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Batyl alcohol (monoalkylether glycerine) acts as an emulsifier when used 

in emulsion products, such as cosmetics creams, lotions and ointments. It is 

chemically stable, highly purified and safe. Although batyl alcohol is widely used 

in cosmetic products, little is known about its phase behaviour and rheological 

properties in ternary systems. Its phase behaviour in ternary systems was 

therefore studied at 80°C, and observed under a polarising microscope. 

In the ternary systems, lamellar and hexagonal areas were found in 

90110 and 10010 mixtures of batyl alcohol (BA) and isopropyl myristate (IPM) 

and the percentage of water were from 9% - 44% wlw, respectively. They were 

identified by their patterns of maltese crosses and fan structures, respectively. 



Both of them exhibited a viscoelastic network. Further addition of either medium 

chain triglycerides (MCT) or propylene glycol (PG) to the system resulted in 

isotropic and two-phase areas being formed instead of a liquid crystalline 

structure. 

Using a combination of BA, IPM, MCT and water, an emulsion was 

developed. A ratio of 1 :1 MCT:water was emulsified with 5% and 10% BA. A 

weak viscoelastic network was formed with 5% BA but without stearic acid 

(Emulsion S1). With stearic acid (Emulsion S2) a strong viscoelastic network 

was formed with the acid acting as a co-emulsifier. No network structure was 

found in the emulsion containing 10% BA (Emulsion S4) as it was stabilized by 

the right percentage of BA. The emulsifiers adsorbed at the MCThvater 

interface, reducing the droplet size and increasing the viscosity, while the rest 

formed liquid crystalline lamellar in the continuous phase to physically trap the 

droplets in the network. The conductivity measured revealed that oil-in-water 

emulsion can conduct electric and it also shows the oil droplets encapsulated 

by the emulsifier in S2. 
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Batil alkohol (monoalkileter gliserin), apabila digunakan dalam barangan 

emulsi seperti krim kosmetik, losyen dan salap, ia akan bertindak sebagai 

pengemulsi. Sebatian ini adalah stabil dari segi kimia, sangat tulen dan selamat 

digunakan. Walaupun batil alkohol digunakan secara meluas dalam barangan 

kosmetik, pengetahuan terhadap kelakuan fasa dan sifat reologi dalam sistem 

tiga fasa agak kurang. Kelakuan fasa dalam sistem tiga fasa telah dikaji pada 

80°C serta dilihat malalui cahaya berpengutub dan disahkan dengan mikroskop 

berpengutub. 

Dalam sistem tiga fasa, fasa lamelar dan heksagonal terdapat pada 

kombinasi 90110 dan 10010 batil alcohol (BA)/ isopropil miristat (IPM) dan 

peratus air adalah dari 9% - 44% wlw masing-masing dan mereka telah 



diidentifikasi sebagai corak palang maltese dan taring masing-masing. Kedua- 

duanya menunjukkan jalinan hablur cecair yang bersifat viskoelastik. lsotropik 

dan kawasan dua fasa telah terbentuk dengan penambahan triiliserida rantai 

sederhana (MCT) dan propilena glikol (PG) kepada sistem ini. 

Dengan campuran BA, IPM,MCT dan air, sistem emulsi telah dimajukan. 

Nisbah 1:1 bagi MCT dan air telah diemulsi dengan 5% dan 10% BA. Terdapat 

satu viskoelastik yang lemah telah terbentuk dalam sampel S1 dengan 5% BA 

tanpa asid stearik tetapi dengan kehadiran asid stearik dalarn sarnpel S2, satu 

viskoelastik yang kuat telah terbentuk. Asid stearik bertindak sebagai 

pengemulsi bersama. Emulsi yang mengandungi 10% BA dalam S4 tidak 

terdapat sebarang viskoelastik. Sistem distabilkan dengan menggunakan 

peratusan BA yang betul. Pengemulsi menjerap pada antara muka MCTIair, 

mengurangkan saiz titisan, meningkatkan kelikatan, semasa yang lain 

membentuk larnelar hablur cecair dalam fasa terusan sehingga memerangkap 

titisan secara fizikal. Pengukuran kekonduksian menunjukkan emulsi minyak 

dalam air boleh mengkonduksi elektrik dan ia juga menunjukkan titisan minyak 

diperangkap oleh pengemulsi dalam sistem S2. 
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CHAPTER 1 

INTRODUCTION 

1.1 Liquid Crystal 

Otto Lehmann, a physicist, first coined the term liquid crystal to describe 

materials which share many of the properties of both the liquid and solid states. 

