

UNIVERSITI PUTRA MALAYSIA

MOLECULAR CLONING AND GENE EXPRESSION ANALYSIS OF THE PHOSPHOLIPASE B GENES OF NON-ALBZCANS CANDZDA SPECIES

CHEANG PEY SHYUAN

FPSK(M) 2005 4

MOLECULAR CLONING AND GENE EXPRESSION ANALYSIS OF THE PHOSPHOLIPASE B GENES OF NON-*ALBICANS CANDIDA* SPECIES

CHEANG PEY SHYUAN

MASTER OF SCIENCE UNIVERSITI PUTRA MALAYSIA

2005

MOLECULAR CLONING AND GENE EXPRESSION ANALYSIS OF THE PHOSPHOLIPASE B GENES OF NON-ALBICANS CANDIDA SPECIES

By

CHEANG PEY SHYUAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

Jun 2005

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science

MOLECULAR CLONING AND GENE EXPRESSION ANALYSIS OF THE PHOSPHOLIPASE B GENES OF NON-ALBICANS CANDIDA SPECIES

By

CHEANG PEY SHYUAN

June 2005

Chairman : Chong Pei Pei, PhD

Faculty : Medicine and Health Sciences

Phospholipase B (*PLB*) is known to be a virulence factor of *Candida albicans*. It hydrolyzes phospholipids and deranges constituents of host cell membranes which are likely to be involved in host cell invasion. The aims of the study are to clone and sequence the *PLB* genes of non-*albicans Candida* species and to assess the timedependent *PLB* gene expression of *C. albicans*, *C. krusei* and *C. tropicalis* under the hyphal induction condition. Three pairs of degenerate primers designed from the conserved regions of *PLB*1 genes of *C. albicans, Saccharomyces cerevisiae* and other fungi were used to amplify DNA fragments of the *PLB* genes from *C. krusei*, *C. parapsilosis* and *C. tropicalis* by the polymerase chain reaction (PCR) approach. Amplicons of approximately 510 bp were successfully obtained from the ATCC type strains of *C. krusei*, *C. parapsilosis* and *C. tropicalis* as well as a *C. tropicalis* clinical blood isolate, by using the first primer pair that targeted the 5' proximal end region of the putative *PLB* gene. The second and third pairs of degenerate primers amplified fragments corresponding to the 3' proximal end region of the putative *PLB* genes from the ATCC strains as well as clinical isolates of *C. parapsilosis* and *C.*

tropicalis. These PCR products were cloned into E. coli vectors and subjected to DNA sequencing. The deduced amino acid sequences of these cloned partial open reading frames (ORFs) exhibited significant homology of about 60-70% identity with known fungal PLB genes. Sequence analysis showed that these putative PLB homologues and five other known PLBs are contained in a cluster of PLB family of proteins in which the amino acid sequences are more conserved towards the carboxyl terminus. Attempts to clone the full length gene sequences of the non-albicans Candida using inverse PCR and RACE (Rapid Amplification of cDNA Ends) were futile. Using a simple phospholipase assay, varying levels of enzyme activity for the extracellular phospholipase was demonstrated in cultures of C. albicans, C. krusei, and C. tropicalis ATCC strains as well as C. parapsilosis and C. tropicalis clinical blood isolates. C. albicans produced significantly higher extracellular phospholipase relative to the other Candida species used in this study. C. glabrata and C. parapsilosis ATCC cultures showed undetectable extracellular phospholipase activity. In order to assess the PLB gene expression at mRNA level, semiquantitative RT-PCR approach was undertaken. The PLB gene expression time course analysis showed that there were significant differences in gene expression level over the 24 hours duration for cultures of C. albicans. Both the yeasts and hyphae forms expressed PLB gene at the mRNA level. PLB gene expression was undetectable in C. krusei, C. tropicalis ATCC and C. tropicalis clinical blood isolates in both the yeast and pseudohyphae forms. The results of this study strongly suggest that PLB is not a significant virulence determinant of non-albicans species. However, the data generated here would provide the vital groundwork for elucidating the instrinsic functional role of *PLBs* in the virulence and pathogenesis of the albicans and non-albicans Candida species.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENGKLONAN MOLEKULAR DAN ANALISIS PENGEKSPRESAN GEN FOSFOLIPASE B UNTUK SPESIS BUKAN-ALBICANS CANDIDA

