

UNIVERSITI PUTRA MALAYSIA

IN VITRO EXPRESSION OF FILARIAL SXPI GENE FOR THE DEVELOPMENT OF A NUCLEIC ACID BASED VACCINE

ROSLAINI BIN ABD.MAJID

FPSK(M) 2005 2

IN VITRO EXPRESSION OF FILARIAL *SXP1* GENE FOR THE DEVELOPMENT OF A NUCLEIC ACID BASED VACCINE

By

ROSLAINI BIN ABD.MAJID

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

February 2005

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

IN VITRO EXPRESSION OF FILARIAL SXP1 GENE FOR THE DEVELOPMENT OF A NUCLEIC ACID BASED VACCINE

By ROSLAINI BIN ABD.MAJID February 2005

Chairman: Professor Dr. Wan Omar Abdullah, Ph,D

Faculty: Medicine and Health Sciences

The objectives of this study were to clone gene that encode filarial SXP1 protein followed by *in vitro* expression of the protein. The Special Programme for Research and Training in Tropical Diseases (TDR) WHO has advocated SXP1 as one of the vaccine candidate to curb filarial infection. SXP1 antigen has been reported to confer protective immunity, causing reduction of microfilaraemia levels in jirds (*Meriones unguiculatus*) blocking subsequent *Brugia malayi* infection. In this study, the gene that encode SXP1 antigen was 517 bp in length and was extracted and amplified from the infective stage (L₃) of subperiodic *Brugia malayi*. The gene was successfully cloned into replication vector pCR[®]2.1 (Invitrogen) followed by subcloning into mammalian expression vector pVAX1 (Invitrogen). The presence of *SXP1* gene in both vectors were validated by polymerase chain reaction (PCR), restriction enzymes analysis (RE) and finally by automated sequencing. The

cloned *SXP1* in pVAX was designated as pVAX/*SXP1*. The plasmid bearing *SXP1* gene was transfected into two types of animal cell lines (COS-7 and CHO) using Polyfect Transfection Reagent (Qiagen). The successful expression of targeted gene in the mammalian cell lines were determined by RT-PCR and Western Blotting. The PCR product of the transfected cells was 517 bp on the agarose gel. In addition, the ~20 kDa of expressed SXP1 protein was detected on nitrocellulose membrane by rabbit polyclonal antibody against the SXP1 protein. This study has successfully established the ground work for future deliberations towards the development of antiburgia transmission blocking genetic vaccine.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

EKSPRESI IN VITRO KE ATAS GEN SXP1 FILARIA UNTUK PEMBANGUNAN VAKSIN ASID NUKLEIK

Oleh

ROSLAINI BIN ABD.MAJID

February 2005

Pengerusi : Profesor Dr. Wan Omar Abdullah, Ph,D

Fakulti: Perubatan dan Sains Kesihatan

Objektif kajian ini ialah pengklonan gen yang mengkodkan protein SXP1 cacing filaria dan seterusnya mengekspresinya secara *in vitro*. *SXP1* telah dipilih sebagai calun di dalam kajian ini berdasarkan kajian-kajian lepas yang menunjukkan keupayaan antigen SXP1 memberi perlindungan di dalam mengurangkan tahap mikrofilaremia di dalam gerbil (*Meriones unguiculatus*); yang dijangkiti dengan *Brugia malayi*. Gen *SXP1* juga dicadangkan oleh TDR sebagai calon vaksin bagi mengatasi masalah jangkitan cacing filaria. Gen *SXP1* berberat molekul 517 bp telah dicerakinkan daripada peringkat L₃ *Brugia malayi* subperiodik dan seterusnya diamplifikasikan dengan kaedah tindakbalas rantai polimerase (PCR). Gen *SXP1* kemudiannya diklonkan di dalam vektor replikasi pCR[®]2.1 (Invitrogen) dan seterusnya gene *SXP1* di subklonkan di dalam vektor eukariot pVAX1 (Invitrogen) untuk proses ekspresi protein SXP1. Gen *SXP1* yang telah diklonkan tadi telah dibuktikan kehadirannya dan pada kedudukan yang betul melalui kaedah tindakbalas rantai polimerase (PCR), kaedah pencernaan enzim pembatas (RE) dan juga

