

# UNIVERSITI PUTRA MALAYSIA

SCREENING OF ALPHA-THALASSAEMIA 1 IN BETA- THALASSAEMIA CARRIERS

**CHONG YI MIN** 

FPSK(M) 2005 7

### SCREENING OF ALPHA-THALASSAEMIA 1 IN BETA-THALASSAEMIA CARRIERS

By

### **CHONG YI MIN**

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

August 2005



For my Dad & Mom



ii

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

### SCREENING OF ALPHA-THALASSAEMIA 1 IN BETA-THALASSAEMIA CARRIERS

By

#### **CHONG YI MIN**

#### August 2005

#### Chairman: Professor Elizabeth George, PhD

Faculty: Medicine and Health Sciences

Thalassaemia is an inherited blood disorder in which there is a reduction or absence in the synthesis of the globin chains of human Hb. Thalassaemia remains a public health problem in Malaysia, with many not knowing they carry the gene for thalassaemia. Individuals may be carriers of both  $\alpha$  and  $\beta$ thalassaemia. Concurrent  $\alpha$ -thalassaemia 1 ( $\alpha\alpha$ /--<sup>SEA</sup>) and  $\beta$ -thalassaemia ( $\beta^{\alpha}/\beta^{0}$ ) carriers are potential parents to offspring with Hb Bart's hydrops foetalis (--<sup>SEA</sup>/--<sup>SEA</sup>) and  $\beta$ -thalassaemia major ( $\beta^{0}/\beta^{0}$ ). Hb Bart's hydrops foetalis results from homozygous state of  $\alpha$ -thalassaemia 1 and  $\beta$ thalassaemia major from homozygous  $\beta^{0}$ .

This study determines the frequency of concurrent carriers of alpha and betathalassaemia. The information gathered from this study will aid government agencies in policy-making, specifically on whether concurrent  $\alpha$ thalassaemia 1 identification needs to be done in any national screening programme for thalassaemia. Currently, most national screening programmes for thalassaemia including that in Malaysia concentrates on  $\beta$ thalassaemia.

Blood samples were analyzed using conventional haematological methods. These include full blood counts/red cell indices followed by Hb analysis to quantify Hb subtypes by high performance liquid chromatography (HPLC). A thalassaemia carrier is presumptively identified by a cut-off value of MCV<80fL and MCH<27pg. On HPLC, those with HbA<sub>2</sub>>4.0% are identified as  $\beta$ -thalassaemia carriers. DNA was extracted from blood samples of the  $\beta$ -thalassaemia carriers and Gap-polymerase chain reaction (Gap-PCR) was done to identify the  $\alpha$ -thalassaemia 1 molecular defect. The amplified product was run on 1.5% agarose gel by electrophoresis. The separated PCR product was then viewed under UV transillumination to identify the characteristic 570bp band for the  $\alpha$ -thalassaemia 1 determinant.

A total of 231  $\beta$ -thalassaemia samples were studied. Eight were found to have concurrently inherited the  $\alpha$ -thalassaemia 1 (--<sup>SEA</sup>) deletion, representing a carrier rate of 3.5%. The high carrier rate for  $\alpha$ -thalassaemia 1 indicates the



need for the implementation of DNA analysis to complement thalassaemia diagnosis in a population screening programme. The relative risk of Chinese Malaysian to a non-Chinese being a concurrent carrier of  $\alpha$ -thalassaemia 1 (--<sup>SEA</sup>) and  $\beta$ -thalassaemia is 2.8 fold.



Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

### SARINGAN ALPHA-THALASSAEMIA 1 DALAM PEMBAWA BETA-THALASSAEMIA

Oleh

### **CHONG YI MIN**

Ogos 2005

#### Pengerusi: Profesor Elizabeth George, PhD

Fakulti: Perubatan dan Sains Kesihatan

Thalassaemia ialah sejenis penyakit darah keturunan di mana sintesis rantai globin dalam hemoglobin manusia berkurangan atau langsung tidak hadir. Thalassaemia kekal sebagai masalah kesihatan awam di Malaysia, dengan ramai yang tidak tahu mereka sebenarnya pembawa gen thalassaemia. Seseorang individu boleh membawa kedua-dua gene α and β-thalassaemia. Pembawa serentak α-thalassaemia 1 ( $\alpha\alpha$ /--<sup>SEA</sup>) dan β-thalassaemia ( $\beta^{A}/\beta^{0}$ ) berpotensi untuk melahirkan anak yang mempunyai penyakit Hb Bart's hydrops foetalis (--<sup>SEA</sup>/--<sup>SEA</sup>) dan β-thalassaemia major ( $\beta^{0}/\beta^{0}$ ). Hb Bart's hydrops foetalis disebabkan oleh keadaan homozygous α-thalassaemia 1 dan β-thalassaemia major oleh keadaan homozygous  $\beta^{0}$ .

Kajian ini menentukan kadar pambawa serentak alpha dan betathalassaemia. Maklumat ini akan diberi kepada agensi kerajaan untuk menentukan sama ada identifikasi serentak  $\alpha$ -thalassaemia 1 perlu dijalankan dalam program penyaringan awam thalassaemia. Buat masa ini, kebanyakan program penyaringan awam thalassaemia tertumpu pada  $\beta$ thalassaemia. termasuklah yang dijalankan di Malaysia.

dianalisa dengan menggunakan kaedah hematologi Sampel darah konvensional, termasuklah pengiraan darah automasi/indices sel darah merah, diikuti dengan analisa hemoglobin oleh 'high performance liquid chromatography' (HPLC) untuk mengkuantifikasikan hemoglobin mengikut jenis. Pada mulanya, golongan yang mempunyai MCV<80fL dan MCH<27pg dianggap sebagai pembawa thalassaemia. Dengan HPLC, sampel yang mempunyai HbA<sub>2</sub>>4.0% dikenali sebagai pembawa β-thalassaemia. DNA diekstrak dari sampel darah pembawa β-thalassaemia dan seterusnya 'Gappolymerase chain reaction' (Gap-PCR) dijalankan untuk mengenalpasti kewujudan mutasi  $\alpha$ -thalassaemia 1. Produk amplifikasi dianalisa atas gel agaros 1.5% dengan elektroforesis. Produk PCR yang dipisahkan dilihat dengan menggunakan cahaya UV untuk mengenalpasti saiz 570bp  $\alpha$ thalassaemia 1.

Sejumlah 231 sampel  $\beta$ -thalassaemia dikaji. Lapan dikenalpasti sebagai pambawa serentak yang mempunyai mutasi (--<sup>SEA</sup>)  $\alpha$ -thalassaemia 1. Ini mewakili kadar pembawa sebagai 3.5%. Kadar pembawa yang tinggi bagi  $\alpha$ -thalassaemia 1 menunjukkan perlunya implimentasi analisa DNA bagi mengkomplementasikan diagnosis thalassaemia dalam program penyaringan awam. Peluang relatif seorang rakyat Malaysia berbangsa Cina dikenalpasti sebagai pembawa serentak  $\alpha$ -thalassaemia 1 (--<sup>SEA</sup>) dan  $\beta$ -thalassaemia berbanding dengan seorang rakyat Malaysia bukan Cina ialah 2.83 X.



#### ACKNOWLEDGEMENTS

First and foremost, I would like to extend my deepest gratitude to my supervisor, Prof. Dr. Elizabeth George for her guidance, advice and support that contributed significantly towards the completion of this project. Without her, this project would be impossible. She is always ready to give the guidance and help I need without hesitation. Prof. Dr. Elizabeth George has been my supervisor since my undergraduate years. In these 4 years, she never loses her temper even once towards me even though I might have done something terribly wrong. She is the supervisor most students can only dream of having - always kind, patient and understanding. Thank you so much, Prof! It's a pity you're not taking any more students.

