PERFORMANCE OF Trichoderma harzianum Rifai AS A BIOLOGICAL CONTROL AGENT FOR BASAL STEM ROT OF OIL PALM (Elaeis guineensis Jacq.) CAUSED BY Ganoderma boninense Pat.

SHAMALA A/P SUNDRAM

FPSK(M) 2005 6
PERFORMANCE OF Trichoderma harzianum Rifai AS A BIOLOGICAL CONTROL AGENT FOR BASAL STEM ROT OF OIL PALM (Elaeis guineensis Jacq.) CAUSED BY Ganoderma boninense Pat.

By

SHAMALA A/P SUNDRAM

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia in Fulfilment of the Requirements for the Degree of Master of Science

February 2005
This thesis is especially dedicated to my family........
PERFORMANCE OF Trichoderma harzianum Rifai AS A BIOLOGICAL CONTROL AGENT FOR BASAL STEM ROT OF OIL PALM (Elaeis guineensis Jacq.) CAUSED BY Ganoderma boninense Pat.

By

SHAMALA SUNDRAM

February 2005

Chairman : Associate Professor Faridah Abdullah, PhD
Faculty : Science

Basal stem rot (BSR) is a major threat to the oil palm industry. The disease is caused by Ganoderma boninense, which rots the internal tissues at the trunk base resulting in stem fracture and death of palm. The present study investigated the efficacy of two isolates of Trichoderma harzianum (BIO T32 and BIO T66) as potential biological control agents against BSR based on in vitro and in vivo trials.

The study revealed that treatment applied as a soil drench using conidial suspension (mean of 1.61 x 10^8 spores/ml) of BIO T32 in addition to a Trichoderma-incorporated palm press fibre (ppf) surface mulch, performed better with a significant difference compared to the use of BIO T66. The disease severity index (DSI) of the former was 28.35 compared to 76.67 of the latter. BIO T32 was also a competent biological control agent in the delayed treatment given to pre-infected seedlings at 6 weeks before treatment with BIO T32, giving a DSI of 45, which was statistically significant compared to the infected and untreated control seedlings with a DSI of 86.67. In testing the synergistic
effect by combining the 2 isolates, a poorer performance was observed based on the DSI and plant biomass compared to single application of BIO T32. Isolate BIO T66 which showed good antagonistic properties in the in vitro assessment was not found to display similar results in the in vivo trials.

A series of treatments were evaluated for their potential as a BIO T32 carrier. Out of the 3 studies, only ppf and compost exhibited promising results in their capacity as surface mulches, where treatments with either one gave a DSI of 30. Both are food base carriers for they increased the growth of oil palm seedlings significantly, with compost displaying better results. Treatment with compost in terms of vegetative growth gave the highest plant biomass, leaf area measurement, nitrogen, phosphorus and potassium (NPK) content in the seedlings compared to the other 2 treatments of ppf and the untreated control seedlings.

In total, the experiment revealed that the application of BIO T32 as a single inoculum was the best treatment, giving a DSI of 28.35. Trials using a single application of BIO T66 and BIO T66 mixed with BIO T32 performed poorly, giving a DSI of 76.67 each and were not significantly different from the infected non-treated control plants. An appropriate interval of conidial suspension’s application played a pertinent role in the inhibition of disease as demonstrated in the delayed treatment. The application of compost was found to be an interesting alternative to ppf as surface mulch, which functions also as a Trichoderma carrier. Finally, in terms of vegetative growth both ppf
and compost as food base carriers significantly increased plant biomass, total leaf area measurement and N uptake compared to the untreated control.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KEBOLEHAN *Trichoderma harzianum* Rifai SEBAGAI AGEN KAWALAN BIOLOGI TERHADAP PENYAKIT REPUT PANGKAL BATANG KELAPA SAWIT (*Elaeis guineensis* Jacq.) YANG DISEBABKAN OLEH *Ganoderma boninense* Pat.

Oleh

SHAMALA SUNDRAM

Februari 2005

Pengerusi : Profesor Madya Faridah Abdullah, PhD
Fakulti : Sains

Penyakit reput pangkal batang adalah serius bagi industri pokok kelapa sawit. Penyakit ini disebabkan oleh *Ganoderma boninense* yang menyebabkan reputan pada pangkal pokok yang mengakibatkan kerosakan batang pokok dan akhirnya kematian. Kajian ini menyiasat 2 isolat *Trichoderma harzianum* (BIO T32 dan BIO T66) dalam kebolehan sebagai agen kawalan biologi yang berpotensi terhadap penyakit reput pangkal melalui ujian makmal dan rumah hijau.