Oleh

CHEANG PEY SHYUAN

Jun 2005

Pengerusi : Chong Pei Pei, PhD

Fakulti : Perubatan dan Sains Kesihatan

Fosfolipase B telah dikenalpasti sebagai satu factor virulen bagi Candida albicans. Ia menghidrolisiskan fosfolipid dan mengganggu susunan membran sel perumah, mencadangkan bahawa fosfolipase B mengambil bahagian dalam penyerangan masuk ke dalam sel perumah. Kajian ini bertujuan untuk mengklon dan menjujuk gen PLB dari spesis bukan Candida albicans dan juga meneliti pengekspresan gen PLB yang bergantung kepada tempoh masa apabila didedahkan kepada keadaan induksi hifa. Tiga pasangan primer degenerat yang direkacipta dari lokasi terpelihara jujukan nukleotid PLB1 C. albicans, Saccharomyces cerevisiae dan fungi lain telah diguna untuk amplifikasi fragmen gen PLB daripada C. krusei, C. parapsilosis dan C. tropicalis melalui pendekatan reaksi rantaian polymerase (PCR). Amplikon dengan kira-kira 510 pasangan bes berjaya diperolehi daripada C. krusei, C. parapsilosis, C. tropicalis strain ATCC dan juga C. parapsilosis dan C. tropicalis isolat darah klinikal dengan menggunakan pasangan primer degenerat pertama yang mengecam lokasi hujung proksimal 5' gen PLB. Pasangan primer degenerat kedua dan ketiga pula mengamplifikasikan fragmen yang sejajar dengan lokasi hujung proksimal 3' gen PLB putatif daripada strain ATCC dan juga isolat darah klinikal C. parapsilosis dan C. tropicalis. Hasilan PCR diklonkan ke dalam vektor E. coli dan digunakan untuk penjujukan DNA. Jujukan deduksi asid amino bagi sebahagian ORF klon

telah menunjukkan homologi signifikan kira-kira 60-70% identiti dengan gen PLB fungi yang telah dikenalpasti. Analysis jujukan menunjukkan bahawa homolog PLB putatif dan lima gen PLB yang telah dikenalpastikan jujukan adalah terkandung dalam satu kelompok protein keluarga PLB dan jujukan asid amino adalah lebih terpelihara semakin menuju ke terminal karbosil. Percubaan-percubaan untuk mendapatkan jujukan penuh gen PLB bagi spesis bukan albicans telah dijalankan dengan menggunakan teknik inversi PCR dan RACE (Amplifikasi Pantas untuk Hujung cDNA) tetapi tidak berjaya. Dengan menjalankan eksperimen fosfolipase yang ringkas, paras aktiviti enzim fosfolipase ekstrasel yang berbeza-beza telah ditunjukkan dalam kultur C. albicans, C. krusei, C. tropicalis strain ATCC dan juga isolat darah klinikal C. parapsilosis dan C. tropicalis. Paras perembesan fosfolipase ekstrasel bagi C. albicans adalah lebih tinggi jika berbanding dengan Candida yang lain dalam kajian ini. Aktiviti fosfolipase ektrasel bagi kultur C. glabrata dan C. parapsilosis ATCC tidak dapat dikesan sama sekali. Untuk mengaji pengekspresan gen PLB pada paras mRNA, pendekatan kuantitatif-separa RT-PCR telah diambil. Analysis tempoh masa pengekspresan gen PLB menunjukkan bahawa terdapat perbezaan signifikan paras pengekspresan gen sepanjang tempoh 24 jam untuk C. Kedua-dua yis dan hifa menunjukkan pengekspresan gen PLB. albicans. Pengekspresan gen PLB tidak dapat dikesan daripada strain ATCC C. krusei, C. tropicalis dan juga isolat darah klinikal C. tropicalis sepanjang tempoh 24 jam untuk vis dan hifa palsu (pseudohyphae). Keputusan-keputusan yang diperolehi daripada kajian ini mencadangkan bahawa PLB bukan penentu virulen yang signifikan bagi spesis bukan albicans. Walaubagaimanapun, data yang telah diperolehi merupakan asas kerja yang penting bagi meneliti fungsi intrinsik PLB dalam virulen dan mekanisme patogenik spesis untuk C. albicans dan juga bukan albicans.