melalui kaedah penjujukan gen secara automasi. Bagi membuktikan kebolehan gen *SXP1* di ekspresikan secara *in vitro*, pVAX/SXP1 telah di transfeksikan dengan menggunakan "Polyfect Transfection Reagent" (Qiagen) ke atas dua sel haiwan COS-7 dan sel CHO. Kejayaan ekspresi protein SXP1 telah dibuktikan melalui kaedah tindakbalas rantai polimerase berbalik (RT-PCR) dan ini diikuti dengan proses Western Blot. Keputusan ujian tindakbalas rantai polimerase menunjukkan gen *SXP1* telah ditranskripsikan dan ini diikuti dengan keputusan Western Blot yang menunjukkan protein SXP1 yang mempunyai berberat molekul ~ 20 kDa telah berjaya diekspresikan secara *in vitro* apabila di probekan menggunakan antibodi poliklon terhadap protein SXP1 yang dihasilkan di dalam arnab. SXPI secara zahirnya tidak lagi diketahui akan sifat kimiawi dan fungsinya, tetapi kami percaya dengan kejayaan mengekspresikan protein ini secara *in vitro* merupakan langkah awal di dalam pembangunan vaksin jangkitan yang berpunca daripada cacing filaria brugia.

ACKNOWLEDGEMENTS

بِسُم ٱللَّهِ ٱلرَّحْمَنِ ٱلرَّحِيمِ

In the name of Allah, the Beneficent, the Merciful

First and foremost, I would like to express my deepest appreciation to my supervisor Prof. Dr. Hj. Wan Omar Abdullah, and my utmost gratitude to him for his supervision throughout of my study. Prof. Wan was my research mentor in providing me with guidance, expertise, and encouragement without which I could have never completed this study. Prof.'s enthusiasm and support were the great factors contributing to all of my physical, intellectual, moral and spiritual upliftments. I can never thank him enough for all the time that he has invested in me whether it was teaching, research, but most of all in giving me advise on life..

The author wishes to express his deepest gratitude to the other two cosupervisors, Assoc. Prof. Dr Rozita Rosli of Department of Human Growth and Development and Dr Lokman Hakim Sulaiman of Institute for Medical Research Kula Lumpur for their invaluable advices and guidance throughout of my project.

I am also grateful to Department of Parasitology of University Malaya, Universiti Kebangsaan Malaysia and also Institute for Medical Research for allowing me to use their facilities to make my study successful.

Special thanks to my colleagues and friends especially Ngah Zasmy a/l Unyah, Dr. Malina Osman, En Nawawi Daud, Encik Ramli Suhaimi, Pn Fezah Othman, Pn Hasiah Hamid, En Nasir Desa, Hazizi, and Abd.Nasir for their invaluable encouragement and friendships. I would also like to thank Assoc. Prof. Dr. Rozita Rosli for the use of her Molecular Lab. and to all members of her Lab., who has helped me and made the lab. enjoyable and stimulating environment for me to conduct research.

Last but not least, my greatest thanks to my family, especially my beloved mother, brothers and sisters especially Angah and Kak G for their love, continuous support and encouragement through out my study.

TABLE OF CONTENTS

	U
ABSTRACT	ii
ABSTRAK	iv
ACKNOWLEDGEMENTS	vi
APPROVAL	viii
DECLARATION	x
TABLES OF CONTENTS	xi
LIST OF FIGURES	XV
LIST OF ABBREVIATIONS	xvii

