sel-sel T limfoit daripada darah pesakit tersebut. Dengan kehadiran rIL-2 dan rIL-7, empat daripada sembilan pesakit mempunyai sel-sel mononuklear periperal darah bertindakbalas terhadap peptide survivin atau peptid spesifik Her2/neu dalam keadaan HLA-A02 dihadkan agar dapat menghasilkan sel-sel efektor yang cukup untuk esei sitotoksik yang seterusnya. Apabila ratio efector/target (E/T) meningkat, sel efektor semkin cekap menjalankan aktiviti sitolisis. Dalam imunofenotip analisa, sebanyak 23.4 ± 2.1 % CD8+TILs merupakan kumpulan yang terbesar dalam TILs dan, dengan nyata sekali, kehadiran sel efektor CD8+CD28+TILs berkait rapat dengan insiden metastasis yang rendah (P<0.05). Pada masa yang sama, kami mendapati sel CD4+CD25+regulasi T (Treg) mendominasi kumpulan Treg dengan sebanayak 55.9 ± 3.9% dan kehadirannya hanya nyata dalam pesakit lebih tua (≥ 50 tahun) (p<0.05). Sebagai kesimpulan, survivin dan MUC-1 (dalam sitoplasma dan pada membran) adalah terlebih ekspres dalam tisu kanser payudara. Penyelidikan yang lebih memdalam harus dilakukan untuk mengetahui sebab-sebab kenapa hanya sebahagian daripada pesakit (4/9) bertindakbalas terhadap rangsangan specifik peptid dan menonjolkan aktiviti sitolisis yang berkesan terhadap sel kultur adenokarsinoma payudara MCF-7.
ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisor, Prof. Dr. Seow Heng Fong, for her generous guidance and endless support, encouragement and trust throughout the period of this project. Her careful reviews and constructive criticism have been crucial to fine-tune the project and also for the writing of the thesis. I am also thankful to her for giving me a chance to explore and work on this interesting project.

Special thanks also go to my co-supervisor, Dr Hairuszah Ithnin, for her guidance and support throughout the project. Her kindness in teaching me about the scoring and interpreting of the immunohistochemistry data is very much appreciated.

I also would like to thank Assoc. Prof. Dr Rohaizak Mohammad and Dr Naqiyah Ibrahim from Hospital Universiti Kebangsaan Malaysia for their help in collecting the breast cancer specimens and for providing the patient data. Without the specimens, I would not have been able to proceed with this project. Special thanks also go to Prof. Dr Cheong Soon Keng and Assoc. Prof. Dr Rohaizak Mohammad for their assistant in obtaining the approval from the HUKM ethics committee for this project.

I would like to express my gratitude to Prof. Dr William C Davis from Washington State University for his guidance in the interpretation of the flow cytometry data. I also like to express my appreciation to Dr Maha Abdullah from Universiti Putra Malaysia for teaching me the techniques required for running the flow cytometer.
Many thanks also go to Dr Ke Chen Ban for guiding me through the immunohistochemistry techniques.

To all my fellow lab mates, Ong Hooi Tin, Khor Tin Oo, Cheah Hwen-Yee, Janet Loh, Lim Pei Ching, Masriana Hassan, See Hui Shien, Yip Wai Kien, Choo Chee Wei, Leslie Than, Jee Jap Meng, Mahathir, in the Laboratory of Molecular Immunology, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Anthonysamy, Siti Aishah, Siti Hasrizan and all the sales and technical personnals from the private sectors, thank you for your help and good luck.

Acknowledgement also goes to the Ministry of Sciences, Technology and Environment (MOSTE), Malaysia for providing financial support through the National Science Fellowship (NSF) programme as well as the IRPA prioritized research programme.

