

UNIVERSITI PUTRA MALAYSIA

OXIDATION OF REACTIVE ORANGE 16 BY COPPER OXIDE SYSTEM

WONG WAN YUAN

FS 2006 41

OXIDATION OF REACTIVE ORANGE 16 BY COPPER OXIDE SYSTEM

.

By

WONG WAN YUAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

July 2006

.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science

OXIDATION OF REACTIVE ORANGE 16 BY COPPER OXIDE SYSTEM

By

WONG WAN YUAN

July 2006

Chairman: Associate Professor Abdul Halim Abdullah, PhD

Faculty: Science

A commercial activated carbon (K17080) sample was treated by HNO₃ and followed by heat treatment at 500 and 700°C under a flow of N₂. Three types of copper oxide supported-activated carbon catalysts were prepared using impregnation techniques. 5 wt % of Cu was loaded for each catalyst and calcined at 500°C. Samples were characterized by FTIR, XRD and nitrogen adsorption isotherm studies. The adsorption-desorption isotherms of all samples showed a typical Type I with hysteresis loops of H₄.

The decolourisation of reactive orange 16 (RO16) by different advanced oxidation processes was investigated. The rate of colour removal was studied by measuring the absorbance at characteristic wavelengths. The effect of CuO dose, H_2O_2 dose, UV light, added AC and catalyst was studied. These parameters influenced the decolourisation rate. The comparison between powdered and granular CuO was also studied. It was found that the decolourisation rate increased until an optimum H_2O_2 dosage (60 ml of 1 M H_2O_2), beyond which the reagent exerted an inhibitory effect.

For CuO/H₂O₂ system, contribution of the leached Cu²⁺ to the total colour removal by CuO/H₂O₂ can be estimated approximately 40 %. The colour removal by CuO/H₂O₂ system is an adsorption/oxidation process. The effect of UV on the decolourisation of RO16 was in the following order: CuO/UV/H₂O₂ > CuO/H₂O₂ > CuO/UV = CuO > UV/H₂O₂ > H₂O₂ > UV.

A simple kinetic model confirmed a pseudo-second order reaction for CuO, CuO/H₂O₂, CuO/UV/H₂O₂, CuO/UV, UV/H₂O₂, H₂O₂, AC/CuO/H₂O₂, 5%Cu-ACN, 5%Cu-ACN/UV/H₂O₂, 5%Cu-ACN/H₂O₂ and 5%Cu-ACN/UV systems.

The AC/CuO/H₂O₂ system exhibited a lower efficiency compared to CuO/H₂O₂ most probably due to decomposition of H₂O₂ and reduction of Cu²⁺. The decolourisation efficiency of 5% Cu-ACN catalyst under four different conditions was observed in the following order: 5%Cu-ACN/UV/H₂O₂ > 5%Cu-ACN/H₂O₂ > 5%Cu-ACN/UV = 5%Cu-ACN. 5%Cu-ACN/UV/H₂O₂ system was found to be the most efficient method on decolourisation of RO16 in this study.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENGOKSIDAAN REAKTIF OREN 16 MENGGUNAKAN SISTEM KUPRUM OKSIDA

Oleh

WONG WAN YUAN

Julai 2006

Pengerusi: Profesor Madya Abdul Halim Abdullah, PhD

Fakulti: Sains

Satu karbon teraktif komersil (KI7080) telah dirawat dengan HNO₃ dan diikuti rawatan haba pada 500 dan 700°C di bawah aliran N₂. Tiga mangkin kuprum oksida tersokong pada karbon teraktif telah disediakan dengan menggunakan teknik impregnasi. 5 wt% Cu dimuatkan ke dalam setiap mangkin and dikalsin pada 500°C. Sampel dicirikan dengan FTIR, XRD and isoterma penjerapan nitrogen. Isoterma penjerapan-penyahjerapan bagi semua sampel menunjukkan jenis 1 dengan lekuk histeresis H₄.