Kajian ini telah membuktikan rawatan aplikasi tunggal menggunakan suspensi konidia (purata 1.61 x 10^8 spora/ml) bersama serabut kelapa sawit BIO T32 memberikan keputusan yang lebih baik berbanding dengan BIO T66. Keputusan keparahan index penyakit (DSI) bagi BIO T32 adalah lebih baik dengan 28.35 berbanding BIO T66 dengan 76.67. BIO T32 juga terbukti sebagai agen kawalan biologi yang berpotensi apabila ia memberikan keputusan yang memberangsangkan bagi rawatan 6 minggu lewat
kepada anak pokok kelapa sawit yang dijangkiti EGB 01 berbanding dengan anak pokok yang tidak dirawat (Kawalan II). Dalam menentukan keberkesanan kombinasi 2 isolate tersebut keputusan yang tidak baik diperolehi melalui DSI, berat kering anak pokok jika dibandingkan dengan rawatan menggunakan BIO T32. Isolat BIO T66 yang memberikan keputusan baik dalam ujian in vitro tidak memberikan keputusan yang sama dalam ujian in vivo.

Beberapa rawatan telah dikaji sebagai pengangkut BIO T32. Dari 3 rawatan yang dikaji, hanya serabut kelapa sawit dan kompos memberikan keputusan yang memberangsangkan dengan DSI 30 untuk kedua-dua rawatan di akhir eksperimen. Kedua-dua agen pengangkut ini juga telah meningkatan pertumbuhan anak pokok dengan kompos memberikan keputusan yang lebih tinggi dan bererti dalam penyerapan nitrogen, fosforus dan kalium (NPK), berat kering anak pokok serta jumlah luas daun yang paling tinggi berbanding dengan 2 rawatan iaitu serabut kelapa sawit dan kawalan (tidak dirawat).

Secara keseluruhan, kajian ini mendapati rawatan menggunakan BIO T32 secara tunggal lebih berkesan dengan DSI 28.35. Rawatan menggunakan BIO T66 dan kombinasi bersama BIO T32 tidak memberikan keputusan yang memberangsangkan dengan DSI bernilai 76.67 untuk setiap satu. Suspensi konidia yang diberikan pada masa yang betul memberikan keputusan yang memberangsangkan dalam supresi penyakit terutamanya pada anak pokok yang dirawat lewat setelah dijangkiti awal oleh G.boninense. Kompos menunjukkan keputusan yang memberangsangkan sebagai agen pengangkut alternatif
kepada serabut kelapa sawit. Akhir sekali, kedua-dua agen iaitu serabut kelapa sawit dan kompos sebagai pengangkut memberikan keputusan yang bererti dalam meningkatkan berat kering anak pokok, jumlah luas daun dan pengambilan nitrogen (N), jika dibandingkan dengan anak pokok yang tidak dirawat.
ACKNOWLEDGEMENTS

I wish to express my heartfelt thanks to my Masters Program supervisor Associate Professor Dr. Faridah Abdullah for her constant, continuous and invaluable advice, motivation and encouragement throughout the course of this study. I am most indebted for her invaluable information and her constant guidance towards the completion of this thesis. A thank you note also goes to Associate Professor Dr Umi Kalsom Yusof and Associate Professor Dr Zainal Abidin for their support.

I would also like to express my sincere appreciation to Associate Professor Dr. Vijaya Kanapathipillai and Dr. G. M. N. Illias for their support and encouragement in the completion of this thesis. A thank you note goes to my labmate, Miss Jayanthi Nagappan.

My invaluable gratitude goes to my family especially to my mother for her endless effort in persuading me to complete this thesis and not forgetting my sister Subha and brothers Sharma and Vignes for their support and encouragement throughout the finishing point of this thesis. A special thank you goes to Ms Cristina Banjamin for her help and support.

