THE EFFECTS OF RICE BRAN AND BLENDED RICE BRAN OILS ON INDICES OF CORONARY HEART DISEASE

AZRINA AZLAN

FPSK(P) 2005 2
THE EFFECTS OF RICE BRAN AND BLENDED RICE BRAN OILS ON INDICES OF CORONARY HEART DISEASE

By

AZRINA AZLAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

June 2005
THE EFFECTS OF RICE BRAN AND BLENDED RICE BRAN OILS ON INDICES OF CORONARY HEART DISEASE

By

AZRINA AZLAN

June 2005

Chairman: Associate Professor Maznah Ismail, PhD

Faculty: Medicine and Health Sciences

Reducing dietary saturated fatty acid, increasing dietary polyunsaturated fatty acid together with the presence of naturally occurring plant minor components in fats and oil have been shown to be able to reduce plasma cholesterol level. In this study, the hypocholesterolemic effects of rice bran and blended rice bran oils were investigated. In an animal study to determine the effect of defatted and fullfat rice brans, hypercholesterolemia-induced male Sprague Dawley rats (n=77) were divided into five groups receiving diets containing; normal chow (Control), defatted rice bran diet (10% TDF; DFBC), full-fat rice bran diet (10% TDF; FRBC), cellulose diet (10% TDF; CC) and normal chow containing cholesterol (NC). All experimental diets contained 0.3% cholesterol and 0.1% cholic acid except for the Control group. Blood samples were collected at week 3 for lipid profile determination. Results of this study showed that animals on FRBC diet had lower plasma total and LDL cholesterol levels compared to animals on
DFBC and CC diets. Animals fed both DFBC and CC diets, however had higher plasma total and LDL cholesterol levels compared to the NC group. These results demonstrated that only full-fat rice bran diet caused significant reduction (p<0.05) in plasma total and LDL cholesterol. The higher content of unsaturated fatty acids (75%) and the presence of high unsaponifiable matter in the rice bran lipid fraction are suggested to contribute to the cholesterol reduction. In summary, local full-fat rice bran could be used as a good agent to reduce plasma cholesterol level.

A human feeding study was carried out to determine the effects of experimental oils [palm oil (100% PO), rice bran oil (100% RBO) and blended rice bran-palm oils; 45% RBO and 60% RBO] on CHD indices of normocholesterolemic to mild hypercholesterolemic subjects (n=18). The subjects received normal diets prepared using each experimental oil for 5 weeks in a single blind crossover design. In this study, diets prepared using experimental oils, did not significantly (p>0.05) alter the plasma lipid profile of subjects. However, blended oil diets (45% and 60% RBO) improved the LDL/HDL ratio of subjects with 45% RBO favourable for normo- and 60% RBO favourable for mild hypercholesterolemic subjects. Other indicators such as apo A1, apo B, Lp(a) and plasma antioxidant enzymes (glutathione reductase and glutathione peroxidase) of subjects were not affected by the dietary changes induced in the experimental oils used. The 45% RBO and 60% RBO diets also caused significant reduction (p<0.05) in plasma conjugated diene and malondialdehyde levels of subjects. Plasma total antioxidant status of subjects increased following intake of blended oil diets with
the highest total antioxidant status level during intake of 60% RBO diet. The increased total antioxidant status was related to significantly (p<0.05) higher level of plasma tocotrienol (5.19 ppm) compared to other diets (<2 ppm). These results demonstrated that both blended oils (45% RBO and 60% RBO) have shown some functional properties (relative to 100% RBO and 100% PO) in improving indicators of CHD. Blending of RBO and PO at specific ratios improved the fatty acid composition and antioxidant contents of the resulting oils. There could be some interactions between palm tocotrienol and rice bran oryzanol in the blended oil diets that resulted to these beneficial effects. In future, further studies are needed to determine the exact mechanisms involved.
Abstrak tesis yang dikemukakan kepada Senat Universiti Purta Malaysia sebagai memenuhi keperluan ijazah Doktor Falsafah

KESAN DEDAK BERAS DAN MINYAK CAMPURAN DEDAK BERAS KE ATAS PENUNJUK PENYAKIT JANTUNG KORONARI

Oleh

AZRINA AZLAN

Jun 2005

Pengerusi: Profesor Madya Maznah Ismail, PhD
Fakulti: Perubatan dan Sains Kesihatan