Pelunturan wana bagi reaktif oren 16 dengan proses pengoksidaan yang berbeza telah dikaji. Kadar penyingkiran warna dikaji dengan menyukat serapan pada ciri panjang gelombang. Kesan dos CuO, dos H₂O₂, lampu UV, AC yang ditambah dan mangkin telah dikaji. Parameter ini mempengaruhi kadar pelunturan warna. Perbandingan telah dibuat antara serbuk dan ganul CuO. Takat optimum H₂O₂ yang diperlukan telah dipeperiksa. Didapati kadar pelunturan warna meningkat sampai satu dos H₂O₂ (60 ml

1 M H₂O₂) yang optimum, melebihi dos ini boleh menyebabkan kesan rencatan. Bagi sistem CuO/H₂O₂, sumbangan Cu²⁺ ini kepada pelunturan warna CuO/H₂O₂ boleh dijanggakan sebanyak 40%. Pelunturan warna dengan sistem CuO/H₂O₂ ialah satu process penyerapan/pengoksidaan. Kesan UV ke atas pelunturan warna RO16 adalah dalam order berikut: CuO/UV/H₂O₂ > CuO/H₂O₂ > CuO/UV = CuO > UV/H₂O₂ > H₂O₂ > UV.

Satu model kinetik yang mudah telah memastikan tertib tindak balas pseudo-kedua bagi sistem CuO, CuO/H₂O₂, CuO/UV/H₂O₂, CuO/UV, UV/H₂O₂, H₂O₂, AC/CuO/H₂O₂, 5%Cu-ACN, 5%Cu-ACN/UV/H₂O₂, 5%Cu-ACN/H₂O₂ dan 5%Cu-ACN/UV.

AC/CuO/H₂O₂ menunjukkan kecekapan yang lebih rendah berbanding dengan CuO/H₂O₂. Ini disebabkan oleh penguraian H₂O₂ dan pengurangan Cu²⁺. Kecekapan pelunturan warna bagi mangkin 5%Cu-ACN di bawah 4 keadaan yang berbeza telah dipermerhatikan dalam order 5%Cu-ACN/UV/H₂O₂ > 5%Cu-ACN/H₂O₂ > 5%Cu-ACN/H₂O₂ > 5%Cu-ACN/UV = 5%Cu-ACN. Didapati sistem 5%Cu-ACN/UV/H₂O₂ adalah kaedah yang paling efektif untuk pelunturan warna RO16 dalam kajian ini.

ACKNOWLEDGEMENTS

First and foremost, I would like to take this opportunity to express my earnest appreciation to my project supervisor, Associate Professor Dr. Abdul Halim Abdullah for his inspiring guidance, patience, constructive criticisms and generous support, which enabled me to complete this study successfully. I also wish to extent my gratitude to my co-supervisor, Associate Professor Dr. Mohd Ismail Yaziz for his invaluable suggestions and unlimited support during my studies.

My sincere gratitude also goes to my friends, lab mates, housemates and all the laboratory assistants and staffs of the Chemistry Department in UPM, particularly Acer, Salina, Li Yin, Sook Keng, Kong Hui, Wooi Long, Chuan Sheng, Mdm Choo, Mdm Rosrani and Ms Roraina.

Last but not least, grateful thanks are certainly due to my beloved family for their understanding attitude, spiritual support, continuous help and encouragement throughout my life.

TABLE OF CONTENTS

Page

.

