

UNIVERSITI PUTRA MALAYSIA

SYNTHESIS AND CHARACTERIZATION OF PALM OIL-BASED RESIN FOR UV COATING

CHEONG MEI YEE.

FS 2006 37

SYNTHESIS AND CHARACTERIZATION OF PALM OIL-BASED RESIN FOR UV COATING

By

•

CHEONG MEI YEE

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

May 2006

To my family and friends,

For their unremitting support and encouragement

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

SYNTHESIS AND CHARACTERIZATION OF PALM OIL-BASED RESIN FOR UV COATING

By

CHEONG MEI YEE

May 2006

Chairman: Professor Wan Md. Zin B. Wan Yunus, PhD

Faculty: Science

The production of UV curable acrylated polyol esters from palm oil and its downstream products offers potential and promising materials for a number of applications such as polymeric film preparation and wood coatings. In this study, palm olein-based polyol of ethylene glycol was reacted with acrylic acid in the presence of a catalyst and inhibitors via condensation esterification process at various temperatures (70.0, 80.0, 90.0 or 100.0°C), stirring speed of 100 or 400 rpm and under vacuum for 15 hours. The reaction temperature of 80.0°C and the stirring rate of 400 rpm produce a homogeneous product. Optimizations for the synthesis were also carried out using a catalyst concentrations ranging from 0.0 to 5.0% of polyol weight.

Fifteen different formulations have been investigated using the synthesized prepolymers with monomers and a small amount of photoinitiator. Monomers used were 1, 6-hexanediol diarylate (HDDA) and trimethylolpropane triacrylate (TMPTA) while photoinitiator used was 1-hydroxy cyclohexyl phenylketone (Irgacure 184). The mixtures were cured to make thin polymeric films under UV radiation with doses between 2 to 14 passes (energy per pass is 0.600 J/cm²). Coating and curing was carried out on glass for pendulum hardness characterization, haziness and scratch measurement as well as FT-IR analysis. Coating and curing were done on rubber wood for cross hatch adhesion test.

Pendulum hardness of the film prepared from the UV curable formulation with monomer HDDA and the prepolymer prepared using 3% catalyst was 24.5%. The radiation dose was 14 passes. The highest pendulum hardness of 49.4% was achieved when using UV curable formulation with monomer TMPTA and the prepolymer prepared using 2% catalyst. The radiation dose needed was 10 passes. Formulation of UV curable coating using the optimized acrylated polyol ester prepolymer and monomer TMPTA exhibited higher scratch measurement and lower haziness compared to those of the formulation with monomer HDDA. UV curable formulation of prepolymer with monomer HDDA gave better adhesion on rubber wood than that of with monomer TMPTA. Films cured by UV radiation made from prepolymers on both glass panel and rubber wood surfaces showed good hardness, scratch resistance and adhesion with almost clear transparency. In general, it can be concluded that newly synthesized UV radiation curable palm-based acrylated polyol ester prepolymers are promising candidates for wood coating applications.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

SINTESIS AND PENCIRIAN RESIN BERASASKAN MINYAK SAWIT UNTUK PENGLITUPAN MATANG UV

Oleh

CHEONG MEI YEE

Mei 2006

Pengerusi: Professor Wan Md. Zin B. Wan Yunus, PhD

Fakulti: Sains

Prapolimer poliester akrilat boleh matang UV yang disediakan daripada sumber minyak sawit dan terbitan hasilnya mempunyai potensi dan harapan untuk kegunaan bahan bukan makanan seperti pembuatan filem polimerik untuk litupan kayu. Dalam kajian ini, produk berasaskan minyak sawit iaitu poliol ditindakbalas dengan asid akrilik melalui proses esterifikasi dengan kehadiran mangkin dan perencat gel pada suhu berlainan (70.0, 80.0, 90.0 atau 100.0°C), kadar adukan; 100 rpm atau 400 rpm dan dalam keadaan vakum selama 15 jam. Suhu tindak balas 80.0°C dan kadar adukan 400 rpm menghasilkan produk homogen. Optimasi penyediaan dilakukan dengan menggunakan mangkin dalam linkungan 0.0 hingga 5.0% daripada berat poliol.