CHAPTER

I	INTRODUCTION Objectives	1 4
H	LITERATURE REVIEW	5
	Lymphatic Filariasis in Malaysia	5
	Transmission of Lymphatic Filariasis	9
	Development of Bancroftian and Brugian Filarial Parasites	
	in Mosquito Vectors	11
	Development of Bancroftian and Brugian Filarial	
	Parasites Filarial Parasites in Human	12
	Animal Models	15
	Pathogenesis Clinical Manifestations of Lymphatic Filariasis	16
	Acute Manifestations of Lymphatic Filariasis	18 19
	Chronic Manifestations of Lymphatic Filariasis	21
	Asymptomatic Microfilaremia	23
	Diagnosis of Lymphatic Filariasis	24
	Parasitological Diagnosis	24
	Detection of Circulating Parasites Antigen	26
	Molecular Diagnosis	27
	Serodiagnosis	28
	Ultrasound	29
	Zoonotic Filariasis	29
	Treatment of Lymphatic Filariasis	31
	Diethylcarbamazine citrate (DEC)	31
	Ivermectin	34
	Albendazole	34
	Drugs Combinations	35
	Control and Prevention	37
	Treatment of the Human Populations; Drug Control Program	07
	Reducing the Mosquito Population	37 38
	reducing the Mosquito Population	30

Page

Control of Lymphatic Filariasis in Malaysia	39
WHO Global Elimination Programme	40
Filarial Genome Project	41
Vaccine Against Infectious Diseases	43
DNA Vaccines	45
Plasmid	45
Route of Vaccine Delivery	47
Adjuvants in DNA Vaccines	48
Cationic Liposomes	48
Immunostimulatory Oligonucleotide	40
Sequence (ISS)	49
Cytokines	
	49
DNA Immunisation and Immune Response	50
Humoral Response	50
Cell Mediated Immune Response (CMI)	52
Stimulation of Immune Responses by DNA Vaccines	53
DNA Vaccines Against Parasitic Diseases	55
Advantages of DNA Vaccines	57
Disadvantages of DNA Vaccines	59
Vaccine Against Lymphatic Filariasis	60
Immunisation studies using Radiation	
-attenuated Larvae	60
Immunisations Studies using Crude	
Parasites Materials	61
Peptide Epitope-based Vaccines	62
Immunisation using Recombinant Epitope-based	
Vaccines (Synthetic Recombinant Vaccines)	63
SXP1 as a Vaccine Candidate	65
MATERIALS AND METHODS	
	07
Mosquitoes	67
RNA Extraction from L ₃ <i>B. malayi</i>	71
Estimation of Nucleic Acid Concentration	72
Quantification of Extracted RNA from	
Infected Larvae (L ₃) of Subperiodic <i>B. malayi</i>	72
Amplification of SXP1 Gene	73
Primer Design	73
RT-PCR of SXP1 Gene	73
Cloning of PCR Product into pCR [®] 2.1 TOPO Plasmid	75
An overview of pCR [®] TOPO 2.1TOPO	75
TA Cloning	75
Transformation of Competent Top 10 Cells	77
Mini Preps	78
Plasmid Analysis	79
Restriction Enzyme Analysis	79
Analysis by PCR	79
Analysis by Automated Sequencing	80
Subcloning into pVAX1 Vector	81
An Overview of pVAX1	81

Preparation of SXP1 Gene for Insertion into pVAX1	81
Restriction Enzyme Digest pCR 2.1/SXP1	81
Agarose Gel Extraction	83
Preparation of pVAX1 for Cloning	83
Cloning Reaction	84
Transformation Reaction	84
Selection of Recombinants	84
Verification of SXP1 in pVAX1	85
PCR Analysis	85
Restriction Digest Analysis	85
Preparation of Plasmid for Transfection Purposes	86
Endofree Plasmid Kit (Qiagen)	86
Confirmation of Positive Clone by	
Sequence Analysis	87
DNA Sequencing Analysis of SXP1	88
Cell Culture	88
Overview of COS-7	88
Overview of Chinese Hamster Ovary	89
Maintenance of COS-7 and CHO Cell Lines	89
Cultivation of Cells from Stock Culture	89
Transient Transfection of COS-7 and CHO Cells	90
Extraction of RNA from Transfected COS-7 Cells	91
cDNA Synthesis	92
SDS-Polyacrylamide Gels Electrophoresis	93
Sample Preparation and SDS-PAGE	94
Detection of Expressed Protein	95
Western Blotting	95
Detection of SXP1 Expressed Protein Using	<i></i>
Cat Serum Positive for <i>B. malayi</i>	96