ABSTRACT	ij
ABSTRAK	iv
ACKNOWLEDGEMENTS	vi
APPROVAL	vii
DECLARATION	ix
LIST OF TABLES	xii
LIST OF FIGURES	xvi
LIST OF ABBREVIATIONS/NOTATIONS/GLOSSARY OF TERMS	xxi

CHAPTER

1	INTRODUCTION	1
	1.1 Study objectives	3
2	LITERATURE REVIEW	4
	2.1 Oxidation	4
	2.1.1 Advanced Oxidation Process (AOPs)	4
	2.1.2 Photocatalytic Degradation	6
	2.2 Adsorption	8
	2.2.1 Physisorption	9
	2.2.2 Chemisorption	11
	2.2.3 Adsorption with Activated Carbon	12
	2.3 Activated Carbon	13
	2.3.1 Structure of Activated Carbon	14
	2.3.2 Chemical nature of the surface of Activated Carbon	19
	2.3.3 Oxidation of Activated Carbon	22
	2.3.4 Activated Carbon supported-catalyst	25
3	METHODOLOGY	28
	3.1 Materials	28
	3.2 Preparation of Samples	29
	3.2.1 Activated Carbon Modification	29
	3.2.2 Catalyst Preparation	30
	3.3 Characterization of Modified Activated Carbons and Copper	
	Oxide Supported on Modified Activated Carbon Catalysts	31
	3.3.1 Fourier Transform-Infrared (FT-IF) Analysis	31
	3.3.2 X-Ray Diffraction (XRD) Analysis	32
	3.3.3 BET (Brunauer-Emmett-Teller) Surface Area and	
	Porosity	32
	3.4 Removal of Reactive Orange (RO16) Dye	32

3.4.1 Preparation of Dyes Solution	32
3.4.2 Determination of Maximum Absorption Wavelength	
(λ_{max}) and Construction of Standard Calibration Curve	
of Dye	33
3.4.3 Batch Experiment	34
3.4.4 Effect of Particle Size of CuO	36
3.4.5 Effect of H_2O_2	36
3.4.6 Effect of CuO in The Presence of H_2O_2	37
3.4.7 Effect of UV	37
3.4.8 Effect of Activated Carbon in the CuO/H ₂ O ₂ system	37
3.4.9 Removal of RO16 by 5%Cu-ACN catalyst	38
	• •
RESULTS AND DISCUSSION	39
4.1 Characterization of Modified Activated Carbon and Catalysts	39
4.1.1 Fourier Transform-Infrared (FT-IF) Analysis	39
4.1.2 X-Ray Diffraction (XRD) Analysis	42
4.1.3 BET (Brunauer-Emmet-Teller) Surface and Porosity	
Analysis	44
4.2 Removal of Reactive Orange 16 (RO16) by CuO, CuO/H ₂ O ₂ ,	
CuO/H ₂ O ₂ /UV system	50
4.2.1 Effect of Particle Size of CuO	50
4.2.2 Effect of H_2O_2	61
4.2.3 Effect of CuO Dosage in The Presence of H ₂ O ₂	69
4.2.4 Effect of UV	74
4.2.5 Effect of Activated Carbon in the CuO/H ₂ O ₂ system	82
4.2.6 Removal of RO16 by 5%Cu-ACN catalyst	94
CONCLUSIONS AND RECOMMENDATIONS	105
5.1 Conclusions	105

4

5

5.2 Recommendations

BIODATA OF THE AUTHOR

BIBLIOGRAPHY

APPENDICES

109

110

115

133

LIST OF TABLES

Table		Page
1	Properties of the activated carbon (KI7080)	28
2	Properties and structure of reactive orange 16	29
3	Starting material and treatments used for the preparation of MAC and catalysts	31
4	Parameter used in the decolourisation of RO16 dye experiment	35
5	Structural characteristics of the AC and 5%Cu-ACN catalyst	48
6	Comparison of the colour removal (%) of RO16 by granular and powdered CuO at 1 h of reaction time.	52
7	The rate constant and correlation factor values for colour removal by powdered CuO based on pseudo first order kinetics	56
8	The rate constant and correlation factor values for colour removal by powdered CuO based on pseudo second order kinetics	58
9	The rate constant and correlation factor values for colour removal by granular CuO based on pseudo first order kinetics	59
10	The rate constant and correlation factor values for colour removal by granular CuO based on pseudo second order kinetics	59
11	The rate constant and correlation factor values for the effect of H_2O_2 at 9.8 M based on pseudo second order kinetics	63
12	The rate constant and correlation factor values for the effect of H_2O_2 at 1 M based on pseudo second order kinetics	65
13	The rate constant and correlation factor values for the effect of CuO in the presence of H_2O_2 based on pseudo second order kinetic	70
14	Oxidation potential, V of several oxidants	73
15	The rate constant and correlation factor values for colour removal by $CuO/H_2O_2/UV$ and other systems based on pseudo first order kinetics	82