v

Kajian dilakukan untuk lima belas formulasi prapolimer yang disintesis bersama monomer dan sedikit bahan fotopemula. Monomer digunakan ialah 1, 6-heksanadiol diakrilat (HDDA) dan trimetilolpropana triakrilat (TMPTA) manakala bahan fotopemula ialah 1-hidroksi sikloheksil fenilketon (Irgacure 184). Campuran dimatangkan di bawah sinaran ultralembayung (UV) pada pelbagai dos di antara 2 hingga 14 laluan di mana tenaga per laluan ialah 0.600 J/cm² untuk menghasilkan filem polimer yang nipis. Litupan dan pematangan oleh UV dilakukan pada permukaan kaca untuk pencirian kekerasan, ukuran kelutsinaran, ujian tahan calar dan analisis FT-IR. Litupan dan pematangan UV juga dilakukan pada kayu untuk ujian daya kelekatan.

Kekerasan filem yang disediakan daripada formulasi matang UV dengan monomer HDDA dan prapolimer yang disediakan dengan menggunakan 3% mangkin ialah 24.5%. Dos radiasi yang diperlukan ialah 14 laluan. Kekerasan yang paling tinggi ialah 49.4% terhasil dengan menggunakan formulasi matang UV dengan monomer TMPTA dan prapolimer yang disediakan menggunakan 2% mangkin. Sinaran dos yang diperlukan ialah 10 laluan. Formulasi matang UV yang terdiri daripada prapolimer teroptima dan monomer TMPTA memberi ukuran tahan calar dan kelutsinaran yang tinggi manakala formulasi prapolimer dan monomer HDDA memberi daya kelekatan yang lebih tinggi pada kayu getah. Pada keseluruhannya, filem yang diperbuat oleh prapolimer yang telah dimatangkan oleh UV menunjukkan kekerasan, tahan calar, daya kelekatan dan kelutsinaran yang baik. Kesimpulannya, prapolimer poliester akrilat boleh matang UV yang disediakan daripada sumber minyak sawit berpotensi digunakan untuk litupan kayu.

ACKNOWLEDGEMENTS

I would like to express my sincere and deepest appreciation to Professor Dr. Wan Md. Zin B. Wan Yunus, the Chairman of my Supervisory Committee, for his intellectual advice, suggestions and guidance throughout the course of this project and for reviewing this thesis with constructive criticism. I am equally indebted to Professor Dr. Dzulkefly Kuang Abdullah who as a member of my Supervisory Committee gave invaluable supports, guidance and comments. My sincere thanks and deepest gratitude must be extended to Dr. Ooi Tian Lye whom is a member of my Supervisory Committee as well as Head of Oleochemical Product Development Unit (OPD) in Advanced Oleochemical Technology Division (AOTD), Malaysian Palm Oil Board (MPOB), for his kind, intellectual and direct supervision of my entire research work in his laboratory at AOTD, without which I would not be able to accomplish my Masters degree.

I am also heartily thanking Dr. Salmiah Ahmad, Director of AOTD (MPOB) for permission to conduct my entire project at AOTD. I acknowledge with thanks for the financial support from MPOB Graduate Research Programme. I would express my heartfelt thanks to staff of AOTD for their technical assistance throughout the entire course of my research, especially Puan Asma Don, Puan Sapiah Hashim, Puan Sefiah Ariffin, Puan Selasiah Abdullah, Puan Zamiah Hasham, Puan Rosmah Umam, Encik Halim Ariffin, Encik Roslan Ramli, Encik Mohammed Ahir Musa and many others. I would also like to thank Dr. Chong Chew Let and his subordinate, Encik Khairul in MPOB Bangi (headquarters) for their technical assistance.

I would like to express my sincere appreciation to Dr. Khairul Zaman Hj. Mohd Dahlan, Director of Division of Radiation Processing Technology, Malaysian Institute for Nuclear Technology research (MINT) for permission to conduct my project in MINT. I would to extend heartfelt appreciation and thank you to Dr. Nik Ghazali, Cik Mek Zah, Encik Rosley and staff of MINT for their technical assistance and guidance.

My appreciation also goes to staff of Intermed Sdn Bhd, Ms. Tan Mei Yun and Mr. Dennis Chong, for providing many samples of polyol of ethylene glycol. I would like to thank Mr. Too Wing Meng from Haint (M) Sdn. Bhd. for providing Ciba® range of photoinitiator samples.