Finally, a special heartfelt appreciation goes to my husband Prajiv, for his endless motivation, assistance, continuous encouragement and guidance during the process of completing this thesis. Thank you for everything.
I certify that an Examination Committee met on 2nd February 2005 to conduct the final examination of Shamala Sundram on her Master of Science thesis entitled “Performance of *Trichoderma harzianum* Rifai as a Biological Control Agent for Basal Stem Rot of Oil Palm (*Elaeis guineensis* Jacq.) Caused by *Ganoderma boninense* Pat.” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Jambari Hj Ali, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Muskhazli Mustafa, PhD
Faculty of Science
Universiti Putra Malaysia
/Internal Examiner)

Jugah Kadir, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Vikineswary, PhD
Professor
Faculty of Science
Universiti Malaya
(External Examiner)

GULAM RUSUL RAHMAT ALI, PhD
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 19 MAY 2005
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Faridah Abdullah, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Umi Kalsom Yusof, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Zainal Abidin Mior Ahmad, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Aini Ideris, Ph.D.
Professor/Dean
School of Graduate Studies

Date: 09 JUN 2005
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

SHAMALA SUNDARAM

Date: 18 MAY 2005
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS/NOTATIONS/GLOSSARY OF TERMS</td>
<td>xxiii</td>
</tr>
</tbody>
</table>

CHAPTER

I INTRODUCTION

 II LITERATURE REVIEW

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Oil Palm (Elaeis guineensis Jacq.)</td>
<td>8</td>
</tr>
<tr>
<td>Origin</td>
<td>8</td>
</tr>
<tr>
<td>Oil Palm Industry in Malaysia</td>
<td>8</td>
</tr>
<tr>
<td>The Botany of Oil Palm</td>
<td>10</td>
</tr>
<tr>
<td>Oil Palm Environment</td>
<td>10</td>
</tr>
<tr>
<td>Soil Type</td>
<td>10</td>
</tr>
<tr>
<td>Nutrients</td>
<td>11</td>
</tr>
<tr>
<td>Climate</td>
<td>11</td>
</tr>
<tr>
<td>Oil Palm Diseases</td>
<td>11</td>
</tr>
<tr>
<td>Root and Butt Rots</td>
<td>11</td>
</tr>
<tr>
<td>Stem Diseases</td>
<td>12</td>
</tr>
<tr>
<td>Leaf Diseases</td>
<td>13</td>
</tr>
<tr>
<td>Diseases of the Fruit and Inflorescences</td>
<td>13</td>
</tr>
<tr>
<td>Basal Stem Rot (BSR)</td>
<td>14</td>
</tr>
<tr>
<td>Predisposition Factors On The BSR Disease</td>
<td>16</td>
</tr>
<tr>
<td>Age of Palms</td>
<td>17</td>
</tr>
<tr>
<td>Previous Crop</td>
<td>17</td>
</tr>
<tr>
<td>Types of Soils</td>
<td>18</td>
</tr>
<tr>
<td>Nutrients in Soil</td>
<td>19</td>
</tr>
<tr>
<td>Techniques of Replanting</td>
<td>20</td>
</tr>
<tr>
<td>Biological Control</td>
<td>21</td>
</tr>
<tr>
<td>Trichoderma – Taxonomy and Morphology</td>
<td>22</td>
</tr>
<tr>
<td>Trichoderma as Biological Control Agent – Previous Work</td>
<td>23</td>
</tr>
<tr>
<td>Occurrence and Distribution of Trichoderma</td>
<td>25</td>
</tr>
</tbody>
</table>
Endurance and Propagation of *Trichoderma* in Soil and Plant Rhizosphere
Mechanism Involved in *Trichoderma* Antagonism

III

MORPHOLOGICAL CHARACTERISTICS, ANTAGONISTIC STUDIES AND PRODUCTION OF DIFFUSIBLE METABOLITES BY SELECTED *TRICHODERMA* ISOLATES