I am equally grateful to Assoc. Prof. Dr. Zarida Hambali, my co supervisor, who gave me constructive advice on how to improve my thesis and presentation of my work. Apart from helping me academically, she also helped me personally when I was sick with parathyroid adenoma a few years ago. My secondary kidney stone would go undiagnosed if it wasn't for her. She always showed a lot of care and concern about my health. That's why in a way, she's my saviour. My sincere gratitude to Universiti Putra Malaysia (UPM) for providing the study grant, and to The Institute for Medical Research (IMR) for providing the facility which the study needed to be carried out.

Special thanks to Dr. Zubaidah Zakaria and Dr. Rahimah Ahmad for giving me permission to carry out the study in the laboratory of Hematology Department, IMR, and to Madam Kuldip Kaur, Puan Sapiah Rais, and Encik Mohd. Mokhtar Razali, also from IMR for giving me the guidance and help I need and being kind and generous for letting me share their laboratories. My special thanks also go to Dr Marianne Tan from Universiti Malaya (UM), for her generous contribution of  $\beta$ -thalassaemia samples that form part of the study group. I would also like to thank Mr. Quek Poh Boo from UPM for his advice and collaboration, and to staffs and doctors in Hospital Universiti Kebangsaan Malaysia (HUKM) and Hospital Assunta for their help in sample collections.

Sincere thanks to my family, although a million thanks would not justify what they did for me, especially both my parents, for their constant support both emotionally and financially. Their encouragement and advice have always been my source of motivation. There were times when I almost gave up pursuing this degree because of the stress and lack of confidence; it was their constant support, comfort, motivation and encouragement that kept my head above the water. They are the kind of parents most students can only dream of having – wise, passionate, and inspirational. No one but me can truly understand what they have meant to me.

Last but not least, I would also like to thank my friends for their moral support and concern. Their friendship has made my life memorable and enjoyable.



# **TABLE OF CONTENTS**

| DEDICATION            | ii    |
|-----------------------|-------|
| ABSTRACT              | iii   |
| ABSTRAK               | vi    |
| ACKNOWLEDGEMENTS      | ix    |
| APPROVALS             | xii   |
| DECLARATION           | xiv   |
| LIST OF TABLES        | xviii |
| LIST OF FIGURES       | xx    |
| LIST OF ABBREVIATIONS | xxii  |
|                       |       |

## CHAPTER

| 1 | INTR  | ODUC  | TION AND OBJECTIVES                              | 1  |
|---|-------|-------|--------------------------------------------------|----|
|   | 1.1   | Intro | luction                                          | 1  |
|   | 1.2   | Objec | tives                                            | 5  |
| 2 | LITEF | RATUR | RE REVIEW                                        | 6  |
|   | 2.1   | Backg | ground Information                               | 6  |
|   |       | 2.1.1 | Inherited Haemoglobin Disorders Including        |    |
|   |       |       | Thalassaemia                                     | 6  |
|   |       | 2.1.2 | Haemoglobin Structures                           | 9  |
|   |       | 2.1.3 | Thalassaemia                                     | 11 |
|   | 2.2   | The H | listorical Aspects                               | 14 |
|   | 2.3   | Alpha | a-Thalassaemia                                   | 19 |
|   |       | 2.3.1 | Alpha-Globin Gene Cluster                        | 19 |
|   |       | 2.3.2 | Molecular Basis of Alpha-Thalassaemia            | 20 |
|   |       | 2.3.3 | Clinical Aspects of Alpha-Thalassaemia           | 27 |
|   |       | 2.3.4 | Hb Bart's Hydrops Foetalis                       | 29 |
|   | 2.4   | Beta- | Thalassaemia                                     | 39 |
|   |       | 2.4.1 | Beta-Globin Gene Cluster                         | 39 |
|   |       | 2.4.2 | Molecular Basis of Beta-Thalassaemia             | 39 |
|   |       | 2.4.3 | Phenotypes of Beta-Thalassaemia: Trait and       |    |
|   |       |       | Disease                                          | 41 |
|   |       | 2.4.4 | Prevalence and Epidemiology of Beta-Thalassaemia | 44 |
|   |       | 2.4.5 | Clinical Symptoms and Diagnosis                  | 46 |
|   |       | 2.4.6 | Beta-Thalassaemia Major                          | 51 |
|   |       |       |                                                  |    |