Last but not least, I am also greatly indebted to my parents, Cheong Lee Tai and Wong Teo Yang; brothers, Cheong Yow Kouen and Cheong Yow Lam; and friends, Chong Chun Wai, Lee Chia Yen, Sharmini, Lee Ching Shya, Lee Choy Sin, Chan Wai Theng, Aminah Azizan, Shah and Lim Sheo Kun; whose relentless encouragement and support have contributed towards the accomplishment of this project.

.

TABLE OF CONTENTS

DEDICAT	ION	ii
ABSTRAC	T	iii
ABSTRAK		v
ACKNOW	'LEDGMENTS	vii
APPROV A	NL	ix
DECLARA	ATION	xi
LIST OF 1	TABLES	xv
LIST OF H	IGURES	xviii
LIST OF A	ABBREVIATIONS	xxvi
CHAPTER		
1 INT	RODUCTION	
1.1	Malaysian Oil Palm Industry	1
1.2	Polyol Based on Sustainable Raw Material	2
	1.2.1 Palm Oil-Based Polyol	3
1.3	Palm Oil-Based Resin from Polyol	6
1.4	Scope of the Study	9

1.4	Scope	of the	Study
-----	-------	--------	-------

2	LITE	RATURE REVIEW	
	2.1	Malaysian Palm Oil Products	10
	2.2	Composition and Characteristics of Palm Oil	16
		2.2.1 Minor Components	21
		2.2.2 Other Properties of Palm Oil	25
	2.3	Polyols	26
	2.4	Palm Oil-Based Resin for UV Coating	30
	2.5	Resin	34
	2.6	Alkyd Resin	37
		2.6.1 Reaction in Alkyd Resin Synthesis	38
	2.7	Other Resins	41
		2.7.1 Acrylic Resin	44
	2.8	Radiation Curable Systems	49
	2.9	Application of UV Curing	58
	2.10	Monomer	61
	2.11	Photoinitiator	63
		2.11.1 The Critical Role of Photoinitiator	63
		2.11.2 Types of Photoinitator	65
	2.12	Inhibitor	70
		2.12.1 Factors Resulting in Gelation	71
	2.13	Ultraviolet Radiation	73
		2.13.1 Photo-Polymerization Reaction under UV Light	75
		2.13.2 Mechanism of Photoinitated Polymerization	76
3	METI	HODOLOGY	
	3.1	Material and Reagent	81
		3.1.1 Standard Solution	86
	3.2	Method	86

xii

Page

	3.2.1	Synthesis of Palm-Based Acrylated Polyol Ester	
		Prepolymer	86
	3.2.2	Preparation of Palm-Based Acrylated Polyol Ester	
		Prepolymer	88
	3.2.3	Purification	89
	3.2.4	Optimization of Reaction	90
		3.2.4.1 Reaction Conditions	91
		3 2 4 2 Catalyst and Inhibitor	91
33	Charac	terization Technique for PoEG and Acrylated Polyol Ester	<i></i>
5.5	Prenoly	vmer	94
	331	Acid Value	94
	332	Hydroxyl Value	95
	333	Iodine Value	97
	334	Saponification Value	99
	225	Ovirane Ovugen Content	100
	3.3.5	Viscosity	100
	3.3.0	Fourier Transform Infrared (FT ID) Spectroscopy	102
	3.3.1	¹ LI NLAP & ¹³ C NLAP (Nuclear Magnetic Pasananae)	105
	3.3.0	n-invik & C-inivik (inuclear inaghetic Resonance)	104
	220	Class Transition Terms centure (T.) and Crustelling Making	104
	3.3.9	Chass Transition Temperature (T_g) and Crystatime Mening	104
	2 2 10	$1 \text{ emperature } (1_m)$	104
	3.3.10	Molecular Weight Determination	105
	3.3.11	Water Content	105
	3.3.12	pH Measurement	107
~ 4	3.3.13	Colour Measurement	107
3.4	Prepar	ation of UV Curable Coating Formulation, Application and	100
	UVCu	iring of Coating	108
	3.4.1	Materials	108
	3.4.2	Method	112
	3.4.3	Coating and UV Curing of the Formulation on Glass Plate	114
	3.4.4	Coating and UV Curing of the Formulation on Wood	116
	~	3.4.4.1 Preparation of Wood Surface	117
3.5	Charac	cterization of UV Cured Film	122
	3.5.1	Fourier Transform Infrared (FT-IR) Spectroscopy	122
	3.5.2	Pendulum Hardness	122
	3.5.3	Scratch Measurement	123
	3.5.4	Cross-Hatch Adhesion	124
	3.5.5	Haze Measurement	124
RESU	TS AN	ID DISCUSSION	
A	PREPA	RATION AND ANALYSIS	
41	Prenara	ation and Analysis of Acrylated Polyol Ester Prepolymer	126
42	Reactio	n Mechanism	127
43	Effect	of Various Reaction Parameters on the Acid Value	131
ч.5	431	Effect of Mechanical Stirring Rate	131
	432	Effect of Reaction Temperature	132
	т.J.2 Д 2 2	Effect of Reaction Period	132
	т.J.J Л 2 Л	Effect of Catalyst and Its Concentrations	127
A A	7.J.4 Effaat	of Various Reaction Parameters on the Hudrovid Value	1/1
4.4		Effect of Mechanical Chirring Rate	1/1
	4.4.1	LINN OF MUMARICAL SUITING NAU	141