Last but not least, I would like to express my heartiest appreciation and thanks to my family members especially my mother and my husband. Thanks for your understanding and support throughout my studies.
I certify that an Examination Committee met on 30th March 2005 to conduct the final examination of Leong Pooi Pooi on her Master of Science thesis entitled “Expression of Tumour-Associated Antigens and Characteristics of T-Cell Responses in Breast Carcinoma” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Wan Omar Abdullah, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Abdul Rahman Omar, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Datin Gnanasothie Duraisamy, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Cheng Hwee Ming, PhD
Professor
Faculty of Medicine
Universiti Malaya
(External Examiner)

GULAM RUSUL RAHMAT ALI, PhD
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia
Date: 20 JUN 2005
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfillment of the requirement for the degree of Master of Philosophy. The members of the Supervisory Committee are as follows:

SEOW HENG FONG, PhD
Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Chairperson)

HAIRUSZAH ITHNIN, MD, MPATH, AM
Associated Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 14 JUL 2005
DECLARATION

I hereby declare that the thesis is based on my original work except for equations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

LEONG POOI POOI

Date: 9 August 2005
TABLE OF CONTENTS

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	vi
ACKNOWLEDGEMENT	ix
APPROVAL	xi
DECLARATION	xiii
LIST OF TABLE	xviii
LIST OF FIGURE	xx
LIST OF ABBREVIATION	xxii

CHAPTER

1. INTRODUCTION

2. LITERATURE REVIEW

2.1 An Overview of Breast Cancer Biology

2.1.1 Epidemiology

2.1.2 Aetiology

2.1.3 Tumorigenesis

2.1.4 Physiology

2.1.5 Screening and Diagnosis

2.1.6 Treatment of Breast Cancer

2.2 Cancer Immunosurveillance

2.3 Mechanisms of Tumour Escape

2.3.1 Decreased or Loss of Tumour Antigens

2.3.2 Defective MHC class I Presentation Pathway

2.3.3 Dysfunction of Tumour Infiltrating Lymphocytes (TILs)

2.3.4 Immunosuppressor Factors

2.3.5 Non-Classical MHC Molecule

2.3.6 Regulatory T Lymphocytes (Treg)

2.3.7 Defective Mechanisms of Cell Death

2.3.8 Apoptosis of Activated Lymphocytes

2.4 Cancer Immunotherapy

2.4.1 Peptide – Based Vaccine

2.4.1.1 Effector cells

2.4.1.2 Tumour-Associated Antigen (TAA) Peptides

2.4.1.3 Antigen Presentation

2.4.1.4 Cytokines and Specific Antibodies to The Co-Stimulatory Molecule of CD8+

2.4.1.5 T Cell Proliferation

2.4.2 General Cytotoxic Mechanisms

2.4.2.1 Granule Mediated Cytolytic

2.4.2.2 Death-Receptor Cytotoxic Pathway

2.5 Tumour-Associated Antigens

2.5.1 Her2/neu

2.5.2 MAGE-1

2.5.3 MUC-1
3. MATERIALS AND METHODS

3.1 Collection of Sample and Selection Criteria
3.2 Immunohistochemical Staining
 3.2.1 Preparation of the Paraffin Embedded Block
 3.2.2 Tissue Sectioning
 3.2.3 Standard Immunohistochemistry Staining
 3.2.3.1 Immunohistochemical Staining of MUC-1
 3.2.3.2 Immunohistochemical Staining of MAGE-1
 3.2.3.3 Immunohistochemistry Staining of Survivin
 3.2.3.4 Scoring of the Staining
3.3 Cell Culture
 3.3.1 Maintenance and Subculture of MCF-7 Cell Line
 3.3.2 Cryopreservation
 3.3.3 Trypan Blue Exclusion Test
3.4 HLA-A Typing
 3.4.1 DNA Extraction From Whole Blood
 3.4.2 Polymerase Chain Reaction
 3.4.3 Agarose Gel Electrophoresis
 3.4.4 Analysis of the Results
3.5 T Cell Stimulation
 3.5.1 Peripheral Blood Mononuclear Cells (PBMCs) Isolation
 3.5.2 Lymphocyte Culture
 3.5.2.1 Optimization of Stimulation of Peripheral Blood Mononuclear Cells (PBMCs) From Normal Blood Donor
 3.5.2.2 Stimulation of PBMCs From Patients With Infiltrating Ductal Carcinoma (IDC) of the Breast
 3.5.3 Intracellular Interferon Gamma (IFN-γ) Staining
 3.5.4 Fluorescence-Based Cell Mediated Cytotoxicity Assay
3.6 Immunophenotyping of Tumour Infiltrating Lymphocytes (TILs)
 3.6.1 Enzymatic Digestion of Tumour Cells
 3.6.2 Cell Fixation and Permeabilization
 3.6.3 Cell Surface Staining
 3.6.4 Flow Cytometric Analysis
3.7 Statistical Analysis