|   | 2.5        | Concu            | rrent Carriers of Thalassaemia                | 56         |
|---|------------|------------------|-----------------------------------------------|------------|
|   | 2.6        | HbA <sub>2</sub> | Measurement in Thalassaemia Screening         | 60         |
|   |            | 2.6.1            | Cellulose Acetate Electrophoresis             | 62         |
|   |            | 2.6.2            | High Performance Liquid Chromatography        |            |
|   |            |                  | (HPLC)                                        | 63         |
|   | 2.7        | Polym            | nerase Chain Reaction (PCR)                   | 67         |
|   |            | 2.7.1            | General Principles of PCR                     | 68         |
|   |            | 2.7.2            | Application of PCR in the Diagnosis of Alpha- |            |
|   |            |                  | Thalassaemia                                  | 70         |
|   | 2.8        | Impor            | rtance of Screening Programmes                | 73         |
|   | 2.9        | Thalas           | ssaemia Carrier Identification                | 79         |
|   |            | 2.9.1            | Full Blood Count (FBC)/Red Cell Indices       | 79         |
|   |            | 2.9.2            | Osmotic Fragility Test (OFT)                  | 83         |
|   |            | 2.9.3            | Hb Analysis                                   | 84         |
|   |            | 2.9.4            | DNA Analysis for Alpha-Thalassaemia           | 89         |
|   |            | 2.9.5            | Conclusion                                    | 91         |
|   |            |                  |                                               |            |
| 3 | MAT        | ERIALS           | S AND METHODS                                 | 92         |
|   | 3.1        | Samp             | le Collection                                 | 92         |
|   |            | 3.1.1            | Ethics Approval                               | 92         |
|   |            | 3.1.2            | Selection of Subjects for the Study           | 92         |
|   | 3.2        | DNA              | Extraction                                    | 93         |
|   |            | 3.2.1            | Materials and Instruments                     | 93         |
|   |            | 3.2.2            | Methodology                                   | 94         |
|   | 3.3        | DNA              | Purity Check                                  | 98         |
|   |            | 3.3.1            | Materials and Instruments                     | 98         |
|   |            | 3.3.2            | Methodology                                   | 99         |
|   | 3.4        | DNA              | Purification                                  | 100        |
|   |            | 3.4.1            | Materials and Instruments                     | 100        |
|   |            | 3.4.2            | Methodology                                   | 101        |
|   | 3.5        | Gap-F            | Polymerase Chain Reaction (Gap-PCR)           | 102        |
|   |            | 3.5.1            | Materials and Instruments                     | 102        |
|   |            | 3.5.2            | Methodology                                   | 104        |
| 4 | RESU       | יד דיכ           |                                               | 110        |
| 4 | 4.1        |                  | mic DNA Yield From Whole Blood Extraction     | 110<br>110 |
|   | 4.1<br>4.2 |                  |                                               | 110        |
|   | 4.2<br>4.3 |                  | ning of Alpha-Thalassaemia Using Gap-PCR      | 111        |
|   | ч.J        | Jiausi           | tical Analysis                                | 110        |
|   | 4.4        | Relati           | ve Risk of a Chinese against Non-Chinese for  |            |
|   |            |                  | a-Thalassaemia 1 Carrier Status               | 117        |
|   |            | -                |                                               |            |