4

	4.4.2 Effect of Reaction Temperature	142
	4.4.3 Effect of Reaction Period	142
	4.4.4 Effect of Catalyst and Its Concentrations	146
4.5	Effect of Various Reaction Parameters on the Iodine Value	148
	4.5.1 Effect of Mechanical Stirring Rate	148
	4.5.2 Effect of Reaction Temperature	149
	4.5.3 Effect of Catalyst and Its Concentrations	151
4.6	Effect of Various Reaction Parameters on the Yield of Synthesis	153
	4.6.1 Effect of Mechanical Stirring Rate	153
	4.6.2 Effect of Reaction Temperature	154
	4.6.3 Effect of Catalyst and Its Concentrations	155
4.7	Effect of Various Reaction Parameters on the Viscosity	156
	4.7.1 Effect of Mechanical Stirring Rate	156
	4.7.2 Effect of Reaction Temperature	157
	4.7.3 Effect of Catalyst and Its Concentrations	158
4.8	Fourier Transform Infrared (FT-IR) Spectroscopy	161
4.9	H-NMR & ¹³ C-NMR Spectra Analysis	169
	4.9.1 ¹ H-NMR for Acrylated Polyol Ester Prepolymer	169
	4.9.2 H-NMR PoEG	174
	4.9.3 ¹³ C-NMR for Acrylated Polyol Ester Prepolymer	176
•	4.9.4 ¹³ C-NMR PoEG	178
4.10	Molecular Weight Determination	179
4.11	Glass Transition Temperature (Tg) and Crystalline Melting	184
	Temperature (T_m)	
4.12	Moisture Analysis	194
В	EVALUATION	
4.13	Characterization of UV Cured Formulation	195
4.14	Fourier Transform Infrared (FT-IR) Spectroscopy	195
4.15	Pendulum Hardness	199
4.16	Scratch Measurement	208
4.17	Cross-Hatch Adhesion	211
4.18	Haziness of Film	214
5 CONG	CLUSIONS	218
BIBLIO	RAPHY	221
APPEND	DICES	237
BIODAT	A OF THE AUTHOR	244

xiv

LIST OF TABLES

Table		Page
2.1	World production of 17 oils & fats: 1994-2003 ('000 tonnes)	13
2.2	World major producers of palm oil: 1994-2003 ('000 tonnes)	14
2.3	World major exporters of palm oil: 1994-2003 ('000 tonnes)	15
2.4	Fatty acids and their compositions in triglycerides of palm oil	18
2.5	Composition of normal RBD palm olein	19
2.6	Carotenoid composition of Malaysian crude palm oil	22
2.7	Tocopherols and tocotrienols in crude palm oil	23
.2.8	Cholesterol levels in crude oils and fats	24
2.9	Sterol composition of crude and refined palm oil and their products (ppm)	25
2.10	Physical and chemical properties of palm oil and its products	25
2.11	Applications of palm oil and its products as food and non-food purposes	26
2.12	Examples of non-polyester / non-polyether polyol	27
2.13	Example of polyester polyol	28
2.14	Examples of polyether polyol	29
2.15	Composition and properties of vegetable oil	36
2.16	Examples of polybasic acid	39
2.17	Examples of polyhydric alcohol	40
2.18	Examples of other resins	41
2.19	Examples of vinyl and acrylic resins	43
2.20	Physical properties of acrylic acid	44
2.21	Physical properties of methacrylic acid	45
2.22	Energy consumption and mechanism involved	50

.