4. IMMUNOHISTOCHEMICAL STUDY OF TUMOUR-ASSOCIATED ANTIGENS IN INFILTRATING DUCTAL CARCINOMA OF THE BREAST
4.1 Introduction
4.2 Patient Data
 4.2.1 Analysis of Patient Data
 4.2.2 Discussion
4.3 Immunohistochemistry of MUC-1, MAGE-1 and Survivin
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2 Future Recommendations</td>
<td>145</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>146</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>167</td>
</tr>
<tr>
<td>BIODATA OF THE AUTHOR</td>
<td>183</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>2.1</td>
<td>List of TAA peptides that are now undergone clinical trials in various parts of the world</td>
</tr>
<tr>
<td>4.1</td>
<td>Number of cases and correlation matrices among the clinicopathological factors (n= 49)</td>
</tr>
<tr>
<td>4.2</td>
<td>Detection of positive immunoreactivity for MUC-1, MAGE-1 and survivin in infiltrating ductal carcinoma (IDC) of the breast (n= 49)</td>
</tr>
<tr>
<td>4.3</td>
<td>Score of immunoreactivity of MUC-1 expression in the cytoplasm and at the plasma membrane, MAGE-1 and survivin in infiltrating ductal carcinoma (IDC) of the breast (n=49)</td>
</tr>
<tr>
<td>4.4</td>
<td>Correlation matrices between MUC-1 membrane, MUC-1 cytoplasm, MAGE-1 and survivin immunoreactivity in tumour tissues only in infiltrating ductal carcinoma (IDC) of the breast (n=49)</td>
</tr>
<tr>
<td>4.5</td>
<td>Correlation matrices between MUC-1, MUC-1 cytoplasm, MAGE-1 and survivin immunoreactivity and various clinicopathological factors in infiltrating ductal carcinoma (IDC) of the breast (n=49)</td>
</tr>
<tr>
<td>5.1</td>
<td>Functional analysis of stimulated PBMC from normal blood donor</td>
</tr>
<tr>
<td>5.2</td>
<td>Functional analysis of specific peptide stimulated PBMC from breast cancer patients (n=9)</td>
</tr>
<tr>
<td>5.3</td>
<td>The cytotoxic effect of Her2/neu (H2) or survivin (S2) peptide stimulated T cells on the target breast adenomacarinoma cell line, MCF-7</td>
</tr>
<tr>
<td>6.1</td>
<td>Summary of number of cases that related to various clinicopathological factors (n=47)</td>
</tr>
<tr>
<td>6.2</td>
<td>Correlation Matrix among the clinicopathologic factors in infiltrating ductal carcinoma (IDC) of breast (n=47)</td>
</tr>
<tr>
<td>6.3</td>
<td>Distribution of different lymphocyte subsets among tumour infiltrating lymphocyte in infiltrating ductal carcinoma (IDC) of breast (n=47)</td>
</tr>
</tbody>
</table>
6.4 Correlation matrices among the distribution of different tumour infiltrating lymphocytes (TILs) subsets in infiltrating ductal carcinoma of breast. (n= 47) 131

6.5 Correlation Matrices of the distribution of different tumour infiltrating lymphocytes subsets and clinicopathologic factors in infiltrating ductal carcinoma of breast (n=47) 132

A.1 Primary antibodies, secondary antibodies, isotype controls and universal link used in the experiments 169

A.2 Peptides used in the T cells proliferation experiments 170

A.3 Biological response modifiers (recombinant protein and antibodies) used in the T cells proliferation experiments 170

C.1 Summary of clinical data, and phenotypic analysis of the tumour infiltrating lymphocytes (TILs) (n= 47) in sample from infiltrating ductal carcinoma (IDC) of the breast 173

C.2 Summary of clinical data, score of MUC-1 (both membrane and cytoplasm), MAGE-1 and survivin staining in tumour tissues (n=49) and apparently normal surrounding tissues (n=13) from infiltrating ductal carcinoma (IDC) of the breast 175

D.1 Frequency of HLA-A subtypes in patient of infiltrating ductal carcinoma (IDC) of the breast (n=40) and normal blood donors (n=13) 177
LIST OF FIGURE