Introduction

Page 28

Materials and Methods

Page 33

Source of *Trichoderma* Isolates

Page 33

Colony Characteristics and Culture Morphology

Page 33

Slide Cultures for Microscopic Characteristics

Page 33

Effect of Varying Temperature on *Trichoderma* Isolates Radial Growth

Page 35

Effect of Varying pH on *Trichoderma* Isolates Radial Growth

Page 35

Effect of Varying pH on *Trichoderma* Isolates Sporulation

Page 36

Antagonistic Test by Dual Culture

Page 37

Bilayer Plate Technique to Test Production of Diffusible Metabolites

Page 38

Results

Colony Morphology and Microscopic Characteristics from Slide Culture

Trichoderma harzianum (Rifai) – BIO T32

Page 43

Trichoderma harzianum (Rifai) – BIO T66

Page 44

Trichoderma longibrachiatum (Rifai) – BIO T28

Page 44

Trichoderma virens (Miller, Giddens & Foster) – BIO T128

Page 45

Effect of Varying Temperature on *Trichoderma* Isolates Radial Growth

Page 50

Effect of Varying pH on *Trichoderma* Isolates Radial Growth

Page 53

Effect of Varying pH on *Trichoderma* Isolates Sporulation

Page 54

Antagonistic Test by Dual Culture

Page 57

Bilayer Plate Technique: Production of Diffusible Metabolites

Page 58

Discussion

Page 61

IV

THE USE OF *TRICHODERMA HARZIANUM* AS A SINGLE AND A MIXED INOCULUM SOURCE FOR THE SUPPRESSION OF BSR IN GREENHOUSE TRIALS

Introduction

Page 66

Materials and Methods

Page 69
Source of Fungal Culture 69
Source of Seedlings 69
Source of Potting Media 69
Preparation of Woodblock Inocula of *G. boninense* (EGB 01) 69
Preparation of *Trichoderma* – incorporated surface mulch 71
Preparation of *Trichoderma* Conidial Suspension 71
Artificial Infection on Oil Palm Seedlings 72
Experimental Layout 74
Assessment of Disease Development 77
Disease Severity Index (DSI) 77
Dry Weight of Plants 78
Estimation of Spore Counts 81
Environmental Factors: Soil Moisture Content and pH 82
Statistical Analysis 83
Results 84
Progression of Signs & Symptoms Corresponding to the Disease Classes 84
Disease Progression Based on Disease Severity Index (DSI) 86
Dry Weight of Plants 88
Estimation of *Trichoderma* Spores: Colony Forming Unit Per Gram Soil 93
Soil Moisture and pH 95
Discussion 98