Perubahan diet yang mengurangkan pengambilan asid lemak tepu, meningkatkan pengambilan asid lemak politiklepu serta kehadiran bahan komponen minor dalam lemak dan minyak didapati dapat menurunkan aras kolesterol darah. Dalam kajian ini, kesan hipokolesterolemik dedak beras dan minyak campuran dedak beras telah pun dijalankan. Dalam kajian haiwan untuk menentukan kesan dedak beras nyah lemak dan penuh lemak, tikus jantan dari jenis Sprague Dawley teraruh tinggi kolesterol (n=77) telah dibahagikan kepada lima kumpulan yang menerima diet mengandungi; makanan tikus biasa (Kawalan), dedak beras nyah lemak (10% jumlah fiber diet; DFBC), dedak beras penuh lemak (10% jumlah fiber diet; FRBC), selulosa (10% jumlah fiber diet; CC) dan campuran makanan tikus biasa dan kolesterol (NC). Kesemua diet kajian mengandungi 0.3% kolesterol dan 0.1% asid kolik kecuali bagi diet kumpulan kawalan. Sampel-sampel darah haiwan telah diambil pada akhir minggu ke-3 bagi penentuan profil lipid. Keputusan kajian ini mendapati, haiwan yang diberi
makan diet FRBC mempunyai aras total dan LDL kolesterol dalam plasma yang lebih rendah berbanding haiwan yang diberi makan diet DFBC dan CC. Haiwan yang diberi diet DFBC dan CC didapati mempunyai aras total dan LDL kolesterol dalam plasma yang lebih tinggi berbanding haiwan yang menerima diet NC. Hasil kajian ini mendapati hanya diet mengandungi dedak beras penuh lemak menyebabkan penurunan yang signifikan (p<0.05) aras total kolesterol dalam plasma. Kehadiran asid lemak politaktepu (75%) dan bahan tidak disaponifikasi dalam fraksi lipid dedak beras telah dicadangkan menyebabkan kesan penurunan kolesterol. Sebagai kesimpulan, didapati dedak beras penuh lemak tempatan adalah sesuai digunakan sebagai agen yang mampu menurunkan aras kolesterol dalam darah.

Satu kajian pemakanan menggunakan subjek manusia bagi mengkaji kesan penggunaan minyak masak kajian [minyak sawit (100% PO), minyak dedak beras (100% RBO) dan minyak campuran dedak beras-sawit; iaitu 45% RBO dan 60% RBO] ke atas petunjuk penyakit jantung koronari (CHD) subjek normokolesterollemik sehingga hiper kolesterollemik sederhana (n=18) telah dijalankan. Subjek menerima diet biasa yang telah disediakan dengan menggunakan minyak masak kajian selama lima minggu bagi setiap jenis diet. Kajian ini telah menggunakan rekabentuk silang. Diet yang telah disediakan menggunakan minyak masak kajian, didapati tidak mempengaruhi profil lipid darah subjek secara signifikan (p>0.05). Walau bagaimanapun, diet yang telah disediakan menggunakan kedua-dua minyak masak campuran (45% RBO dan 60% RBO) didapati dapat memperbaiki nisbah LDL/HDL subjek dengan minyak
campuran 45% RBO didapati baik untuk subjek normokolesterollemik manakala minyak campuran 60% RBO adalah baik untuk subjek hiper kolesterollemik sederhana. Sebaliknya, petunjuk lain seperti apo A1, apo B, Lp(a) dan enzim-enzim antioksidan dalam plasma seperti glutation reductase dan glutation peroksidase tidak dipengaruhi oleh perubahan diet melalui perubahan minyak yang digunakan. Minyak campuran 45% RBO dan 60% RBO juga didapati telah menyebabkan penurunan yang signifikan (p<0.05) dalam aras diena konjugat dan malondialdehid dalam plasma. Aras status antioksidan total dalam plasma juga meningkat dengan pengambilan diet menggunakan minyak campuran; terutamanya minyak campuran 60% RBO yang telah memberikan aras status antioksidan total tertinggi. Aras yang tinggi ini adalah disebabkan peningkatan kandungan tokotrienol yang signifikannya (p<0.05) dalam plasma (5.19ppm) berbanding dalam diet lain (<2 ppm). Keputusan kajian ini telah mendapati bahawa minyak campuran dedak beras-sawit telah menunjukkan sifat berfungsi yang baik (berbanding minyak 100% RBO dan 100% PO) terhadap petunjuk penyakit jantung koronari. Percampuran minyak dedak beras-sawit pada nisbah tertentu didapati telah memperbaiki komposisi asid lemak dan kandungan antioksidan dalam minyak yang telah disediakan dengan menggunakan minyak campuran yang telah memberikan kesan baik yang telah dapat dilihat. Pada masa hadapan, kajian lanjutan perlu dijalankan untuk menentukan mekanisma sebenar yang terlibat.
ACKNOWLEDGEMENTS