16	The rate constant and correlation factor values for colour removal by $CuO/H_2O_2/UV$ and other systems based on pseudo second order kinetics	82
17	Comparisons of surface area and colour removal between ACN/700 and ACN/500	86
18	The rate constant and correlation factor values for the effect of AC in the present of CuO and H_2O_2 based on pseudo second order kinetic	94
19	The rate constant and correlation factor values for colour removal by 5%Cu-ACN catalysts based on pseudo first order kinetics	102
20	The rate constant and correlation factor values for colour removal by 5%Cu-ACN catalysts based on pseudo second order kinetics	102
21	The rate constant and correlation factor values for colour removal by 5%Cu-ACN catalysts in the presence of H_2O_2 based on pseudo second order kinetics	102
22	The rate constant and correlation factor values for colour removal by 5%Cu- ACN catalysts under UV radiation based on pseudo second order kinetics	104
23	The rate constant and correlation factor values for colour removal by 5%Cu- ACN catalysts in the presence of H_2O_2 and UV light based on pseudo second order kinetics	104

LIST OF FIGURES

Figure		Page
1	Ordering of carbon atoms in a crystal of graphite	15
2	Comparison of three-dimensional crystal lattice of graphite (a) and the turbostratic structure (b)	16
3	Schematic illustration of the structure of active carbon: (a) easily undergoing graphitization, (b) undergoing graphitization to a small degree	17
4	AC with capillary structure and featuring pores	18
5	Functional groups in AC	21
6	Calibration curve of RO16	34
7	IR spectra of AC oxidized by HNO3 at 4 M and its catalyst	40
8	IR spectra of AC oxidized by HNO3 at 8 M and its catalyst	40
9	IR spectra of AC oxidized by HNO3 at 12 M and its catalyst	41
10	XRD patterns of MAC and 5%Cu-ACN catalysts	43
11	Adsorption-desorption isortherms of nitrogen for AC oxidized by HNO_3 at 4 M and its catalyst.	46
12	Adsorption-desorption isortherms of nitrogen for AC oxidized by HNO ₃ at 8 M and its catalyst	46
13	Adsorption-desorption isortherms of nitrogen for AC oxidized by HNO_3 at 12 M and its catalyst	47
14	The percentage of colour removal of RO16 by granular CuO	51
15	The percentage of colour removal of RO16 by powdered CuO	51
16	Graph $\ln C_0/C$ versus time for the color removal by powdered CuO	55
17	Graph t/qt versus time for the colour removal by powdered CuO	57
18	Graph $\ln C_0/C$ versus time for the colour removal by granular CuO	58