V

SELECTION OF AN EFFECTIVE DELIVERY SYSTEM FOR *T. HARZIANUM* (BIO T32) AND EFFECT OF 2 DELIVERY CARRIERS ON GROWTH OF OIL PALM SEEDLINGS 105
Introduction 105
Materials and Methods 109
Source of Fungal Cultures, Oil Palm Seedlings and Potting Media 109
Preparation of Woodblocks Inocula of EGB 01 and Method of Infection 109
Preparation of *Trichoderma* – Incorporated Surface Mulch 109
Preparation of *Trichoderma* – Incorporated Compost 109
Preparation of *Trichoderma* Conidial Suspension 110
Preparation of Hydrogel Suspension 110
Experiment Layout – Effective Delivery System of BIO T32 111
Assessment of Effective Delivery System for BIO T32 113
Disease Severity Index (DSI) 113
Dry Weight of Plants 113
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Concentrations of lactic acid and NaOH (250ml for each pH)</td>
<td>36</td>
</tr>
<tr>
<td>3.2</td>
<td>Volume of Benlate® added in PDA for the respective concentration</td>
<td>40</td>
</tr>
<tr>
<td>3.3</td>
<td>Index score for growth of EGB 01 – Bilayer Plate Technique (Etheridge and Craig, 1973)</td>
<td>41</td>
</tr>
<tr>
<td>3.4</td>
<td>Effect of varying temperatures on Trichoderma isolates radial growth (pH: 5.68)</td>
<td>51</td>
</tr>
<tr>
<td>3.5</td>
<td>Effect of varying pH on Trichoderma isolates radial growth (temperature: 28±°C)</td>
<td>53</td>
</tr>
<tr>
<td>3.6</td>
<td>Effect of varying pH on Trichoderma isolates on sporulation (temperature: 28±°C)</td>
<td>54</td>
</tr>
<tr>
<td>3.7</td>
<td>Percentage of radial inhibition (PIRG) and colony overgrowth by Trichoderma test isolates</td>
<td>58</td>
</tr>
<tr>
<td>3.8</td>
<td>Mean summary on growth index of (EGB 01) on bilayer plates</td>
<td>59</td>
</tr>
<tr>
<td>4.1</td>
<td>Disease signs and symptoms corresponding to the disease class</td>
<td>78</td>
</tr>
<tr>
<td>4.2</td>
<td>Sequence of disease establishment on Control II seedlings according to disease class</td>
<td>85</td>
</tr>
<tr>
<td>4.3</td>
<td>Mean of soil moisture percentage (%) for each group over 22 w. a. i, at 5 and 15 cm depth respectively</td>
<td>96</td>
</tr>
<tr>
<td>4.4</td>
<td>Mean of pH for each group over 22 w. a. i, respectively at 5 and 15 cm depth respectively</td>
<td>97</td>
</tr>
<tr>
<td>5.1</td>
<td>Progression of Disease Severity Index (DSI) after 24 w. a. i</td>
<td>117</td>
</tr>
<tr>
<td>5.2</td>
<td>Mean of soil moisture percentage (%) for each group over 22 w. a. i</td>
<td>124</td>
</tr>
<tr>
<td>5.3</td>
<td>Mean reading of pH for each group over 22 w. a. i, for 5 and 15 cm depth respectively</td>
<td>125</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>A diagram of moist chamber holding slide culture of Trichoderma isolates</td>
<td>34</td>
</tr>
<tr>
<td>3.2</td>
<td>An illustration of measurement of radii R1 (top) and (R2) (bottom) of G. boninense (EGB 01) used in the calculation of PIRG</td>
<td>38</td>
</tr>
<tr>
<td>3.3</td>
<td>Diagrammatic representation of bilayer plate technique to detect the production and effect of diffusible metabolites from Trichoderma Isolates</td>
<td>42</td>
</tr>
<tr>
<td>3.4</td>
<td>Surface and undersurface characteristics of BIO T32 on PDA (A) and microscopic characteristics of BIO T32 showing conidia (B) and conidiophores (C)</td>
<td>46</td>
</tr>
<tr>
<td>3.5</td>
<td>Surface and undersurface characteristics of BIO T66 on PDA (A) and microscopic characteristics of BIO T66 showing conidia (B) and conidiophores (C)</td>
<td>47</td>
</tr>
<tr>
<td>3.6</td>
<td>Surface and undersurface characteristics of BIO T28 on PDA (A) and microscopic characteristics of BIO T28 showing conidia (B) and conidiophores (C)</td>
<td>48</td>
</tr>
<tr>
<td>3.7</td>
<td>Surface and undersurface characteristics of BIO T128 on PDA (A) and microscopic characteristics of BIO T128 showing conidia (B) and conidiophores (C)</td>
<td>49</td>
</tr>
<tr>
<td>3.8</td>
<td>Surface and Undersurface of test pathogen EGB 01 (G. boninense)</td>
<td>50</td>
</tr>
<tr>
<td>3.9</td>
<td>Effect of temperature on radial growth of Trichoderma isolates A: BIO T32, B: BIO T66, C: BIO T28 and D: BIO T128. Plates arranged from left to right: 15°C, 25°C, 28°C (middle plate), 35°C and 40°C</td>
<td>52</td>
</tr>
<tr>
<td>3.10</td>
<td>Effect of varying pH on radial growth and sporulation of BIO T32. Top from left to right: 2.7, 3.0, 4.0, 5.0; Middle: 5.68 – Control and Bottom; from left to right: 6.0, 7.0, 7.6 and 8.0</td>
<td>55</td>
</tr>
</tbody>
</table>
3.11 Effect of varying pH on radial growth and sporulation of BIO T66. Top from left to right: 2.7, 3.0, 4.0, 5.0; Middle: 5.68 – Control and Bottom; from left to right: 6.0, 7.0, 7.6 and 8.0

3.12 Effect of varying pH on radial growth and sporulation of BIO T28. Top from left to right: 2.7, 3.0, 4.0, 5.0; Middle: 5.68 – Control and Bottom; from left to right: 6.0, 7.0, 7.6 and 8.0

3.13 Effect of varying pH on radial growth and sporulation of BIO T128. Top from left to right: 2.7, 3.0, 4.0, 5.0; Middle: 5.68 – Control and Bottom; from left to right: 6.0, 7.0, 7.6 and 8.0

3.14 Dual culture. Left to right: BIO T28, BIO T32, BIO T66 and BIO T128

3.15 Top: Bilayer plate – EGB 01 plated on BIO T28 (PDA + 0.020 gL⁻¹ Benlate®) Middle: Control I – EGB 01 plated only on PDA + 0.020 gL⁻¹ Benlate®) Bottom: Control 2 – EGB 01 plated only on PDA

3.16 Top: Bilayer plate – EGB 01 plated on BIO T28 (PDA + 0.018 gL⁻¹ Benlate®) Middle: Control I – EGB 01 plated only on PDA + 0.018 gL⁻¹ Benlate®) Bottom: Control 2 – EGB 01 plated only on PDA