In the name of ALLAH the most compassionate and the most merciful

First of all, I am very grateful to all the members of my supervisory committee especially Assoc. Prof Dr. Maznah Ismail, Assoc. Prof Dr Mohd. Sokhini Abdul Mutalib and Assoc. Prof Dr. Azizah Abdul Hamid for their time, knowledge, guidance and wisdom in helping me to complete this thesis. To the head of Department of Nutrition and Health Sciences, Assoc Prof. Dr. Rokiah Mohd Yusof and the former head of department Mohd Nasir Mohd Taib, thank you very much for all the courage and support.

It has been a very valuable and rewarding experience correcting the third draft of this thesis together with my co-supervisor, Assoc. Prof. Dr. Mohd. Sokhini Abdul Mutalib who has helped to bring this book into focus. To Asst. Prof. Dr. Huzwah Khaza’ai, thank you for lending me some of your family time at night to make this thesis a reality. To Yang Bhg. Prof Dato’ Dr. Abdul Salam Abdullah, thank you for being like a father to me. To all the participated subjects (human feeding study), thank you for your cooperation and the good dietary compliance that makes the human feeding study a successful. To all the lab staffs of UPM and MPOB, who have been directly or indirectly involved in the preparation and analysis of all samples, may ALLAH bless you always.

To my husband, Muhammad Rizal Razman, who has been very supportive and encouraging, to my children Muhammad Asyraf and Aiman Maisarah, the two stars of my heart, thank you for the understanding and affection to ‘ibu’. To my late ‘mama’, “sekalung Al-Fatehah” and “doa” for your peace together with those selected ones. To ‘abah’, thank you for being a great dad. To ‘ayah’, ‘mak’, Azmil & Shikin and Jidah, Khairul & Luqman thank you for sharing all the good and bad times together. To all my friends, thank you for the fruitful years together. Last but not least, many thanks to Universiti Putra Malaysia, Bernas Dominal Sdn. Bhd and Yayasan Jantung Malaysia for the funding of this research.
I certify that an Examination Committee met on 27th June 2005 to conduct the final examination of Azrina bt Azlan on her Doctor of Philosophy thesis entitled “The Effects of Rice Bran and Blended Rice Bran Oils on Indices of Coronary Heart Disease” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Zaitun Yassin, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Suhaila Mohamed, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Internal Examiner)

Rokiah Mohd. Yusof, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Suriah Abdul Rahman, PhD
Professor
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
(External Examiner)

GULAM RUSUL RAHMAT ALI, PhD
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 22 AUG 2005
This thesis is submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. Members of the Supervisory Committee are as follows:

MAZNAH BT. ISMAIL, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

MOHD SOKHINII B. ABDUL MUTALIB, PhD
Associate Professor
Department of Biomedical Science
Kuliyyah of Science
International Islamic University of Malaysia
(Member)

AZIZAH BT. ABDUL HAMID, PhD
Associate Professor
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor/ Dean
School of Graduate Studies
Universiti Putra Malaysia
Date: 08 SEP 2005
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledge. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

AZRINA AZLAN

Date: 28/01/05
TABLE OF CONTENTS

ABSTRACT

Page ii

ABSTRAK

Page v

ACKNOWLEDGEMENTS

Page viii

APPROVAL

Page ix

DECLARATION

Page xi

LIST OF TABLES

Page xvii

LIST OF FIGURES

Page xix

LIST OF ABBREVIATIONS

Page xxiii

CHAPTERS

1. **INTRODUCTION**
 1.1 Objectives
 1.1.1 General objective
 1.1.2 Specific objectives