| 5   | DISC   | DISCUSSION                                    |     |
|-----|--------|-----------------------------------------------|-----|
|     | 5.1    | Application of Methods Used in This Study for |     |
|     |        | Screening Programmes                          | 119 |
|     | 5.2    | High Performance Liquid Chromatography        | 119 |
|     | 5.3    | Polymerase Chain Reaction (PCR)               | 119 |
|     | 5.4    | Agarose Gel Electrophoresis                   | 123 |
|     | 5.5    | Visualization of DNA                          | 125 |
|     | 5.6    | Thalassaemia in Malaysia                      | 127 |
|     | 5.7    | Beta-Thalassaemia                             | 128 |
|     | 5.8    | Alpha-Thalassaemia 1 (SEA) Deletion           | 129 |
|     | 5.9    | Concurrent Carriers                           | 131 |
|     | 5.10   | Screening Programmes                          | 134 |
|     | 5.11   | Limitations of Study                          | 137 |
| 6   | CON    | ICLUSION AND RECOMMENDATIONS                  | 138 |
|     | 6.1    | Conclusion                                    | 138 |
| ,   | 6.2    | Recommendations for Thalassaemia Screening    |     |
|     |        | Programmes                                    | 140 |
|     | 6.3    | Recommendations for Future Research Work      | 141 |
| REI | FERENC | TES                                           | 142 |
| AP  | PENDIC | TES                                           | 156 |
| BIC | DATA ( | OF THE AUTHOR                                 | 167 |



# LIST OF TABLES

| Table |                                                                                                                                                               | Page |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 2.1   | Structure of haemoglobins and their relative distributions                                                                                                    | 11   |
| 2.2   | Global summary of approximate numbers of annual births of babies with severe haemoglobin disorders                                                            | 13   |
| 2.3   | Prevalence of ( <sup>SEA</sup> ) $\alpha$ -thalassaemia deletion in Southeast<br>Asia                                                                         | 24   |
| 2.4   | Alpha-thalassaemia: functional $\alpha$ -globin genes                                                                                                         | 30   |
| 2.5   | HbA2 levels in disease states                                                                                                                                 | 50   |
| 2.6   | Hb analysis of adult blood specimens of various conditions on HPLC (Bio-Rad VARIANT™) and their values                                                        | 67   |
| 3.1   | Preparation of reagents from QIA amp® DNA Blood Midi kit                                                                                                      | 95   |
| 3.2   | Amount of ddH2O added to each oligonucleotide primer before use                                                                                               | 104  |
| 3.3   | Reaction mixture for amplification of normal $\alpha$ -globin genes<br>and $\alpha$ -thalassaemia 1 ( <sup>SEA</sup> ) deletion                               | 107  |
| 3.4   | PCR process                                                                                                                                                   | 108  |
| 4.1   | Breakdown of study group according to race and gender                                                                                                         | 112  |
| 4.2   | Samples indicated in Figure 4.3                                                                                                                               | 114  |
| 4.3   | The relative risk of Chinese carrying $\alpha$ -thalassaemia 1 ( <sup>SEA</sup> ) deletion as compared to non-Chinese in the $\beta$ -thalassaemia population | 118  |



| A1 | Multifaceted approach for presumptive identification of thalassaemias | 158 |
|----|-----------------------------------------------------------------------|-----|
| B1 | Sample Data                                                           | 160 |
| C1 | Estimating a population proportion with specified absolute precision  | 166 |



# LIST OF FIGURES

| Figur | 'e                                                                                                                     | Page |
|-------|------------------------------------------------------------------------------------------------------------------------|------|
| 2.1   | The normal human haemoglobin and the gene clusters that regulate their production                                      | 10   |
| 2.2   | Global distribution of $\alpha$ and $\beta$ -thalassaemia                                                              | 12   |
| 2.3   | An early clinical study of thalassaemia in Asia                                                                        | 16   |
| 2.4   | Timeline: Thalassaemia: the first 75 years                                                                             | 18   |
| 2.5   | The organization of the $\alpha$ -globin complex                                                                       | 20   |
| 2.6   | Displaced, but homologous, crossing-overs which produce the $-\alpha^{37}$ (Z boxes) and the $-\alpha^{4.2}$ (X boxes) | 23   |
| 2.7   | Alpha-thalassaemia deletions                                                                                           | 25   |
| 2.8   | Pathophysiology caused by the absence of the $\alpha$ -globin genes                                                    | 35   |
| 2.9   | The β-globin gene cluster                                                                                              | 39   |
| 2.10  | Point mutations in β-thalassaemia                                                                                      | 43   |
| 2.11  | The distribution of haemoglobin E and β-thalassaemia in<br>Southeast Asia                                              | 45   |
| 2.12  | Population distribution of prevalent $\beta$ -thalassaemia mutations                                                   | 48   |
| 2.13  | Beta-thalassaemia trait chromatogram by the BTS program on the BioRad VARIANT™                                         | 66   |
| 2.14  | Steps involved in the first few rounds of a polymerase chain reaction                                                  | 69   |
| 3.1   | The location of PCR primers in the $\alpha$ -globin gene cluster                                                       | 106  |