ACKNOWLEDGEMENTS

My special thanks go to Dr. Chong Pei Pei, the research project main supervisor, for the consistent, invaluable assistance, guidance and funding; understanding and kindness she has given and shown to me during the course of the scientific research. My acknowledgements also go to Professor Seow Heng Fong and Associate Professor Dr. Mariana Nor Shamsudin, the project co-supervisors for contributing their ideas, constructive criticisms and suggestions to improve the many aspects of the experiments; and Associate Professor Dr. Mirnalini Kandiah who helped me in the statistical test and analysis.

To the Biochemistry, Immunology, Microbiology laboratories, and media room technicians and assistants, namely, Mr. Rizal, Mr. Anthonysamy, Mr. Rahman, Mr. Tung and others, thank you for providing scientific apparatus and facilities along the path of the research.

With me always are the colleagues from Prof. Seow's and Dr. Chong's laboratories; respectively they are Ban (from China), Maha, Khor, Tina Ong, Hwen Yee, Pei Ching, and Janet; Won Fen, Chee Long, David, Phelim and Lee Yean. I thank you for the help and consideration shown to me throughout the years.

Last but not least, loving kindness and appreciation to my parents, teachers, family members, relatives, and the Sri Serdang house residents, to whom I compliment your sincere encouragement and support during the three years duration of the research. Thank you very much.

TABLE OF CONTENTS

ABSTRACT	ii
ABSTRAK	iv
ACKNOWLEDGEMENTS	vi
APPROVAL	vii
DECLARATION	viii
LIST OF TABLES	xiii
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS	xvii

CHAPTER

1.	INT	TRODUCTION		
	1.1 Background Study			
	1.2	General Objectives	1 6	
r	t PTI	ED ATTIDE DEVIEW	Ũ	
۷.			-	
	2.1	Introduction to Fungi	/	
	2.2	The "Opportunistic" Fungi	ð	
	2.3	Laboratory Diagnostic Methods	8	
	2.4	Classification of Fungal Disease	9	
	2.5	Fungal Virulence Factors	10	
	2.6	Candida albicans	11	
	2.7	Non-albicans Candida Species	15	
		2.7.1 Candida krusei	15	
		2.7.2 Candida parapsilosis	16	
		2.7.3 Candida tropicalis	16	
	2.8	Virulence Factors of Candida albicans	17	
	2.9	Phospholipases	17	
	2.10	Detection of Candida Phospholipases and the Development of	18	
	Phospholipase Egg Yolk-Based Assay			
	2.11	Phospholipases of Candida albicans	20	
		2.11.1 Phospholipase A	20	
		2.11.2 Phospholipase B	20	
		2.11.2.1 Cloning of Full Length Phospholipase B Gene	21	
		2.11.2.2 Rationale in Considering <i>PLB</i> as Diagnostic Tool	22	
		2.11.2.3 Evidence Implicating Phsopholipase as a Virulence Factor	22	
		2.11.2.4 Differential Expression of C. albicans	23	
		Phospholipase B (PLB1) Under Various		
		Environmental and Physiological Conditions		
		2.11.2.5 C. albicans PLB1 mRNA Expression as a	24	
		Function of Morphogenic Transition	1	
		2.11.3 Phospholipase C	24	
		2.11.4 Phospholipase D	25	
		2.11.5 Lysophospholipase	25	
			20	