2. **LITERATURE REVIEW**
 2.1 Coronary heart disease (CHD) and its prevalence in Malaysia
 2.2 Lipoproteins
 2.2.1 Chylomicrons
 2.2.2 Very low density lipoprotein (VLDL)
 2.2.3 Low density lipoprotein (LDL)
 2.2.4 High density lipoprotein (HDL)
 2.4.5 Lipoprotein (a)
 2.3 Apolipoproteins
 2.3.1 Apolipoprotein A
 2.3.2 Apolipoprotein B
 2.3.3 Other apolipoproteins
 2.4 Lipoprotein Metabolisms
 2.4.1 Chylomicron metabolism
 2.4.2 VLDL metabolism
 2.4.3 Reverse cholesterol transport
 2.5 Dietary fat and coronary heart disease (CHD)
 2.5.1 Dietary cholesterol
 2.5.2 Saturated fatty acids (SFA)
 2.5.3 Unsaturated fatty acids (MUFA and PUFA)
 2.5.4 Trans fatty acids (TFA)
 2.6 Free radicals and lipid peroxidation
 2.6.1 Oxidative modification of LDL
 2.7 Antioxidant defense system

Page 1

Page 6

Page 6

Page 6

Page 7

Page 9

Page 10

Page 11

Page 11

Page 12

Page 12

Page 13

Page 14

Page 15

Page 16

Page 16

Page 16

Page 17

Page 18

Page 18

Page 19

Page 21

Page 22

Page 25

Page 26

Page 26

Page 29

Page 31
2.8 Dietary antioxidants and coronary heart disease (CHD) 32
2.8.1 Lipid soluble vitamins 32
2.8.1.1 Vitamin A 33
2.8.1.2 Vitamin E 34
2.9 Rice bran and rice bran oil 37
2.9.1 Hypcholesterolemic effect of rice bran and rice bran oil 43
2.9.2 Gamma-oryzanol 44
2.10 Palm oil 45
2.10.1 Health benefits of palm oil 48
2.11 Blended vegetable oil as cooking oil 49

3 MATERIALS AND METHODS 54
3.1 Reagents 54
3.1.1 Reagents for determination of plasma lipoprotein concentrations 54
 Plasma Total Cholesterol (TC) 54
 Plasma High Density Lipoprotein (HDL-C) 54
 Plasma Triglycerides (TG) 55
3.1.2 Reagents for determination of plasma apolipoprotein A1, apolipoprotein B and Lipoprotein (a) 55
3.1.3 Reagents for determination of plasma antioxidant enzymes and total antioxidant status 56
 Glutathione peroxidase (GPX) 56
 Glutathione reductase (GR) 56
 Total antioxidant status (TAS) 56
3.1.4 Reagents for determination of plasma conjugated diene and malondialdehyde 57
3.1.5 Reagents for determination of plasma antioxidants 57
3.1.6 Reagents for determination of fatty acid composition (FAC) 58
3.2 Plasma biochemical analysis 58
3.2.1 Determination of plasma lipid profile 58
 Total cholesterol (TC) 58
 High Density Lipoprotein Cholesterol (HDL-C) 59
 Triglycerides (TG) 60
 Low density lipoprotein Cholesterol (LDL-C) 61
3.2.2 Determination of plasma apolipoprotein A1, B and lipoprotein (a) 61
3.2.3 Determination of plasma antioxidant enzymes 61
 Glutathione peroxidase (GPX) 61
 Glutathione reductase (GR) 62
 Total antioxidant status (TAS) 62
3.2.4 Determination of plasma lipid peroxidation products
 Conjugated diene
 Malondialdehyde
3.2.5 Plasma lipid extraction
3.2.6 Determination of plasma antioxidants
 Vitamin E
 γ-oryzanol
3.2.7 Determination of plasma fatty acid
 Preparation of fatty acid methyl esters (FAME)