3.17 Top: Bilayer plate – EGB 01 plated on BIO T28 (PDA + 0.016 gL⁻¹ Benlate®) Middle: Control I – EGB 01 plated only on PDA + 0.016 gL⁻¹ Benlate®) Bottom: Control 2 – EGB 01 plated only on PDA

4.1 Rubber woodblock fully colonized by EGB 01 at 8 weeks of incubation

4.2 1 L of conidial suspension of the respective T. harzianum isolates, for the application as a soil drench at 1 L/seedling

4.3 Placement of artificial infection seedling in a pot filled with 1/3 of soil

4.4 An Illustration of the experimental layout of single (BIO T32/BIO T66), mixed (BIO T32 + BIO T66) and delayed treatments of infected plants using T. harzianum

4.5 The production of sporophores from control woodblocks indicating viability of inocula
4.6 The disease classes describing the progression of disease signs and symptoms. Top: Class 0 with healthy leaves and class 1 showing leaf necrosis, Middle: Class 2 with mycelia, Bottom: Class 3 with well developed sporophores and class 4 – dead

4.7 *Trichoderma* cfu treated soils observed as green colonies on RBA

4.8 Disease Progression of EGB 01 on oil palm seedlings based on disease severity index (DSI) between 0 to 24 w. a. i.

4.9 Mean of top dry weight of oil palm seedlings at 24 w. a. i.

4.10 Mean of root dry weight of oil palm seedlings at 24 w. a. i.

4.11 Seedlings of Control I (uninfected, untreated) uprooted at 24 w. a. i, showing good root volume (DSI=0)

4.12 Seedlings from Control II (infected, untreated) uprooted at 24 w. a. i, showing all seedlings succumbed to death with poor root development (DSI=86.67)

4.13 Seedlings from Treatment I (infected and treated with BIO T32) uprooted at 24 w. a. i, showing good root volume with few seedlings showing leaf chlorosis (DSI=28.35)

4.14 Seedlings from Treatment II (infected and treated with BIO T66 alone) uprooted at 24 w. a. i, showing poor root development with more than 50% seedlings succumbed to death.

4.15 Seedlings from Treatment III (infected and treated with mixture of BIO T32 & BIO T66) uprooted at 24 w. a. i, showing similar disease progression with Treatment II (DSI=76.67)

4.16 Seedlings from Treatment IV (infected and treated with BIO T32 at 6. w. a. i) uprooted at 24 w. a. i, showing good root mass with almost 50% of seedlings showing leaf chlorosis (DSI=45.0).

4.17 Mean reading of cfu/ g soil of *T. harzianum* at 5 cm depth between 0 to 22 w. a. i.

4.18 Mean reading of cfu/ g soil of *T. harzianum* at 15 cm depth between 0 to 22 w. a. i.
5.1 Experiment layout testing delivery system for *T. harzianum* (BIO T32) against *G. boninense* (EGB 01)

5.2 Illustration of experimental design for the effect of compost and surface mulch on growth of oil palm seedlings

5.3 Disease Progression of EGB 01 on oil palm seedlings based on disease severity index (DSI) over 24 w. a. i.

5.4 Mean reading of top dry weight of oil palm seedlings at 24 w. a. i.

5.5 Mean reading of root dry weight of oil palm seedlings at 24 w. a. i.

5.6 Mean reading of CFU/g soil of *T. harzianum* for at 5 cm depth between 0 to 22 w. a. i.

5.7 Mean reading of CFU/g soil of *T. harzianum* for 15 cm depth between 0 to 22 w. a. i.

5.8 Top: Treatment I (ppf surface mulch); Oil palm seedlings infected with EGB 01, which was treated with conidial suspension of BIO T32 (mean of 1.68×10^8 spores/ml). Bottom: Control I; Oil palm seedlings without infection and treatment.

5.9 Top: Treatment I (ppf surface mulch) – Oil palm seedlings infected with EGB 01, which was treated with conidial suspension of BIO T32 (mean of 1.68×10^8 spores/ml). Bottom: Control II – Oil palm seedlings infected with EGB 01 without treatment.

5.10 Top: Control I – Oil palm seedlings without infection and treatment. Bottom: Treatment II (compost) – Oil palm seedlings infected with EGB 01, which was treated with conidial suspension of BIO T32 (1.67×10^8 spores/ml).