19	Graph t/qt versus time for the colour removal by granular CuO	59
20	UV-Vis adsorption spectral changes of RO16 recorded at different time intervals in the presence of powdered CuO	60
21	Effect of H_2O_2 at 9.8 M in the presence of 1 g powdered CuO on colour removal of RO16	61
22	Effect of H_2O_2 at 1 M in the presence of 1 g powdered copper oxide on colour removal of RO16	62
23	Graph t/qt versus time for effect of H_2O_2 at 9.8 M	63
24	Graph t/qt verses time for effect of H_2O_2 at 1 M	65
25	UV-Vis absorption spectral changes of RO16 recorded at different time intervals in the presence of 60ml of $H_2O_2(1 \text{ M})$ alone	67
26	UV-Vis absorption spectral changes of RO16 recorded at different time intervals in the present of 1.0 g CuO and 10 ml H_2O_2 (9.8 M)	67
27	UV-Vis absorption spectral changes of RO16 recorded at different time intervals in the present of 1.0 g CuO and 60 ml H_2O_2 (1.0 M)	68
28	Effect of CuO in the presence of 60 ml H_2O_2 at 1 M on colour removal of RO16	69
29	Graph t/qt versus time for effect of CuO in the present of H_2O_2	70
30	UV-Vis adsorption spectral changes of RO16 recorded at different time intervals during CuO/H_2O_2 process	71
31	Comparison for decolourisation of RO16 by different system	74
32	UV-Vis adsorption spectral changes of RO16 recorded at different time intervals by 3.5 ppm of Cu^{2+} solution	75
33	Colour removal of RO16 by different process. Condition: mass of CuO: 2.0 g, volume of H_2O_2 : 60 ml	75
34	UV-Vis absorption spectral changes of RO16 recorded at different time intervals during UV/ H_2O_2 process	76
35	UV-Vis absorption spectral changes of RO16 recorded at different time intervals during CuO/UV process	76

36	UV-Vis absorption spectral changes of RO16 recorded at different time intervals during CuO/UV/H ₂ O ₂ process	77
37	Graph In C_0/C versus time for the colour removal by CuO/H ₂ O ₂ /UV and other system	81
38	Graph t/q_t versus time for colour removal by CuO/H ₂ O ₂ /UV and other system	81
39	Effect of MAC by 4 M of HNO3 on colour removal of RO16	83
40	Effect of MAC by 8 M of HNO ₃ on colour removal of RO16	83
41	Effect of MAC by 12 M of HNO_3 on colour removal of RO16	84
42	UV-Vis adsorption spectral changes of RO16 recorded at different time intervals for ACN4/500	87
43	Effect of MAC by 4 M of HNO ₃ in the presence of CuO and H_2O_2 on colour removal of RO16	88
[.] 44	Effect of MAC by 8 M of HNO_3 in the presence of CuO and H_2O_2 on colour removal of RO16	88
45	Effect of MAC by 12 M of HNO ₃ in the presence of CuO and H_2O_2 on colour removal of RO16	89
46	UV-Vis adsorption spectral changes of RO16 recorded at different time intervals during ACN12/500/CuO/H ₂ O ₂ process	92
47	Graph t/q_t versus time for effect of MAC by 4 M of HNO ₃ in the presence of CuO and H ₂ O ₂ on colour removal of RO16	92
48	Graph t/q_t versus time for effect of MAC by 8 M of HNO ₃ in the presence of CuO and H ₂ O ₂ on colour removal of RO16	93
49	Graph t/q_t versus time for effect of MAC by 12 M of HNO ₃ in the presence of CuO and H ₂ O ₂ on colour removal of RO16	93
50	Decolourisation of RO16 by 5%Cu-ACN4 under different conditions	95
51	Decolourisation of RO16 by 5%Cu-ACN8 under different conditions.	95

52	Decolourisation of RO16 by 5%Cu-ACN12 under different conditions	96
53	UV-Vis adsorption spectral changes of RO16 recorded at different time intervals for 5%Cu-ACN4 catalyst	96
54	UV-Vis adsorption spectral changes of RO16 recorded at different time intervals during 5%Cu-ACN4/UV process	97
55	UV-Vis adsorption spectral changes of RO16 recorded at different time intervals during 5%Cu-ACN4/H ₂ O ₂ process	97
56	UV-Vis adsorption spectral changes of RO16 recorded at different time intervals during 5%Cu-ACN4/UV/H ₂ O ₂ process	98
57	Graph ln C_0/C versus time for the colour removal by 5%Cu-ACN catalyst	101
58	Graph t/q_t versus time for the colour removal by 5%Cu-ACN catalyst	101
59	Graph t/q_t versus time for the colour removal by 5%Cu-ACN catalyst in the presence of H_2O_2	103
60	Graph t/q_t versus time for the colour removal by 5%Cu-ACN catalyst under UV radiation	103
61	Graph t/q _t versus time for the colour removal by 5%Cu-ACN catalyst in the present of H_2O_2 and UV light	104