4 CHOLESTEROL LOWERING EFFECT OF FULL-FAT AND DEFATTED RICE BRAN IN SPRAGUE DAWLEY RATS
4.1 Introduction
4.2 Materials and Methods
 4.2.1 Rice bran
 4.2.1.1 Reagents for proximate analysis
 4.2.1.2 Reagents for determination of total dietary fibre
 4.2.2 Proximate composition of rice bran
 Determination of moisture content
 Determination of total lipid
 Determination of protein
 Determination of ash
 Determination of carbohydrate
 Determination of dietary fibre
 Determination of fatty acid composition
 4.2.3 Animals and experimental design
 4.2.4 Ethical approval
 4.2.5 Experimental diets
 4.2.6 Blood sampling and liver weight determination
 4.2.7 Analysis of plasma lipid profile
 4.2.8 Statistical analysis
4.3 Results
 4.3.1 Proximate and fatty acid compositions of stabilized rice bran
 4.3.2 Animal body weight changes
 4.3.3 Animal liver weight changes
 4.3.4 Effect of experimental diets on plasma lipid profile
4.4 Discussions
5. CHOLESTEROLEMIC AND ANTIOXIDATIVE EFFECTS OF RICE BRAN OIL AND ITS BLENDS IN NORMOCHOLESTEROLEMIC AND MILD HYPER CHOLESTEROLEMIC SUBJECTS

5.1 Introduction

5.2 Materials and Methods
5.2.1 Rice bran oil and palm oil
5.2.1.1 Preparation of experimental oils
5.2.2 Ethical approval
5.2.3 Subject selection and recruitment
5.2.4 Experimental oils and diets
5.2.5 Experimental diets
5.2.6 Experimental design
5.2.6.1 Analysis of duplicate food samples
5.2.7 Food intake records
5.2.8 Statistical analysis

5.3 Results
5.3.1 Baseline characteristics of subjects
5.3.2 Chemical properties of experimental oils and diets
5.3.3 Dietary compliance
5.3.4 Dietary composition of the experimental diets
5.3.5 Plasma lipid profile
5.3.6 Plasma apolipoproteins
5.3.7 Plasma lipoprotein (a)
5.3.8 Plasma total antioxidants
5.3.9 Plasma conjugated diene and malondialdehyde
5.3.10 Plasma fatty acid profile
<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>5.2 Changes of body weight and blood pressure of subjects following</td>
<td>101</td>
</tr>
<tr>
<td>intake of experimental diets</td>
<td></td>
</tr>
<tr>
<td>5.3 Fatty acid composition (FAC) (%) of experimental oils and diets</td>
<td>103</td>
</tr>
<tr>
<td>5.4 Vitamin E (tocopherol and tocotrienol) in experimental oils and</td>
<td>105</td>
</tr>
<tr>
<td>diets</td>
<td></td>
</tr>
<tr>
<td>5.5 Total oryzanol content and its isomers in experimental oils and</td>
<td>107</td>
</tr>
<tr>
<td>diets</td>
<td></td>
</tr>
<tr>
<td>5.6 Composition of energy, macronutrients, cholesterol, crude fibre,</td>
<td>111</td>
</tr>
<tr>
<td>vitamin C and total vitamin A of subjects before entry to feeding</td>
<td></td>
</tr>
<tr>
<td>study and during experimental periods (food intake record)</td>
<td></td>
</tr>
<tr>
<td>5.7 Mean plasma apolipoproteins of normocholesterolemic subjects</td>
<td>125</td>
</tr>
<tr>
<td>5.8 Mean plasma apolipoproteins of mild hypercholesterolemic subjects</td>
<td>126</td>
</tr>
<tr>
<td>5.9 Vitamin E content in plasma of subjects following intake of</td>
<td>133</td>
</tr>
<tr>
<td>experimental diets</td>
<td></td>
</tr>
<tr>
<td>5.10 Oryzanol content in plasma of subjects following intake of</td>
<td>134</td>
</tr>
<tr>
<td>experimental diets</td>
<td></td>
</tr>
<tr>
<td>5.11 Changes in the plasma fatty acid composition (%) of subjects</td>
<td>140</td>
</tr>
<tr>
<td>following intake of experimental diets</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>20</td>
</tr>
<tr>
<td>2.3</td>
<td>24</td>
</tr>
<tr>
<td>2.4</td>
<td>28</td>
</tr>
<tr>
<td>2.5</td>
<td>34</td>
</tr>
<tr>
<td>2.6</td>
<td>35</td>
</tr>
<tr>
<td>2.7</td>
<td>38</td>
</tr>
<tr>
<td>2.8</td>
<td>38</td>
</tr>
<tr>
<td>2.9</td>
<td>45</td>
</tr>
<tr>
<td>2.10</td>
<td>52</td>
</tr>
<tr>
<td>4.1</td>
<td>75</td>
</tr>
<tr>
<td>5.1</td>
<td>92</td>
</tr>
<tr>
<td>5.2</td>
<td>96</td>
</tr>
<tr>
<td>5.3</td>
<td>108</td>
</tr>
<tr>
<td>5.4</td>
<td>112</td>
</tr>
<tr>
<td>5.5</td>
<td>113</td>
</tr>
</tbody>
</table>