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Cross section of the normal human breast</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>The three Es of immunoediting</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>The classical pathway for MHC class I antigen processing and presentation</td>
<td>34</td>
</tr>
<tr>
<td>3.1</td>
<td>Hemacytometer grids on the counting chamber of a hemacytometer</td>
<td>58</td>
</tr>
<tr>
<td>3.2</td>
<td>The appearance of cell interfaces before and after ficoll-hypaque separation of the diluted blood</td>
<td>57</td>
</tr>
<tr>
<td>4.1(a)-(g)</td>
<td>Localization of MUC-1 proteins in infiltrating ductal carcinoma (IDC) in various staining intensities</td>
<td>72-73</td>
</tr>
<tr>
<td>4.2</td>
<td>Immunoreactivity of cytoplasmic MUC-1 in 49 infiltrating ductal carcinoma breast tissues and 13 apparently normal surrounding tissues</td>
<td>74</td>
</tr>
<tr>
<td>4.3</td>
<td>Immunoreactivity of membrane-associated MUC-1 in 49 infiltrating ductal carcinoma breast tissues and 13 apparently normal surrounding tissues</td>
<td>74</td>
</tr>
<tr>
<td>4.4</td>
<td>Localization of MAGE-1 proteins at the cytoplasmic compartment of breast cancer cells in various staining intensities</td>
<td>77</td>
</tr>
<tr>
<td>4.5</td>
<td>Immunoreactivity of MAGE-1 in 49 infiltrating ductal carcinoma breast tissues and 13 apparently normal adjacent tissues</td>
<td>78</td>
</tr>
<tr>
<td>4.6</td>
<td>Localization of survivin proteins in cytoplasm of the breast cancer cells at various staining intensities</td>
<td>80</td>
</tr>
<tr>
<td>4.7</td>
<td>Immunoreactivity of survivin in 49 infiltrating ductal carcinoma breast tissues and 13 apparently normal adjacent tissues</td>
<td>81</td>
</tr>
<tr>
<td>5.1</td>
<td>Agarose gel electrophoresis showed some examples of reaction patterns for different HLA-A subtype from PCR for HLA-A typing</td>
<td>96</td>
</tr>
<tr>
<td>5.2</td>
<td>The expression frequency of different HLA-A types from blood of patients with infiltrating ductal carcinoma (IDC) (n= 40)</td>
<td>97</td>
</tr>
</tbody>
</table>
5.3 The relative staining intensity of CD69 and IFN-γ in different culture systems