	3.7.3.5 Ligating the RNA Oligo to Decapped mRNA	55
	3.7.3.6 Reverse Transcribing mRNA	56
	3.7.3.7 Amplifying cDNA Ends	57
	3.8 Time Course Gene Expression Analysis	59
	3.8.1 Hyphal Induction of C. albicans	59
	3.8.2 RNA Isolation	59
	3.8.3 First Strand CDNA Syntnesis	01
	3.8.4 Polymerase Chain Reaction	02 62
	3.0. J Statistical Testing	62 62
	<i>tropicalis</i> ATCC and Clinical Blood Isolate	02
	4. RESULTS	
	4.1 Maintenance of Candida Cell Growth and Stock Cultures	63
	4.2 Phospholipase Assay	63
	4.3 Pilot Study	70
	4.4 Cloning the Putative <i>PLB</i> Genes	71
	4.5 Cloning and Sequencing of the PCR Products	70
	4.6 Nucleotide Sequence Analysis	/9 91
	4.7 Generating C. kruser 3' End Fragment	01 92
	4.8 Autompts to Generate Full Length <i>PLB</i> Gene	83
	4.8.2 Inverse PCR	84
	4.8.3 Rapid Amplification of cDNA Ends (RACE)	89
	4.9 Overall Sequence Analysis	89
	4.10 Time Course Gen Expression Analysis of <i>PLB</i> mRNA	110
	4.10.1 Candida albicans – ATCC Under Hyphal Induction Condition	111
	4.10.2 Candida krusei – ATCC Under Hyphal Induction Condition	118
	4.10.3 Candida tropicalis – ATCC Under Hyphal Induction Condition	121
	4.10.4 Candida tropicalis – Clinical Blood Isolate Under Hyphal Induction Condition	124
	5. DISCUSSION	
	5.1 Phospholipase Assay	126
	5.2 Sequence Analysis	128
	5.3 Attempts for Full Length <i>PLB</i> Gene Sequence Generation	129
	5.4 Gene Expression	132
	S.5 Discrepancy between Phospholipase Egg Yolk-Based Assay RT-PCR Gene Expression Result	and 137
	5.6 Recommendations for Future Research	138
(6. CONCLUSION & ACCOMPLISHMENTS	139
J	BIBLIOGRAPHY	141
_	APPENDICES	151
1	BIODATA OF THE AUTHOR	180
		109

LIST OF TABLES

Table		Page
1	Classification of mycoses	9
2	<i>PLB</i> 1 mRNA expression level in <i>C. albicans</i> at different temperatures and pH values	24
3	Commonly used sequence analysis tools	36
4	Dephosphorylation reaction	53
5	Decapping reaction	54
6	Ligation reaction	55
7	Reverse transcription reaction	56
8	PCR cocktail for RACE	57
9	Cycling parameters for touchdown PCR (recommended)	58
10	Cycling parameters for positive control	58
11	The distribution of Pz values among the various <i>Candida</i> species in Phospholipase Assay	65
12	Degenerate primers designed in this study	72
13	Novel partial PLB gene sequences generated in the study	80
14	Primers designed using the novel partial PLB gene fragments	82
15	Relative gene expression level for C. albicans PLB gene at different time point	114
16	Multiple comparisons of the mean relative gene expression levels at different time point using statistical tests	115
A.1	Different structures seen in different Candida species	151
A. 2	Important terminology in mycology	151
F.1	Normalization of C. albicans gene expression level using AlphaImager [™] 2200 software	187