2.23	Various product of radiation curable resin under UV curing process	58
2.24	Various applications of radiation curable resins under UV curing process	59
2.25	Commercially available monofunctional monomers	62
2.26	Commercially available multifunctional monomers	62
2.27	Some of the common photoinitiators (Type I) and their structure	68
2.28	Some of the common photoinitiators (Type II) and their structure	69
2.29	Some of the common inhibitors	70
3.1	Characteristics of PoEG	81
3.2	Reagent used in the study	82
3.3	Chemical used in the study	83
3.4	Solvent used in the study	84
3.5	UV curing reagent used in the study	84
3.6	Instrumentation used in the study	85
3.7	Catalyst, inhibitor and solvent used	89
3.8	Sample codes with their heating temperatures and stirring rates	90
3.9	The chemicals and their molecular structure that are used in UV curing formulation	109
3.10	Physical characteristics and molecular structure of 1,6-hexane diol diacrylate (HDDA)	110
3.11	Physical characteristics and molecular structure of trimethylol propane triacrylate (TMPTA)	111
3.12	Physical characteristics and molecular structure of Ciba® Irgacure® 184 photoinitiator	112
3.13	Formulation codes and their ratio of acrylated polyol ester prepolymer (oligomer), monomer and photoinitiator	113
3.14	The conveyor speed (m/min) and its corresponding energy (J/cm^2) given out by the UV lamp type: 200 watt/cm	115

xvi

3.15	Base coat formulation codes and their ratios of acrylated polyol ester prepolymer (oligomer), monomer and photoinitiator	119
3.16	Top coat formulation codes and their ratios of acrylated polyol ester prepolymer (oligomer), monomer and photoinitiator	120
4.1	Characteristics FT-IR peaks of acrylic acid	161
4.2	Characteristics FT-IR peaks of PoEG	163
4.3	Characteristics FT-IR peaks of acrylated polyol ester prepolymer	165
4.4	Substituent constants (Z) for chemical shifts of substituted ethylene	170
4.5	Calculation of chemical shift in of alkene protons in substituted ethylene	170
4.6	¹ H-NMR of purified acrylated polyol ester prepolymer	173
4.7	¹ H-NMR of PoEG	175
4.8	¹³ C-NMR of purified acrylated polyol ester prepolymer	177
4.9	¹³ C-NMR of PoEG	179
4.10	Weight average molecular weight, M_w , number average molecular weight, M_n and polydispersity (M_w/M_n) of PoEG and acrylated polyol ester prepolymer samples	183
4.11	UV curable formulation and constituent of the film samples	196

•

LIST OF FIGURES

Figure		Page
1.1	Conversion sequence of palm oil to palm-based polyol	4
1.2	General reaction scheme of synthesis of acrylated polyol ester prepolymer	7
1.3	Reaction scheme of synthesis of acrylated polyol ester prepolymer	8
2.1	Processing of palm oil and palm kernel oil (Salmiah, 1995)	16
2.2	Hydrolysis of a fat or oil produces a mixture of fatty acids	18
2.3	Example of polyester polyol	28
2.4	Examples of polyether polyol	29
2.5	Reaction between fatty acid and trimethylol propane to produce polyol	30
2.6	Reaction scheme for the production of epoxidised palm olein acrylate (EPOLA)	31
2.7	Reaction scheme for the production of epoxidised palm olein methacrylate (EPOMA)	31
2.8	Reaction scheme for the production of palm oil-based urethane acrylate (POBUA)	32
2.9	Esterification in alkyd resin preparation	38
·2.10	Representation of alkyd resin molecule	38
2.11	Reaction scheme of acrylic acid production from ethylene oxide and hydrogen cyanide	44
2.12	Reaction scheme of methacrylic acid production from isobutene	45
2.13	Examples of esters of methacrylic and acrylic acid	45
2.14	Examples of acrylic amides and nitriles	46
2.15	Acrylic ester and methacrylic ester	47
2.16	2-Hydroxy ethyl acrylate and 2-hydroxy ethyl methacrylate	48
2:17	Acrylic acid and methacrylic acid	48