LIST OF ABBREVIATIONS

AC	Activated carbon
AC/HCI	Hydrochloric acid treated activated carbon
ACN	Nitric acid treated activated carbon
AOPs	Advanced Oxidation Processes
BDDT	Brunauer, Denning, Deming, Teller
BET	Brunauer-Emmett-Teller
C_0	Initial concentration of the reactant
Cs	Concentration of the solvent
5%Cu-ACN	5 wt% Cu catalyst supported on nitric acid treated activated carbon
Cu20/AC	20 wt% Cu catalyst supported on activated carbon
Cu20/AC-HF	20 wt% Cu catalyst supported on hydrofluoric acid treated
	activated carbon
Cu20/AC-HNO3	20 wt% Cu catalyst supported on nitric acid treated activated carbon
CuO	Copper Oxide
CuO-MAC	Modified activated carbon supported copper oxide catalyst
FT-IR	Fourier Transform Infra Red
H ₂ O ₂	Hydrogen Peroxide
ICP-AES	Inductively Coupled Plasma Atomic Emission Spectrometer
IUPAC	International Union of Pure and Applied Chemistry
JCPDS	Joint Committee of Powder Diffraction Standard

K	Adsorption coefficient of the reactant
k ₂	Pseudo-second order rate constant
k _{app}	Pseudo-first order rate constant
Kr	Reaction rate constant
Ks	Adsorption coefficient of the solvent
MSW	Municipal solid waste
OAC	Non-treated activated carbon
ОН•	Hydroxyl radical
OH ₂ •	Perhydroxyl radical
q _e	Amount of soluted sorbate sorbed at equilibrium concentration of the solvent
qı	Amount of soluted sorbate on the surface of the sorbent at any time t
R ²	Correlation coefficient
RO16	Reactive Orange 16
TiO ₂	Titanium Dioxide
TOC	Total Organic Carbon
TPD	Temperature Programmed Desorption
TPR	Temperature Programmed Reduction
UV	Ultraviolet
v	Oxidation potential
XRD	X-Ray Diffraction
θ	Fraction of the surface covered by the reactant

CHAPTER 1

INTRODUCTION

Currently, it is estimated that industries dump 300 to 500 million tons of heavy metals, solvents, toxic sludge and other wastes into water sources annually. Water usage in the industrial sector is expected to increase from 752 cubic kilometers a year to 1,170 cubic kilometers a year by 2025 (Bender, 2004).

The textile dyeing and printing industries are among the several industries responsible for pollution of aquatic ecosystems. Over 700,000 tons of approximately 10,000 different types of dyes and pigments are produced annually worldwide. Nearly 50 % of these dyes are azo-type dyes. About 20 % of dye of the total world production is assumed to be discharged in industrial effluents during the textile dyeing process (Azbar *et al.*, 2004). Up to 50 % of reactive dyes, 8-20 % of disperse dyes and 1 % of pigments may be lost directly into effluents during the dyeing process (McMullan *et al.*, 2001).

Removal of color in wastewater generated by the textile industries is a current issue of discussion and regulation all over the world. Among the reactive dyes, the textile azo dyes have attracted the most attention with regard to its high environmental impact due to their widespread use, their potential to form toxic aromatic products and their low removal rate during primary and secondary treatment.

A variety of physical and chemical treatment methods are presently available for these dyes. Nevertheless these methods merely transfer the dye to a solid phase which requires further treatment (Carneiro *et al.*, 2004).