	2.11.	6 Lysophospholipase-transacylase	25
	2.12 Polyn	nerase Chain Reaction	26
	2.12.	1 Degenerate Polymerase Chain Reaction	26
	2.12.2	2 Nested Polymerase Chain Reaction	28
	2.12.	3 Hot Start Polymerase Chain Reaction	28
	2.12.4	4 Inverse Polymerase Chain Reaction (IPCR)	38
	2.12.	5 Rapid Amplification of cDNA Ends (RACE)	29
	2.12.0	6 Touchdown Polymerase Chain Reaction	31
	2.12.	7 Reverse Transcription-Polymerase Chain Reaction (RT- PCR)	31
	2.13 Gene	Cloning	32
	2.13.	1 Cloning by Complementation	32
	2.13.2	2 Positional Cloning	33
	2.13.	3 Cloning by Sequence Homology	33
	2.14 Seque	encing Data Analysis	34
3.	MATERIA	LS AND METHODS	
	3.1 Candi	ida Strains, Culture Growth and Maintenance	37
	3.2 Phosp	holipase Assay	37
	3.3 Isolati	ion of DNA	38
	3.4 Polym	nerase Chain Reaction Pilot Study	39
	3.5 Gel E	lectrophoresis	40
	3.6 Gener	ation of PLB Homologue Fragments	40
	3.6.1	Design of Degenerate Primers	40
	3.6.2	PCR Amplification of PLB Homologue Fragments	41
	3.6.3	Purification of Desired PCR Products	41
	3.6.4	Cloning of PCR Products	42
		3.6.4.1 Preparation of Competent Cell	42
		3.6.4.2 Ligation with pGEM®-T Easy Vector	43
		3.6.4.3 Transformation	43
		3.6.4.4. Colony PCR	44
		3.6.4.5 Plasmid Isolation for DNA Sequencing	43
		3.6.4.6 Automated DNA Sequencing	45
		3.6.4.7 Analysis of the Nucleotide Sequences	40
	3.7 Closi	ng Gaps and Generation of Full Length PLB gene	4/
	Seque	ences	
	3.7.1	Closing Gap by Designing Species Specific Primers	47
		Flanking the Unknown Middle Fragment	40
	3.1.2	Inverse Polymerase Chain Reaction	48
		3.7.2.1 Primer Design	48
		3.7.2.2 Selection of Restriction Enzymes	49
		3.7.2.3 Restriction Digestion	49
		3.7.2.4 Ligation/Recircularization	50
	272	5.1.2.3 POlymerase Unain Keaction DNA Liggan Mediated (DLA) DCD	50 51
	3.7.3	AINA LIGASC-IVICUIAICU (KLIVI) PUK 2721 Drenaring DNA	51
		2.7.2.2 Designing Highly Specific DOD Deimons for	51
		3.7.3.2 Designing rightly specific PCK Primers for	52
		3734 Removing the mDNA Con Structure	53 54
		STUDIE NORMANNE DE MINIVA CAP SURCHUR	74

15	Gel electrophoresis of PCR products amplified using ITS3 and ITS4 universal fungal primers	70
16A, B	Gel electrophoresis of Degenerate PCR for cloning the 5' proximal ends of <i>PLB</i> gene from non- <i>albicans</i> species	73
17A, B	Gel electrophoresis of Degenerate PCR for cloning the 3' proximal ends of <i>PLB</i> gene from non- <i>albicans</i> species	75
18A, B	Gel electrophoresis of Nested PCR for cloning the 3' proximal ends of <i>PLB</i> gene from non- <i>albicans</i> species	76
19A, B	Gel electrophoresis of Colony PCR Screening	78
20	Gel electrophoresis of PCR products obtained from plasmid DNA	78
21	Gel electrohoresis of PCR result for C. krusei 3' proximal end PLB gene	81
22	Gel electrophoresis showing the result of middle fragments amplification	84
23	Gel electrophoresis of PCR for cloning middle fragment	85
24	Gel electrophoresis of gel-purified restriction fragments	87
25A, B	Gel electrophoresis of Inverse PCR products	87
26	Sequence alignment between CTAN, CTAM (generated by degenerate PCR) and CTANINVR (generated by inverse PCR) using Multalin version 5.4.1	88
27	Schematic diagramme of C. krusei ATCC partial deduced open reading frame	91
28	Schematic diagramme of <i>C. parapsilosis</i> ATCC partial deduced open reading frame	93
29	Schematic diagramme of <i>C. parapsilosis</i> CLP001 clinical blood isolate partial deduced open reading frame	95
30	Schematic diagramme of <i>C. tropicalis</i> ATCC partial deduced open reading frame.	96
31	Schematic diagramme of <i>C. tropicalis</i> CLT001 clinical blood isolate partial deduced open reading frame	99
32	Schematic diagramme of <i>C. tropicalis</i> ATCC partial deduced open reading frame (inverse PCR generated fragment	101