2.18	Glycidyl acrylate and glycidyl methacrylate	48
2.19	Acrylamine and methacrylamide	49
2.20	Photoinitiator / stabilizer cycle	72
2.21	Electromagnetic spectrum of ultraviolet (UV) light	74
2.22	Excited and free radical form of photoinitiator in photopolymerization reaction	75
2.23	Main steps in mechanism of photoinitiated polymerization	76
2.24	Mechanism of photoinitiated polymerization	78
2.25	Free radicals formation from photoinitiator	80
3.1	Synthesis of acrylated polyol ester prepolymer	87
3.2	Mechanism of inhibition of polymerization by 4-methoxyphenol	92
3.3	Mechanism of inhibition of polymerization by hydroquinone	93
3.4	Oxirane oxygen	101
3.5	Schematic diagram of coating process and UV curing technique	116
3.6	Finishing line for UV curing of high gloss wood coating	121
4.1	Mechanism of acrylated polyol ester prepolymer synthesis with primary alcohol group	129
4.2	Mechanism of acrylated polyol ester prepolymer synthesis with primary and secondary alcohol groups	130
4.3	Effect of reaction period on the acid value. Other reaction conditions: temperature (70.0°C), catalyst concentration (5.0%) and stirring rate (100 or 400 rpm)	134
4.4	Effect of reaction period on the acid value. Other reaction conditions: temperature (80.0° C), catalyst concentration (5.0°) and stirring rate ($100 \text{ or } 400 \text{ rpm}$)	134
4.5	Effect of reaction period on the acid value. Other reaction conditions: temperature (90.0°C), catalyst concentration (5.0%) and stirring rate (100 or 400 rpm)	135
4.6	Effect of reaction period on the acid value. Other reaction conditions: temperature (100.0°C), catalyst concentration (5.0%) and stirring rate (100 or 400 rpm)	135

xix

4.7	Effect of reaction period on the acid value. Other reaction conditions: temperature (70.0, 80.0, 90.0 or 100.0°C), catalyst concentration (5.0%) and stirring rate (100 rpm)	136
4.8	Effect of reaction period on the acid value. Other reaction conditions: temperature (70.0, 80.0, 90.0 or 100.0°C), catalyst concentration (5.0%) and stirring rate (400 rpm)	136
4.9	Effect of reaction period on the acid value. Other reaction conditions: temperature (80.0°C), catalyst concentration (0.0%) and stirring rate (400 rpm)	138
4.10	Effect of reaction period on the acid value. Other reaction conditions: temperature (80.0°C), catalyst concentration (1.0%) and stirring rate (400 rpm)	138
4.11	Effect of reaction period on the acid value. Other reaction conditions: temperature (80.0°C), catalyst concentration (2.0%) and stirring rate (400 rpm)	139
4.12	Effect of reaction period on the acid value. Other reaction conditions: temperature (80.0°C), catalyst concentration (3.0%) and stirring rate (400 rpm)	139
4.13	Effect of reaction period on the acid value. Other reaction conditions: temperature (80.0°C), catalyst concentration (4.0%) and stirring rate (400 rpm)	140
4.14	Effect of reaction period on the acid value. Other reaction conditions: temperature (80.0°C), catalyst concentration (5.0%) and stirring rate (400 rpm)	140
4.15	Effect of reaction period on the hydroxyl value. Other reaction conditions: temperature (70.0°C), catalyst concentration (5.0%) and stirring rate (100 or 400 rpm)	143
4.16	Effect of reaction period on the hydroxyl value. Other reaction conditions: temperature (80.0°C), catalyst concentration (5.0%) and stirring rate (100 or 400 rpm)	143
4.17	Effect of reaction period on the hydroxyl value. Other reaction conditions: temperature (90.0°C), catalyst concentration (5.0%) and stirring rate (100 or 400 rpm)	144
4.18	Effect of reaction period on the hydroxyl value. Other reaction conditions: temperature (100.0°C), catalyst concentration (5.0%) and stirring rate (100 or 400 rpm)	144