Biological processes such as sequenced anaerobic or aerobic digestion, have been proposed in the treatment of textile wastewater, but they are limited due to the fact that many of the dyes are not enobiotic and non-biodegradable (Behnajady *et al.*, 2004)

During the last two decades advanced oxidation processes (AOPs) that are combinations of powerful oxidizing agents (catalytic initiators) with UV or near-UV light have been applied for the removal of refractory organic pollutants and xenobiotics. Destructive oxidation of dyes and textile effluents have recently received considerable attention since coloured aromatic compounds have proven to be degraded effectively by a variety of homogeneous and heterogeneous AOPs . AOPs such as Fenton and photo-Fenton catalytic reactions, $H_2O_2/$ UV processes and TiO₂ mediated photocatalysis have been studied. A broad range of experimental conditions was established in order to reduce the colour and organic load of dye containing effluent wastewater.

The aim of this work was to evaluate the possibility of treatment alternative for reactive orange 16 (RO16) dye wastewater by copper oxide system. Since copper nitrate is the best catalyst in the catalytic oxidation of dyeing and printing wastewater, copper will be chosen as the active element to be deposited onto the porous support.

1.1 Study Objectives

The objectives of this study are:

- 1. To study the decolourisation of reactive orange 16 (RO16) by CuO/H_2O_2 system by varying the mass of CuO and concentration of H_2O_2 .
- 2. To prepare and characterize copper oxide-modified activated carbon catalysts (CuO-MAC).
- 3. To examine the colour removal efficiency of RO16 by modified activated carbon (MAC) and CuO-MAC catalysts via adsorption.
- To examine the colour removal efficiency of RO16 by a combination of CuO-MAC catalyst and H₂O₂ with and without UV light via oxidation.

CHAPTER 2

LITERATURE REVIEW

2.1 Oxidation

Oxidation is defined as a process of the electron loss from an atom or ion and also the combination of oxygen with other substances. The reactant that gains electrons is called the oxidation agent. The oxidizing agent contains the element that is being reduced (gains electron). If a substance gains electrons easily, it is said to be a strong oxidizing agent.

2.1.1 Advanced oxidation process (AOPs)

AOPs have common principles in terms of the participation of hydroxyl radicals that are assumed to be operative during the reaction. Although it is claimed that there are other species involved, the active species responsible for the destruction of contaminants in most cases seems to be the OH• which is unstable and quite reactive. Due to the instability of the OH• radical, it must be generated continuously "in situ" through chemical or photochemical reactions (Oliver *et al.*, 2000).

Hydroxyl radicals may attack organic molecules by abstracting a hydrogen atom from the molecule (Clarke and Knowles, 1982). A common pathway for the degradation of organics by the OH• is described as follows:

$OH \bullet + RH \rightarrow H_2O + R \bullet$	(1)
$R^{\bullet} + H_2O_2 \rightarrow ROH + OH^{\bullet}$	(2)
$R \bullet + O_2 \rightarrow ROO \bullet$	(3)

 $ROO \bullet + RH \to ROOH + R \bullet$ (4)

A wide variety of advanced oxidation processes are available:

- chemical oxidation processes using H₂O₂, ozone, combined ozone & peroxide, hypochlorite, Fenton's reagent etc.
- ultra-violet enhanced oxidation such as UV/ozone, UV/H2O2, UV/air
- wet air oxidation and catalytic wet air oxidation (where air is used as the oxidant)

AOPs (O₃, O₃/H₂O₂, O₃/UV, H₂O₂/UV, O₃/ H₂O₂/UV, Fe²⁺/H₂O₂) for the degradation of non-biodegradable organic contaminants in industrial effluents are attractive alternatives to conventional treatment methods. AOPs based on the generation of very reactive and oxidizing free radicals have been used with increasing interest due to their high oxidizing power. Production of these radicals is achieved either using single oxidants or combinations of ozone, H₂O₂ and UV radiation (Glaze and Kang, 1989) and also, with the combination of H₂O₂ with ferrous ions in the so-called Fenton's reagent (Walling, 1975). The oxidation using Fenton's reagent has proven to be a promising and attractive treatment method for the effective decolourisation and degradation of dyes. Complete degradation of organic compounds by Fenton's reagent include phenols, various chlorinated phenols, aromatics like benzene, toluene, xylene,