| 4.1 | Preliminary check of the DNA yield                                                   | 110 |
|-----|--------------------------------------------------------------------------------------|-----|
| 4.2 | Racial distribution of studied population                                            | 111 |
| 4.3 | Gel showing bands of normal and $\alpha$ -thalassaemia 1 ( <sup>SEA</sup> ) deletion | 113 |
| 4.4 | Frequency of concurrent carriers                                                     | 115 |
| 5.1 | Basic structure of agarose                                                           | 123 |
| 5.2 | The relationship between the size of the DNA and its electro-<br>phoretic ability    | 125 |
| 5.3 | Photography of gel by transmitted illumination                                       | 126 |
| A1  | Algorithm: Screening for Thalassaemia in Malaysia                                    | 157 |
|     |                                                                                      |     |



## LIST OF ABBREVIATIONS

| DCIP  | Dichlorophenolindophenol                   |
|-------|--------------------------------------------|
| ddH2O | Double-distilled water                     |
| DNA   | Deoxyribonucleic acid                      |
| dNTP  | Deoxynucleotriphosphate                    |
| EDTA  | Ethylenediaminetetraacetic acid            |
| FBC   | Full blood count                           |
| Hb    | haemoglobin                                |
| HLA   | Human leukocyte antigen                    |
| HPLC  | High performance liquid chromatography     |
| HVR   | Hypervariable region                       |
| IDA   | Iron deficiency anaemia                    |
| МСН   | Mean corpuscular haemoglobin               |
| МСНС  | Mean corpuscular haemoglobin concentration |
| MCV   | Mean corpuscular volume                    |
| OD    | Optical density                            |
| OFT   | Osmotic fragility test                     |
| PCR   | Polymerase chain reaction                  |



| RBC   | Red blood cells           |
|-------|---------------------------|
| RNA   | Ribonucleic acid          |
| SD    | Standard deviation        |
| SEA   | Southeast Asia            |
| UV    | Ultraviolet               |
| WHO   | World Health Organization |
| bp    | base pairs                |
| kb(p) | kilo base pairs           |



#### **CHAPTER 1**

#### **INTRODUCTION AND OBJECTIVES**

### 1.1 Introduction

Thalassaemia is a disorder of haemoglobin (Hb) synthesis characterized by the absence or reduced synthesis of one or more of the globin chains,  $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $\delta$ ,  $\varepsilon$  and  $\zeta$  of human Hb. The two main types of thalassaemia that are clinically important are  $\alpha$  and  $\beta$ -thalassaemia (Weatherall and Clegg, 2001).

Alpha-thalassaemia is the most common haemoglobin disorder in the world. Deletions of either one ( $\alpha$ -thalassaemia 2) or both ( $\alpha$ -thalassaemia 1)  $\alpha$ -globin genes on chromosome 16 account for over 95% of  $\alpha$ -thalassaemia cases (Higgs *et al.*, 1989).

In Southeast Asia, the form of mutation in  $\alpha$ -thalassaemia 1 carriers is most commonly the SEA deletion (--SEA). Alpha-thalassaemia 1 (--SEA) carriers are at risk of having Hb Bart's hydrops foetalis offspring that usually dies *in utero* at the third trimester of pregnancy or shortly after birth