xx

 4.20 Effect of reaction period on the hydroxyl value. Other reaction conditions: temperature (70.0, 80.0, 90.0 or 100.0°C), catalyst concentration (5.0%) and stirring rate (400 rpm) 4.21 Effect of reaction period on the hydroxyl value. Other reaction conditions: temperature (80.0°C), catalyst concentration (0.0%) and stirring rate (400 rpm) 4.22 Effect of reaction period on the hydroxyl value. Other reaction conditions: temperature (80.0°C), catalyst concentration (1.0, 2.0, 3.0, 4.0 or 5.0%) and stirring rate (400 rpm) 4.23 Iodine value for unpurified and purified prepolymers prepared at different heating temperatures. Other reaction conditions: catalyst 	145 147 147
 4.21 Effect of reaction period on the hydroxyl value. Other reaction conditions: temperature (80.0°C), catalyst concentration (0.0%) and stirring rate (400 rpm) 4.22 Effect of reaction period on the hydroxyl value. Other reaction conditions: temperature (80.0°C), catalyst concentration (1.0, 2.0, 3.0, 4.0 or 5.0%) and stirring rate (400 rpm) 4.23 Iodine value for unpurified and purified prepolymers prepared at different heating temperatures. Other reaction conditions: catalyst 	147 147
 4.22 Effect of reaction period on the hydroxyl value. Other reaction conditions: temperature (80.0°C), catalyst concentration (1.0, 2.0, 3.0, 4.0 or 5.0%) and stirring rate (400 rpm) 4.23 Iodine value for unpurified and purified prepolymers prepared at different heating temperatures. Other reaction conditions: catalyst 	147
4.23 Iodine value for unpurified and purified prepolymers prepared at different heating temperatures. Other reaction conditions: catalyst	
concentration (5.0%), stirring rate (100 rpm) and reaction period (15 hours)	150
4.24 Iodine value for unpurified and purified prepolymers prepared at different heating temperatures. Other reaction conditions: catalyst concentration (5.0%), stirring rate (400 rpm) and reaction period (15 hours)	150
4.25 Iodine value for unpurified and purified prepolymers prepared with no catalyst. Other reaction conditions: temperature (80.0°C), stirring rate (400 rpm) and reaction period (25 hours)	152
4.26 Iodine value for unpurified and purified prepolymers prepared with different amount of catalyst. Other reaction conditions: temperature (80.0°C), stirring rate (400 rpm) and reaction period (15 hours)	152
4.27 Effect of different heating temperatures used in prepolymer preparation on the total yield. Other reaction conditions: catalyst concentration (5.0%), stirring rate (100 rpm) and reaction period (15 hours)	154
4.28 Effect of different heating temperatures used in prepolymer preparation on the total yield. Other reaction conditions: catalyst concentration (5.0%), stirring rate (400 rpm) and reaction period (15 hours)	155
4.29 Effect of different amount of catalyst used in prepolymer preparation on the total yield. Other reaction conditions: temperature (80.0°C), stirring rate (400 rpm) and reaction period (15 hours)	156

xxi

4.30	Effect of different heating temperatures used in prepolymer preparation on the viscosity of sample. Other reaction conditions: catalyst concentration (5.0%), stirring rate (100 or 400 rpm) and reaction period (15 hours)	157
4.31	Effect of different amount of catalyst used in prepolymer preparation on the viscosity. Other reaction conditions: temperature (80°C), stirring rate (400 rpm) and reaction period (15 hours)	159
4.32	Effect of different shear rate on the viscosity of PoEG and prepolymer samples. Other reaction conditions: temperature (80°C), stirring rate (400 rpm) and reaction period (15 hours)	160
4.33	FT-IR spectrum of acrylic acid	162
4.34	FT-IR spectrum of PoEG	164
4.35	FT-IR spectrum of purified acrylated polyol ester prepolymer (sample: C3/80/400 rpm-purified)	166
4.36	FT-IR spectra of (a) 0 hour of synthesis, (b) 15 th hour (unpurified) and (c) 15 th hour (purified) acrylated polyol ester prepolymer (sample: C5/70/400 rpm)	168
4.37	Unsaturated systems of ethylene	169
4.38	Unsaturated systems with different alkene protons	170
4.39	¹ H-NMR of purified acrylated polyol ester prepolymer (sample: C5/80/400 rpm-purified)	172
4.40	¹ H-NMR of PoEG	174
4.41	¹³ C-NMR of purified acrylated polyol ester prepolymer (sample: C5/80/400 rpm-purified)	176
4.42	¹³ C-NMR of PoEG	178
4.43	GPC spectrum of PoEG	180
4.44	GPC spectrum of unpurified acrylated polyol ester prepolymer (sample: C5/80/400 rpm-unpurified)	181
4.45	GPC spectrum of purified acrylated polyol ester prepolymer (sample: C5/80/400 rpm-purified)	182
4.46	DSC thermogram of PoEG	186