- Integrated morphological and biological events in slow step-by-step atherosclerotic events
- Molecular structure of cholesterol
- Metabolism of three different families of unsaturated fatty acids
- Schematic diagram on the major events of LDL oxidation and subsequent formation of foam cells
- Structures of tocopherol and tocotrienol isomers
- The vitamin E cycle-synergistic action of water- and lipid-soluble antioxidants
- Structure of the rice grain
- Enlarged section of the outer brown layer of a rice kernel after removal of hull
- Molecular structure of ferulic acid esterified with 24-methylene cycloartanol
- Percentage of cholesterol-lowering effect due to blended safflower and rice bran oil
- Experimental design of the study on the cholesterol lowering effect of defatted and full-fat rice bran
- Experimental oils with their respective colour codes
- Schematic diagram of the feeding study
- Antioxidant content of the experimental oils
- Percentage of calories from fat, saturated fat, monounsaturated fat and polyunsaturated fat in experimental diets
- Distribution of fat energy from cholesterol raising fatty acids (12:0, 14:0 And 16:0)
5.6 Effect of experimental diets on plasma total cholesterol of all subjects (n=18) during the experimental periods

5.7 Effect of experimental diets on plasma LDL cholesterol of all subjects (n=18) during the experimental periods

5.8 Effect of the experimental diets on plasma HDL cholesterol of all subjects (n=18) during the experimental periods

5.9 Effect of the experimental diets on plasma triglyceride of all subjects (n=18) during the experimental periods

5.10 Effect of experimental diets on lipoprotein responses of all subjects (n=18)

5.11 Effect of the experimental diets on plasma total cholesterol of normocholesterolemic subjects (n=11) during the experimental periods

5.12 Effect of experimental diets on plasma LDL cholesterol of normocholesterolemic subjects (n=11) during the experimental periods

5.13 Effect of the experimental diets on plasma HDL cholesterol of normocholesterolemic subjects (n=11) during the experimental periods

5.14 Effect of the experimental diets on plasma triglyceride of normocholesterolemic subjects (n=11) during the experimental periods

5.15 Effect of experimental diets on lipoprotein responses of normocholesterolemic subjects (n=11)

5.16 Effect of the experimental diets on plasma total cholesterol of mild hypercholesterolemic subjects (n=7) during the experimental periods

5.17 Effect of the experimental diets on plasma LDL cholesterol of mild hypercholesterolemic subjects (n=7) during the experimental periods

5.18 Effect of the experimental diets on plasma HDL cholesterol of mild hypercholesterolemic subjects (n=7) during the experimental periods
5.19 Effect of the experimental diets on plasma triglyceride of mild hypercholesterolemic subjects (n=7) during the experimental periods

5.20 Effect of experimental diets on lipoprotein response of mild hypercholesterolemic subjects (n=7)

5.21 Effect of experimental diets on plasma apolipoprotein A1 of all subjects (n=18) during the experimental periods

5.22 Effect of experimental diets on plasma apolipoprotein B of all subjects (n=18) during the experimental periods

5.23 Effect of the experimental diets on plasma Lp(a) of all subjects (n=18) during the experimental periods

5.24 Effect of experimental diets on plasma Lp(a) level of mild hypercholesterolemic (n=7) and normocholesterolemic subjects (n=11) during the experimental periods