IV RESULTS

Maintenance of Mosquito and Harvesting of L ₃ B. malayi	98
RNA Extraction of L ₃ Subperiodic <i>B. malayi</i>	99
Amplification of SXP1 Total RNA by RT-PCR	99
TA Cloning of RT-PCR SXP1 Gene into pCR [®] 2.1 TOPO Vector	102
PCR Screening for Recombinant Plasmids	102
Restriction Endonuclease Analysis on Recombinant Plasmid	104
Subcloning of SXP1 into pVAX1	104
Sequence Analysis of pVAX/SXP1	111
Transient Expression of SXP1 Protein in Mammalian Cell Lines	116
Detection of Transfected COS-7 Cells by PCR	116
SDS-PAGE and Western Blot Analysis	116
-	

V	DISCUSSION	122
	Extraction of RNA from L ₃ of subperiodic <i>B.malayi</i>	125
	Amplification of SXP1	125
	Primers for SXP1	126

	Cloning of the SXP1 gene into pVAX1 SXP1 Sequence Analysis Expression of the SXP1 protein	126 127 128
VI	CONCLUSION AND FUTURE RECOMMENDATIONS	131
REFERENCES APPENDICES BIODATA OF THE AUTHOR		133 159 165

LIST OF FIGURES

Figure 1	Countries between latitude 23.5 ⁰ N and 23.5 ⁰ S (Tropical and Sub- Tropical countries) are endemic for lymphatic filariasis	Page 7
2	Distribution map of lymphatic filariasis based on filarial species	7
3	The incidence rate of lymphatic filariasis cases in Malaysia from year 1993 to 2001	8
4	Microfilaria rate by state in year 2001	8
5	Distribution of filarial cases by age group in 2001	9
6	Life cycle of the <i>Wuchereria</i> spp. and <i>Brugia</i> spp. in human and mosquito vector	14
7	Elephantiasis of lower extremity in <i>B. malayi</i> infection	21
8	Hatching of Aedes togoi eggs	68
9	Mosquitoes blood feeding on infected jird	69
10	Collection of L ₃ from infected mosquitoes using Bearman's Apparatus	70
11	pCR [®] 2.1-TOPO Map, 3908 Nucleotide (Invitrogen, USA).	76
12	pVax1 Map, 3000 Nucleotide (Invitrogen, USA).	82
13	Electrophoresis of modified hot TRIzol extracted L ₃ <i>B. malayi</i> total RNA	100
14	Amplification of <i>SXP1</i> gene of <i>B. malayi</i> by single step RT-PCR	101
15	Blue and white colonies after 24 Hour incubation	103
16	PCR analysis of the transformed colonies with insert	105
17	Restriction enzymes analysis on pCR [®] 2.1 clones	106
18	Restriction analysis of the transformed colonies consist of pCR [®] 2.1/ <i>SXP1</i>	107
19	PCR analysis of pVAX/SXP1	109
20	Restriction analysis of pVAX/SXP1 with EcoRI and HindIII	110
21	Automated sequencing of a positive pVAX/SXP1 clone	112 UPM

22	DNA Sequence of SXP1 insert	113
23	Comparison between SXP1 gene automated sequencing	11 4
24	Translated SXP1 sequence into amino acids	115
25	RT-PCR products of the transfected COS-7 cells	118
26	Western blot analysis of CHO cells transfected with recombinant plasmids pVAX/SXP1	119
27	Western blot analysis on expression of SXP1 by positive cat serum	120
28	Western blot analysis on expression of SXP1 by negative cat serum	121