5.11 Top: Treatment II (compost) – Oil palm seedlings infected with EGB 01, which was treated with conidial suspension of BIO T32 (1.67×10^8 spores/ml). Bottom: Control II – Oil palm seedlings infected with EGB 01 without treatment.
5.12 Top: Control I – Oil palm seedlings without infection and treatment. Bottom: Treatment III (conidial suspension) – Oil palm seedlings infected with EGB 01 which was treated with conidial suspension of BIO T32 (1.68 x 10^8 spores/ml)

5.13 Top: Control II – Oil palm seedlings infected with EGB 01 without treatment; Bottom; Treatment III (conidial suspension) - Seedlings infected with EGB 01 which was treated with only conidial suspension of BIO T32 (1.68 x 10^8 spores/ml)

5.14 Top: Treatment IV (Hydrogel) – Oil palm seedlings infected with EGB 01 which was treated with hydrogel suspension of BIO T32 (1.67 x 10^8 spores/ml). Bottom: Control I – Oil palm seedlings without infection and treatment.

5.15 Top: Treatment IV - Seedlings infected with EGB 01, which was treated with hydrogel suspension of BIO T32 (1.67 x 10^8 spores/ml). Bottom: Control II – Oil palm seedlings infected with EGB 01 without treatment

5.16 Mean reading of top dry weight over 24 weeks

5.17 Mean reading of root dry weight over 24 weeks

5.18 Mean reading of leaf area measurement on 16th week of experiment

5.19 Mean reading of NPK percentage in oil palm seedlings

5.20 Comparison of seedlings of control (left) and seedlings treated with compost (right)

5.21 Up rooted seedlings of compost (right) being compared with seedlings of control (left)
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSI</td>
<td>Disease Severity Index</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>DMRT</td>
<td>Duncan’s Multiple Range Test</td>
</tr>
<tr>
<td>PDA</td>
<td>Potato Dextrose Agar</td>
</tr>
<tr>
<td>MEA</td>
<td>Malt Extract Agar</td>
</tr>
<tr>
<td>TDW</td>
<td>Top dry weight</td>
</tr>
<tr>
<td>RDW</td>
<td>Root dry weight</td>
</tr>
<tr>
<td>PIRG</td>
<td>Percentage Inhibition of Radial Growth</td>
</tr>
<tr>
<td>NPK</td>
<td>Nitrogen, Phosphorus and Potassium</td>
</tr>
<tr>
<td>ppf</td>
<td>palm press fibre</td>
</tr>
<tr>
<td>cfu</td>
<td>colony forming unit</td>
</tr>
<tr>
<td>w. a. i.</td>
<td>weeks after infection</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>m</td>
<td>meter</td>
</tr>
<tr>
<td>ml</td>
<td>mililitres</td>
</tr>
<tr>
<td>L</td>
<td>liter</td>
</tr>
<tr>
<td>d</td>
<td>diameter</td>
</tr>
<tr>
<td>cm</td>
<td>centimeter</td>
</tr>
<tr>
<td>Kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>C</td>
<td>celcius</td>
</tr>
<tr>
<td>rpm</td>
<td>rotation per minute</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

The oil palm, *Elaeis guineensis*, is the highest yielding among the oil-producing crops (Ariffin et al., 2000). It is an important species in the tropical regions because of its two main raw materials namely; palm oil and palm kernel oil. Palm oil commands an average yield of about 4 tonnes oil ha$^{-1}$ year$^{-1}$. In the year 2002, Malaysia produced 60% of the world’s palm oil with a total production of about 11 million tonnes (World Oils & Fats, 2002).

Like any other crop, the oil palm also faces a lot of pest and disease (P&D) tribulations. From seed germination right up to field planting, the crop is exposed to several P&D problems, some of which is caused by fungi. Some of the P&D problems faced by oil palm industry are the basal stem rot, brown germ, upper stem rot, *Rhinoceros* beetles and bagworm (Turner, 1981). Among these, the current most serious disease is Basal Stem Rot (BSR). For the past 50 years or more, BSR had been causing serious damage to the oil palm plantation in Malaysia. The disease is also prevalent in Indonesia, Zaire, Ghana, Nigeria, Cameroon, San Tome, Principe, Angola, Rhodesia and Papua New Guinea (PNG) (Turner, 1981) with incidence being relatively low in PNG (Pilotti, 2001).

The causal pathogen of this disease is the fungus *Ganoderma*. Not only does it attack oil palms, it is also the causal agent of root and stem rots of other crops namely; coconut,