5.25 Effect of experimental diets on plasma total antioxidant status (TAS) of all subjects (n=18) during the experimental periods

5.26 Effect of experimental diets on plasma total antioxidant status (TAS) of normocholesterolemic subjects (n=11) during the experimental periods

5.27 Effect of experimental diets on plasma total antioxidant status (TAS) of mild hypercholesterolemic subjects (n=7) during experimental periods

5.28 Effect of experimental diets on plasma glutathione peroxidase of all subjects (n=18) during the experimental periods

5.29 Effect of experimental diets on plasma glutathione reductase of all subjects (n=18) during the experimental periods

5.30 Effect of experimental diets on plasma glutathione peroxidase and glutathione reductase of normocholesterolemic subjects (n=11) during the experimental periods

5.31 Effect of experimental diets on plasma glutathione peroxidase and glutathione reductase of mild hypercholesterolemic subjects (n=7) during the experimental periods
5.32 Effect of experimental diets on plasma conjugated diene of all subjects (n=18) during the experimental periods

5.33 Effect of experimental diets on plasma conjugated diene of normocholesterolemic subjects (n=11) during the experimental periods

5.34 Effect of experimental diets on plasma conjugated diene of mild hypercholesterolemic subjects (n=7) during the experimental periods

5.35 Effect of experimental diets on plasma malondialdehyde (MDA) of all subjects (n=18) during the experimental periods

5.36 Effect of experimental diets on plasma malondialdehyde (MDA) of normocholesterolemic subjects (n=11) during the experimental periods

5.37 Effect of the experimental diets on plasma malondialdehyde (MDA) of mild hypercholesterolemic subjects (n=7) during the experimental periods
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACAT</td>
<td>Acyl-CoA: cholesterol O-acyltransferase</td>
</tr>
<tr>
<td>AHA</td>
<td>American Heart Association</td>
</tr>
<tr>
<td>AOAC</td>
<td>Association of Official Analytical Chemists</td>
</tr>
<tr>
<td>Apo(a)</td>
<td>Apoprotein (a)</td>
</tr>
<tr>
<td>Apo(b)</td>
<td>Apoprotein (b)</td>
</tr>
<tr>
<td>BMI</td>
<td>Body mass index</td>
</tr>
<tr>
<td>CAD</td>
<td>Coronary artery disease</td>
</tr>
<tr>
<td>CD</td>
<td>Conjugated diene</td>
</tr>
<tr>
<td>CHD</td>
<td>Coronary heart disease</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylene diamine tetra acetic acid</td>
</tr>
<tr>
<td>FAME</td>
<td>Fatty acid methyl ester</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agricultural Organization</td>
</tr>
<tr>
<td>GPX</td>
<td>Glutathione peroxidase</td>
</tr>
<tr>
<td>GR</td>
<td>Glutathione reductase</td>
</tr>
<tr>
<td>HDL-C</td>
<td>High density lipoprotein cholesterol</td>
</tr>
<tr>
<td>IDL</td>
<td>Intermediate density lipoprotein cholesterol</td>
</tr>
<tr>
<td>LCAT</td>
<td>Lecithin cholesterol acyl transferase</td>
</tr>
<tr>
<td>LDL-C</td>
<td>Low-density lipoprotein cholesterol</td>
</tr>
<tr>
<td>Lp(a)</td>
<td>Lipoprotein (a)</td>
</tr>
<tr>
<td>LPL</td>
<td>Lipoprotein lipase</td>
</tr>
<tr>
<td>MDA</td>
<td>Malondialdehyde</td>
</tr>
<tr>
<td>MUFA</td>
<td>Monounsaturated fatty acids</td>
</tr>
</tbody>
</table>
NCEP National Cholesterol Education Programme
P/S Polyunsaturated to saturated ratio
PL Phospholipid
PO Palm oil
PUFA Polyunsaturated fatty acids
RBO Rice bran oil
SD Standard deviation
SEM Standard error mean
SFA Saturated fatty acids
SOD Superoxide dismutase
T3 Tocotrienol
TAS Total antioxidant status
TBARS Thiobarbituric acid reactive substance
TC Total cholesterol
TFA Trans fatty acids
T Tocopherol
VLDL-C Very low-density lipoprotein