The first liquid crystalline material discovered was an organic substance related 

to cholesterol - cholesterol benzoate. It was actually first observed around 1850 

by Heintz, a chemist working on natural fats, but only reported in 1888 by 

Friedrich Reinitzer, an Austrian botanist. 

The meaning of "liquid crystal" has been enormously extended in the last 

two decades to encompass both the chemical and structural concepts. In 

general, it is accepted that liquid crystals represent a higher state of order than 

ordinary (isotropic) liquids. However, the delimitation from crystalline solid is less 

clear. Liquid crystals possess greater intermolecular and intramolecular mobility 

than classical solids, with many types having a lower degree of order than 

crystalline solids. However, there are several types of highly ordered smectic 



liquid crystals, which possess a three-dimensional order, and are therefore 

designated "crystal" phase types by Mori et al. (1 997). 

There are three commonly recognized states of matter - solid, liquid and 

gas. Solid may be either crystalline or amorphous. Crystalline solids have a 

regular arrangement of their molecules over a large distance compared to their 

molecular dimensions, or a long-range order. When a crystalline solid is heated, 

it transforms into an isotropic liquid at its melting point. The isotropic liquid does 

not have any long-range order. Conversely, on cooling, the isotropic liquid is 

transformed into a crystalline solid (Ekwall, 1974). 

For years after their discovery, liquid crystals remained a scientific 

curiosity. They were studied by scientists, who thought they had learnt everything 

about them by the end of the Second World War. The past decade though has 

witnessed new impetus in liquid crystal research with specific applications in 

such diverse areas as medicine, biology, chemistry, physics, space science, 

mathematics and engineering (Westerman, 1993). 

Liquid crystal is a material that can transform from the solid to liquid state 

and vice versa with an intermediate phase in between - the mesomorphase. 

Thus, liquid crystal is similar to a liquid-free flow due to the absence of positional 

order. On the other hand, liquid crystal also resembles a crystalline solid because 

it maintains some orientation. Basically, liquid crystal is divided into lyotmpic and 



thermotropic. A lyotropic liquid crystal is formed when a surfactant is mixed with 

a solvent whereas a thermotropic liquid crystal is formed over a certain 

temperature range (Ekwall, 1974). 

1 .I .I Lyotropic Liquid Crystal 

The word "lyotropic" means "solvent-induced", which starts with molecules 

that are amphiphilic. Amphiphilic molecules are composed of two different parts - 

a nonpolar, or hydrophobic, hydrocarbon tail insoluble in water, and a polar or 

hydrophilic head soluble in water. Some amphiphilic molecules that form lyotropic 

liquid crystals under controlled conditions are soaps, bile salts and phospholipids 

(Collings, 1990). When these compounds are dissolved in water, they can form 

spherical aggregates such as micelles, or vesicles, or cylindrical structures such 

as a bilayer. These structures float freely in the water but retain their orientation 

and positional order. 



It has long been recognized that liquid crystalline phases form a water 

miscible surfactant, which, when dissolved in water above a well-defined 

concentration, form aggregates (micelles). As the surfactant concentration 

increases, the physical characteristics of the solution will change the nature of 

the aggregated solute. These aggregates are the building blocks of the liquid 

crystal phases that occur at higher concentration. 

1 .I .2 Classification of Lyotropic Liquid Crystal 

There are six classes of lyotropic liquid crystal - lamellar, hexagonal, 

cubic, nematic, gel and intermediate phases. All of these have been recognized 

for many years except the intermediate phase. However, for simplicity, only the 

two major types are discussed - lamellar and hexagonal. Furthermore, different 

lamellar liquid crystals are formed from different combinations of interlayer 

spacings. 



1 .I .3 Lamellar Phase 

The most common lyotropic liquid crystal form in a surfactant system is 

the lamellar phase (Figure 1.1), also known as the neat phase. The lamellar 

structure is the most extensive liquid crystal phase studied as it has only a simple 

one-dimensional order. In this phase, the surfactant molecules are arranged in 

bilayers, separated by water layers. 

The surfactant in the bilayer is arranged such that the hydrophobic groups 

of the surfactant molecules are located in the center of the bilayer. The 

hydrophilic groups are therefore attached to the solvent layer. Viewed under a 

polarising microscope, the liquid crystal has three optical patterns - Maltese 

crosses, oily streaks and striation (Figure I .I b). The thickness of the bilayer 

structure is dependent on the water content - increasing the water content will 

increase the area per polar head group of the occupied interface (Ekwall, 1975; 

Small, 1988). 



(ii) (iii) 

Figure 1.1: Lamellar liquid crystal (a) Schematic structure, and (b) Typical 
patterns in it: i) Maltese crosses, ii) oily streaks, and iii) striation. 