5.4 Specific retention of calcein-AM in target cells but not in the effector cells

5.5 Retention of calcein-AM target MCF-7 breast cancer cells after co-culture with effector cells at different E/T ratio

5.6 Percentage of propidium iodide (PI) or ethidium bromide homodimer (EthD) in the co-culture system

6.1 A representative scatter plot to show the gating of various cell populations in the tumour suspension

6.2a-h Phenotypic analysis of tumour infiltrating lymphocytes

6.3 The relative fluorescence intensity and percentage of positivity of different surface marker expression with respective to isotype control (in blue) on tumour infiltrating lymphocytes (TILs) of infiltrating ductal carcinoma (IDC) of the breast
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>alpha</td>
</tr>
<tr>
<td>β</td>
<td>beta</td>
</tr>
<tr>
<td>γ</td>
<td>gamma</td>
</tr>
<tr>
<td>δ</td>
<td>delta</td>
</tr>
<tr>
<td>%</td>
<td>percentage</td>
</tr>
<tr>
<td>ºC</td>
<td>Degree of Celsius</td>
</tr>
<tr>
<td>µg</td>
<td>microgram</td>
</tr>
<tr>
<td>ACD</td>
<td>acid citrate dextrose</td>
</tr>
<tr>
<td>AICD</td>
<td>activated-induced cell death</td>
</tr>
<tr>
<td>AMC</td>
<td>atypical medullary carcinoma</td>
</tr>
<tr>
<td>APC</td>
<td>alloxycyanin</td>
</tr>
<tr>
<td>APCs</td>
<td>antigen presenting cells</td>
</tr>
<tr>
<td>APES</td>
<td>aminoproxytrimethoxysilane</td>
</tr>
<tr>
<td>BCG</td>
<td>bacilli Calmette-Guerrin</td>
</tr>
<tr>
<td>BCS</td>
<td>breast conservation surgery</td>
</tr>
<tr>
<td>bp</td>
<td>base pair</td>
</tr>
<tr>
<td>BRAC</td>
<td>breast cancer susceptibility protein</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>Calcein-AM</td>
<td>calcein- acetoxymethyl</td>
</tr>
<tr>
<td>CD</td>
<td>cluster of differentiation</td>
</tr>
<tr>
<td>cm</td>
<td>centimeter</td>
</tr>
<tr>
<td>CO₂</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>COX-2</td>
<td>cyclooxygenase-2</td>
</tr>
<tr>
<td>CTLs</td>
<td>cytotoxic T lymphocytes</td>
</tr>
<tr>
<td>Cy-chrome</td>
<td>cyanine-chrome</td>
</tr>
<tr>
<td>DAB</td>
<td>diaminobenzidine tetrahydrochloride</td>
</tr>
<tr>
<td>DCIS</td>
<td>ductal carcinoma in situ</td>
</tr>
<tr>
<td>DCs</td>
<td>dendritic cells</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethylsulphoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>DTH</td>
<td>delayed type hypersensitivity</td>
</tr>
<tr>
<td>EGFR</td>
<td>epithelial growth factor receptor</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>ER</td>
<td>oestrogen receptor</td>
</tr>
<tr>
<td>E/T</td>
<td>effector/target ratio</td>
</tr>
<tr>
<td>EthD</td>
<td>ethidium bromide homodimer</td>
</tr>
<tr>
<td>FADD</td>
<td>Fas-associated protein with death domain</td>
</tr>
<tr>
<td>FASL</td>
<td>Fas ligand</td>
</tr>
<tr>
<td>FBS</td>
<td>fetal bovine serum</td>
</tr>
<tr>
<td>Fc</td>
<td>forward scatter</td>
</tr>
<tr>
<td>FITC</td>
<td>fluorescein isothiocyanate</td>
</tr>
<tr>
<td>FL</td>
<td>filter</td>
</tr>
<tr>
<td>FLICE</td>
<td>FADD homologous Interleukine-1 beta converting enzyme/ Caenorhabditis elegans cell-death protein 3- like protease</td>
</tr>
<tr>
<td>FOXP</td>
<td>Foxhead/ winged-helix</td>
</tr>
<tr>
<td>GITR</td>
<td>glucocorticoid induced tumour necrosis receptor</td>
</tr>
</tbody>
</table>
GSK glycogen synthase kinase
Her2/neu human epidermal growth factor 2/ neu
HLA human leukocyte antigen
HPV human papillomavirus
HRT hormone replacement therapy
HUKM Hospital Universiti Kebangsaan Malaysia
IAP inhibitory of apoptosis
ICAM-1 intracellular cell adhesion molecules-1
IDC infiltrating ductal carcinoma
IFN-γ interferon gamma
IL- interleukin
iNKRs inhibitory NK receptor
LAK lymphocyte activated killer
LMP latent membrane protein
LOH loss of heterozygosity
MAGE melanoma-associated antigen
MAPK mitogen-activated protein kinase
MART-1 melanoma antigen recognized by T cell-1
MC medullary carcinoma
MECL-1 multicatalytic endopeptidase complex like-1
MHC major histocompatibility complex
ml milliliter
mm millimeter
MUC mucin
NCCN National Comprehensive Cancer Network
NK T natural killer T
NSABP P1 National Surgical Adjuvant Breast and Bowel project –Phase 1
PBMCs peripheral blood mononuclear cells
PBS phosphate buffered saline
PCR-SSP polymerase chain reaction- sequence specific primer
PGE2 prostaglandin E2
PE phycoeythrin
PerCp peridinin chlorophyll protein
PI propidium iodide
PI3K-Akt phosphathylinositol 3- kinase/ Akt
PR progesterone receptor
rIL- recombinant interleukin
RNAi interference ribosomal nucleic acid
RPMI 1640 Roswell Park Memorial Institute 1640
TAA s tumour-associated antigens
TAE Tris-acetate-EDTA
TAP transporter associated with antigen processing
TCR T cell receptor
TGF transforming growth factor
Th T helper
TILs tumour infiltrating lymphocytes
TLR toll-like receptor
TMC typical medullary carcinoma
TNFR tumour necrosis factor receptor
TRAIL tumour necrosis factor receptor- related apoptosis inducing ligand
Treg regulatory T lymphocyte
U international unit
VEGF vascular endothelial growth factor
VNTR variable number of tandem repeats