33	Comparative alignment of the deduced partial N-terminus amino acid sequence residues of <i>Candida PLB</i> genes using Clustal W (1.82)	103
34	A comparative alignment of the deduced partial C-terminus amino acid sequence residues of <i>Candida PLB</i> genes using Clustal W (1.82)	107
35	Morphological changes of C. <i>albicans</i> under hyphal induction condition was observed in different time points	111
36	Expression of <i>PLB</i> gene in <i>C. albicans</i> under hyphal induction condition	113
37	The column chart showed the decreasing normalized gene expression level in the time course gene expression analysis of <i>C. albicans</i> , and the difference was significant	114
38	Morphological changes of C. krusei ATCC strain undergoing the same condition as hyphal induction in C. albicans, were observed in different time points	118
39	Time course mRNA <i>PLB</i> gene expression of <i>C. krusei</i> ATCC under the hyphal induction condition (as in <i>C. albicans</i>), in RPMI-1640 medium	119
40	Morphological changes of <i>C. tropicalis</i> ATCC strain, undergoing the same condition as hyphal induction in <i>C. albicans</i> , were observed in different time points	122
41	Time course <i>PLB</i> gene expression of <i>C. tropicalis</i> , ATCC under the hyphal induction condition in RPMI-1640 medium	123
42	Morphological changes of <i>C. tropicalis</i> clinical blood isolate, undergoing the same condition as hyphal induction in <i>Candida albicans</i> , were observed in different time points	124
43	Time-course <i>PLB</i> gene expression of <i>C. tropicalis</i> clinical blood isolate under the hyphal induction condition	125
B. 1	Sequence alignment of fungal PLBs	152
B.2	Codon Usage Table for C. tropicalis	153
C.1	pGEM [®] -T Easy Vector circle map and sequence reference points	154
C.2	The promoter and multiple cloning sequence of the pGEM®-T Easy Vectors	157

LIST OF ABBREVIATIONS

AIDS	Acquired Immune Deficiency
ATCC	American Type Collection Culture
ATP	Adenosine triphosphate
bp	Base pair
CaCl ₂	Calcium chloride
cDNA	Complementary DNA
CIP	Calf intestinal phosphatase
CO ₂	Carbon dioxide
DEPC	Diethylpyrocarbonate
DNA	Deoxyribonucleic acid
dNTP	Deoxynucleotide triphosphate
dsDNA	Double-stranded DNA
DTT	Dithiothreitol
EBI	European Bioinformatics Institute
EDTA	Ethylenediamine tetraacetic acid
e.g.	exempli gratia (Latin), for example
EIA	Enzyme immunoassay
et al.	et alii (Latin), and others
GSP	Gene specific primer
HCI	Hydrochloric acid
HIV	Human immunodeficiency virus
Hrs	Hours
ICU	Intensive care unit
IPCR	Inverse PCR
IPTG	Isopropyl-1-thio-D-galactopyranoside
ITS	Internal transcribed spacer
kb	Kilo base
kDA	Kilo dalton
LA-PCR	Ligation anchored PCR
LB broth	Luria-Bertani broth
Μ	Molar
MgCl _{2,}	Magnesium chloride

MgSO ₄	Magnesium sulphate
min	Minute
ml	Milliliter
mM	Millimolar
mRNA	Messenger ribonucleic acid
NaCl	Natrium chloride
NCBI	National Center for Biotechnology Information
°C	Degree celcius
OD ₅₅₀	Optical density at 550 nanometer
ORF	Open reading frame
PBS	Phosphate buffered saline
PCR	Polymerase Chain Reaction
PL	Phospholipase
PLA	Phospholipase A
PLB	Phospholipase B
PLC	Phospholipase C
PLD	Phospholipase D
pmoles/µl	Picomoles per microlitre
RACE	Rapid amplification of cDNA end
RE	Restriction enzyme
RL-PCR	Reverse ligation-mediated PCR
RLM-RACE	RNA ligase-mediated RACE
rpm	Revolution per minute
rRNA	Ribosomal RNA
RT	Reverse transcriptase
RT-PCR	Reverse transcription-PCR
SAP	Secreted aspartyl proteinase
sec	Second
SDA	Sabouraud Dextrose Agar
SDB	Sabouraud dextrose broth
SDS	Sodium dodecyl sulphate
SLIC	Single-stranded ligation to single-stranded cDNA ends
TAE	Tris-acetate EDTA
ТАР	Tobacco acid pyrophosphatase