4.47	DSC thermogram of purified acrylated polyol ester prepolymer (sample: C1/80/400 rpm-purified)	187
4.48	DSC thermogram of purified acrylated polyol ester prepolymer (sample: C2/80/400 rpm-purified)	188
4.49	DSC thermogram of purified acrylated polyol ester prepolymer (sample: C3/80/400 rpm-purified)	189
4.50	DSC thermogram of purified acrylated polyol ester prepolymer (sample: C4/80/400 rpm-purified)	190
4.51	DSC thermogram of purified acrylated polyol ester prepolymer (sample: C5/80/400 rpm-purified)	191
4.52	DSC thermogram of purified prepolymers synthesized at 80.0°C with different amount catalyst (1.0, 2.0, 3.0, 4.0 or 5.0% catalyst)	192
4.53	Effect of different amount of catalyst used in prepolymer preparation on the glass transition temperature (T_g) and crystalline melting temperature (T_m) . Other reaction conditions: temperature (80.0°C), stirring rate (400 rpm) and reaction period (15 hours)	193
4.54	Effect of different amount of catalyst used in prepolymer preparation on the moisture. Other reaction conditions: temperature (80.0°C), stirring rate (400 rpm) and reaction period (15 hours)	194
4.55	FT-IR spectrum of UV cured film after 14 passes of UV radiation (prepolymer: C3/80/400 rpm-purified, monomer: HDDA, 1 pass = 0.600 J/cm ²)	197
4.56	FT-IR spectrum of UV cured film after 10 passes of UV radiation (prepolymer: C2/80/400 rpm-purified, monomer: TMPTA, 1 pass = 0.600 J/cm^2)	198
4.57	Effect of number of passes under UV radiation on pendulum hardness of UV cured film. Formulation: HDDA monomer with purified or unpurified prepolymers synthesized using 1.0% catalyst	200
4.58	Effect of number of passes under UV radiation on pendulum hardness of UV cured film. Formulation: HDDA monomer with purified or unpurified prepolymers synthesized using 2.0% catalyst	200
4.59	Effect of number of passes under UV radiation on pendulum hardness of UV cured film. Formulation: HDDA monomer with purified or unpurified prepolymers synthesized using 3.0% catalyst	201

xxiii

4.60	Effect of number of passes under UV radiation on pendulum hardness of UV cured film. Formulation: HDDA monomer with purified or unpurified prepolymers synthesized using 4.0% catalyst	201
4.61	Effect of number of passes under UV radiation on pendulum hardness of UV cured film. Formulation: HDDA monomer with purified or unpurified prepolymers synthesized using 5.0% catalyst	202
4.62	Effect of number of passes under UV radiation on pendulum hardness of UV cured film. Formulation: HDDA monomer with unpurified prepolymers synthesized using 1.0, 2.0, 3.0, 4.0 or 5.0% catalyst	203
4.63	Effect of number of passes under UV radiation on pendulum hardness of UV cured film. Formulation: HDDA monomer with purified prepolymers synthesized using 1.0, 2.0, 3.0, 4.0 or 5.0% catalyst	203
4.64	Effect of number of passes under UV radiation on pendulum hardness of UV cured film. Formulation: TMPTA monomer with purified prepolymers synthesized using 1.0, 2.0, 3.0, 4.0 or 5.0% catalyst	205
4.65	Effect of different ratio of purified prepolymer and HDDA on pendulum hardness of UV cured film. Formulation: prepolymer synthesized using 2.0% catalyst and number of passes under UV: 10 passes (1 pass = 0.600 J/cm^2)	207
4.66	Effect of different ratio of purified prepolymer and TMPTA on pendulum hardness of UV cured film. Formulation: prepolymer synthesized using 2.0% catalyst and number of passes under UV: 10 passes (1 pass = 0.600 J/cm^2)	208
4.67	Scratch measurement of UV cured film for purified prepolymer with HDDA or TMPTA. Formulation: prepolymer synthesized using 1.0, 2.0, 3.0, 4.0 or 5.0% catalyst and number of passes under UV: 10 passes (1 pass = 0.600 J/cm^2)	209
4.68	Effect of different ratio of purified prepolymer and HDDA on scratch measurement of UV cured film. Formulation: prepolymer synthesized using 2.0% catalyst and number of passes under UV: 10 passes (1 pass = 0.600 J/cm^2)	210
4.69	Effect of different ratio of purified prepolymer and TMPTA on scratch measurement of UV cured film. Formulation: prepolymer synthesized using 2.0% catalyst and number of passes under UV: 10 passes (1 pass = 0.600 J/cm^2)	210

xxiv