LIST OF ABBREVIATIONS

Ag	antigen
Ab	antibody
ADL	adenolymphangitis
AFL	acute filarial lymphangitis
AP	alkaline phosphatase
APCs	antigen presenting cell
BM	Brugia malayi
Вр	base pair
BSA	bovine serum albumin
cDNA	complementary dseoxyribonucleic acid
CMI	cell mediated immune
CMV	cytomegalovirus
CO₂	carbon dioxide
CTL	cytotoxic T lymphocyte
Da	Daltons
DEC	diethylcarbamazine citrate
DEPC	diethyl pyrocarbonate
DNA	deoxyribonucleic acid
EDTA	ethylenediaminetetaacetic acid
EST	express sequenced taq
EtBr	ethidium bromide
FCS	foetal calf serum
FGP	filarial genome project

GM-CSF	granulocyte-macrophage colony stimulating factor
GST	glutathione-S-transferase
HCL	hydrochloric acid
ID	intradermal
IP	intraperitoneal
IFN	interferon
lg	immunoglobulin
IL	interleukin
IPTG	isopropyl-β-D thiogalactoside
IV	intravenous
Kb	kilobase
kDa	kilodalton
KCL	potassium chloride
LB	Luria Brutani
LPS	lipopolysaccharides
М	molarity
MCS	multiple cloning sites
Mf	microfilria
MgCl ₂	magnesium chloride
МНС	Major histocompatibility complex
М	mole
mRNA	messenger ribonucleic acid
MW	molecular weight
NaCl	sodium Chloride
NaOH	sodium hydroxide

OD	optical density
ORF	Open Reading Frame
PBS	phosphate buffer saline
PC	phosphorylcholine
PCR	polymerase chain reaction
Pcmv	cytomegalovirus promoter
RE	restrion enzyme
RNA	ribonucleic acid
RSV	Raos Sarcoma Virus
SC	subcutaneous
SDS-PAGE	sodium dodecyl sulphate-polyacrylamide gel electrophoresis
SV40	simian virus 40
TBE	Tris-boric-EDTA buffer
TBST	Tris-buffered saline-tween20
TEMED	N,N,N',N'-tetramethylethylenediamine
Th	helper T cells
tRNA	total ribonucleic acid
Tris-HCl	Tris hydrochloride
TPE	Tropical Pulmonary Eosinophilia
UM	University Malaya
UV	Ultra violet
WHO	World Health Organization
X-gal	5-bromo-4-chloro-3-indolyl-β-D-Galactoside

.

CHAPTER I

INTRODUCTION

Lymphatic filariasis has existed as a recognizable disorder and it has also been recorded since the beginning of human history. Ancient Chinese and Indians writings have described this disease as swellings of extremities and the genitalia that were highly reminiscent of filarial lesions. Sushruta, the Indian physician/surgeon in his book, called this disease as slipada (sli elephant; pada leg) and also described the prevalence rate was higher in individuals living close to stagnant water. Ar Rhazes and Avecenna the two famous Persian physicians described this disease in Arabic and Avecenna. had reported that the disease was endemic in Alexandria, Egypt. Lymphatic filariasis was wrongly diagnosed as leprosy by the Greek physicians. The dominant figure in the early history of lymphatic filariasis was Sir Patrick Manson, a Scottish physician stationed in China during the second half of the nineteenth century. He correctly attributed the profound, deforming swelling of the extremities to the infection with filarial parasites. He also demonstrated the numerous microfilariae in the blood of a Chinese patient, and described that if all the microfilariae were to grow into adult worms, there would be no space for any other structure within the human body. He also correctly surmised that in order to develop and grow the parasites had to leave the human body

Lymphatic filariasis is a major cause of clinical morbidity and an impediment to socio-economic development (Evans *et al.,* 1993). The disease

is mosquito-borne and very common in the tropics. The worms that caused the infection are *Wuchereria bancrofti*, *Brugia malayi* and *Brugia timori*. *W. bancrofti*, the most common filarial parasite, is found in Africa, India, Pacific Islands, the Caribbean, South America and South East Asia. Infection due to *W. bancrofti* contributed to 90% of total infections in the tropics and in some sub-tropical areas world-wide. In the South East Asia, particularly in Malaysia, *B. malayi* is a the main species that caused lymphatic filariasis, and *B. timori* is limited to Timor Island and islands adjacent to it. In Malaysia, *W. bancrofti* is mainly found in Sabah and Sarawak. More than 1.2 billion people, i.e. 20% of the world's population live in areas where they are at risk of infection, of which 90% of the infections are with *W. bancrofti* and 10% with *B. malayi* (WHO, 2000). It is currently estimated that some 512 million people are at risk of infection in the sub-Saharan Africa.