Taq	Thermus aquaticus
µg/ml	Microgramme per millilitre
μl	Microlitre
u/µl	Unit per microlitre
V	Volt
v/v	Volume per volume
w/v	Weight over volume
Y	Yeast
Y-H	Yeast-hypha
YNB	Yeast-nitrogen base
YPD	Yeast-peptone-dextrose

.

CHAPTER 1

INTRODUCTION

1.1 Background Study

Candida species are yeasts that are usually relatively benign commensals of human. The ability of *Candida* to become virulent is primarily determined by the immune state of the host (Lortholary and Dupont, 1997; Ashman, 1998). As *Candida* species are opportunistic organisms, they cause chronic-to-acute infections when the host's immune system is deteriorated. There are many clinical manifestations of candidal infections, such as oropharyngeal candidiasis, vulvovaginal candidiasis, chronic mucocutaneous candidiasis, *Candida* endocarditis and meningitis, as well as a potentially lethal and increasingly common nosocomial bloodstream infection known as candidemia (Wenzel, 1995). Growing pools of individuals who undergo cancer chemotherapy, organ transplantation, or infection with human immunodeficiency virus (HIV) are susceptible to such systemic infections (Corner and Magee, 1997).

Candida species ranked as the fourth most important pathogens causing bloodstream infections, and C. albicans is the major fungal agent isolated during systemic infections in United States (Edmond *et al.*, 1999; Pfaller *et al.*, 2000). Recently, there has been an important shift in the type of Candida infections – away from C. albicans – to more treatment-resistant, non-albicans varieties. In 1990, nearly 80% of the reported candidemia was attributed to C. albicans, but in an epidemiologic study that investigated the distribution of bloodstream isolates from patients in the

ICUs, *C. albicans* was the causative pathogen in just 48% of *Candida* nosocomial bloodstream infections, with the remaining *Candida* infections attributed to *C. glabrata* (24%), *C. tropicalis* (19%) and *C. parapsilosis* (7%) (Rangel *et al.*, 1999). The same scenario was also reported in Malaysia, where non-*albicans Candida* was the most common *Candida* species isolated from blood, respiratory system, urine and skin. From 1997 to October 1999, among the 102 *Candida* biotypes isolated from blood cultures, 51% of the *Candida* species were *C. parapsilosis*, 25.5% were *C. tropicalis* wheareas *C. albicans* only made up 11.8%. 6.9% were *C. rugosa*, 3.8% were *C. glabrata* and 1% was *C. guilliermondii* (Ng *et al.*, 2000). Patients with candidemia have the shortest survival prospects; Morgan *et al.* (2005) reported in a study of hospital-acquired candidemia, the mortality attributable to candidemia ranged between 19% and 24%.

Along with an increase in the overall incidence of candidiasis, there is a shift towards infections by inherently azole drug-resistant species, especially *C. glabrata* and *C. krusei*. These two species are known to be innately less susceptible to the commonly used azole antifungal agents such as fluconazole and ketoconazole (Marr *et al.*, 2000). Furthermore, *C. tropicalis* and *C. parapsilosis* are inherently resistant or can quickly develop resistance to polyenes and azole drugs; thus, their increasing prevalence may contribute to the steady increase in nosocomial bloodstream infections seen over the past decades (Bodey, 1993; Rex *et al.*, 1995; Nguyen *et al.*, 1996). Therefore, detection and diagnosis of invasive candidiasis to the species level is crucial so that appropriate treatment can be prescribed.