Lymphatic filariasis causes the most debilitating and disfiguring of all disease. Lymphatic filariasis has been recognised as one the most prevalent of tropical diseases, and the most neglected disease. It afflicts poor people in both urban and rural areas. Rarely fatal, it causes extensive disability, gross disfigurement and untold suffering for millions: young and old; men, women and children. In every community where it occurs, this disease remains a strong impediment to socioeconomic development. Lymphatic filariasis has been identified as among the world's six potentially 'eradicable' infectious disease by the International Task Force for Disease Eradication (WHO, 1992) and was designated as the world's second leading cause of permanent and long term disability by WHO, The two main strategies are through drug

2

therapy and vector control which are going to be implemented toward the complete elimination of the disease by the year 2020.

The development of vaccines for lymphatic filariasis is still in the state of relative infancy in comparison to other parasitic diseases such as schistosomiasis and malaria. This is due to the complexity of the filarial parasite itself and also due to complex host immune responses, which are poorly understood. With the advancement in the field of molecular biology, the development of vaccines for lymphatic filariasis has undergone a new dimension.

Prior studies have shown that a degree of protective immunity to filariasis can be induced in animals by vaccination with irradiated L₃ (Yate *et al.*, 1985, Weil .G., *et al.*, 1992). The potential of using live anti-filarial vaccines in humans is limited because of safety issues and limited availability of larvae. Several laboratories are working to develop effective recombinant antigen-based vaccines that would be more practical and effective than live parasite vaccines.

DNA vaccination is a promising approach that may have several advantages over vaccination with live parasites or protein antigens. DNA vaccines have been shown to be an effective means of generating cellular and humoral immune responses, and they have conferred protection against a wide range of infectious agents including viruses, parasites, and bacteria in animal models (Montgomery, *et al.*, 1997).

3

Objectives

The general objective of this study is to identify gene that encode filarial antigen toward the development of a DNA based vaccine against *B. malayi*.

The following are the specific objectives:

- 1. To amplify the SXP1 sequence from *B. malayi*.
- 2. To clone the amplified SXP1 gene into an appropriate vector.
- 3. To express the SXP1 protein *in vitro* after gene transfection in mammalian cell lines.

CHAPTER II

LITERATURE REVIEW

Lymphatic Filariasis in Malaysia

Lymphatic filariasis constitutes the principal mosquito-borne nematode infection due to three types of filarial worms namely *W. bancrofti, B. malayi* and *B. timori. W. bancrofti* caused bancroftian filariasis and *B. malayi* and *B. timori* caused brugian filariasis. Bancroftian filariasis is the more prevalent of the two (contribute to 90% of total infections), occurring throughout the tropics and subtropics countries; Africa, India, Pacific Islands, the Caribbean, South America and Southeast Asia, except Middle East region where infection appears to be endemic only in Egypt (Figure 1). In Malaysia, urban bancroftian filariasis is unheard of these days, while cases of rural bancroftian filariasis have been reported only from Sabah and Sarawak. By contrast, bugian filariasis is restricted to South East Asia, including Southern China (Figure 2), whereby the *B. malayi* is the major caused of lymphatic filariasis. *B. timori* is found in Timor Island, Flores and the adjacent islands of Indonesia.

Mak in 1985 was estimated two billion peoples are at risk of infection in Malaysia. The predominant species of filarial parasites is subperiodic *B. malayi* which contribute 80.2% of all cases followed by periodic *B. malayi* 12.9%, *W. bancrofti* 5.7% and mixed infection accounts for 1.3%