Early detection of fungal infection has a great impact on the clinical outcome of invasive candidiasis. Unfortunately, using conventional methods of morphologic and metabolic characteristics may take three to five days or even longer for identification of fungal isolates. Due to low positivity of blood cultures, diagnosis of haematogenous candidiasis has been problematic (Pizzo and Walsh, 1990).

Although various laboratory tests based on detection of *Candida*-specific antibodies, antigens, or metabolites have been developed, these tests are lacking in specificity or sensitivity, besides being time-consuming. Moreover, these tests fail to clearly discriminate between the infecting *Candida* species, which is crucial information to initiate specific antifungal therapy since several non-*albicans Candida* species are known to be resistant to commonly used antifungal drugs (Johnson *et al.*, 1995; Walsh and Chancock, 1997; Posteraro *et al.*, 2000).

In recent molecular diagnostic approaches, candidal DNA amplification using polymerase chain reaction (PCR) together with enzyme immunoassay (EIA) have been able to detect a variety of *Candida* species in a rapid, sensitive and specific manner. Many publications have described the development of PCR-based methods for detecting candidemia and other fungal infections. However, the methods are not widely utilised due to the problems of cross contamination with nested-PCR, the requirement of technical expertise and labour intensiveness. Hence there is a critical need to improve and refine the existing diagnostic methods.

Due to the technological advancement in molecular pathogenesis research methodologies, it is now possible to identify and to validate potential molecular

targets that are essential for fungal virulence. The identification of unique genes, differential gene expression and the signaling pathways, important to the pathobiology of fungi, can translate into molecular targets for new antifungal design or diagnostic tools (Wills *et al.*, 2000).

In order to invade the host tissues, microbial cells need to damage and further penetrate the outer envelope. This process is most probably mediated by either physical or enzymatic means or a combination of the two. Since cell membranes are made up of lipids and proteins, therefore hydrolytic enzymes such as proteinases, which hydrolyze peptide bonds, and phospholipases, which hydrolyze phospholipids that can be induced to destroy or derange constituents of host cell membranes, leading to lysis, are likely to be involved in host cell invasion. There are evidence implicating the role of phospholipases in host cells penetration, injury and lysis by microorganisms such as *Rickettsia rickettsii, Toxoplasma gondii, Entamoeba histolytica* and *Candida albicans* (Ghannoum, 2000).

The role of candidal phospholipases as virulence factors was reported and evidenced by the more significant production of extracellular phospholipase activity in invasive strains compared to the commensal or non-invasive strains (Ibrahim *et al.*, 1995). In addition, variation of phospholipase activities among *C. albicans* strains have been reported and only strains which have high level of phospholipase activity were shown to be able to cross the bowel wall and undergo subsequent hematogenous dissemination and tissue invasion (Ghannoum, 2000).

In C. albicans, various phospholipases, i.e. phospholipase A, phospholipase B,

phospholipase C, phospholipase D, lysophospholipase, and lysophospholipasetransacylase have been identified. Among all these phospholipases, only phospholipase B1 has been suspected of its role as virulence factor in animal model of candidiasis (Ghannoum, 2000). As the role of candidal phospholipase B is strongly associated with pathogenesis particularly during the progression of the invasive infection, this virulent determinant can be used as a diagnostic tool or as the target for the design of antifungal agents.

However, genomic and functional studies of yeast phospholipases have so far been confined to *Saccharomyces cerevisiae* and *C. albicans*. Research efforts on other virulent and emerging species such as *C. krusei*, *C. parapsilosis* and *C. tropicalis* are minimal. The key difference between *C. albicans* and the other major *Candida* species is that *C. albicans* can produce hyphae under certain conditions whereas the latter species do not produce hyphae under the same conditions, but rather pseudohyphae. Besides, various studies have raised a concern that extensive usage of azole-antifungal agents have resulted in the emerging of azole-resistant strains and caused a shift in the prevalence of *C. albicans* species towards non-*albicans* species. Moreover, the involvement of phospholipases particularly phospholipase B (PLB) in invasive infection in the non-*albicans* species has not yet been investigated. Hence this project was undertaken to firstly clone the *PLB* genes of these species and secondly to attempt to unravel the role of PLBs in the pathogenesis of these species.

