UNIVERSITI PUTRA MALAYSIA

ESTABLISHMENT OF INFECTION BY PASTEURELLA MULTOCIDA B:2 IN CALVES

CHAU THI HUYEN TRANG

FPV 2009 14
ESTABLISHMENT OF INFECTION BY PASTEURELLA MULTOCIDA B:2 IN CALVES

CHAU THI HUYEN TRANG

MASTER OF VETERINARY SCIENCE
UNIVERSITI PUTRA MALAYSIA

2009
ESTABLISHMENT OF INFECTION BY \textit{PASTEURELLA MULTOCIDA} B:2 IN CALVES

By

CHAU THI HUYEN TRANG

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Veterinary Science

May 2009
DEDICATED TO

My Father and Mother,

CHAU VAN DONG
DUONG THI NO

My Brothers and Sisters,

My beloved husband,

TRAN CHI KY
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Veterinary Science

ESTABLISHMENT OF INFECTION BY *PASTEURELLA MULTOCIDA* B:2 IN CALVES

By

CHAU THI HUYEN TRANG

May 2009

Chairman : Professor Mohd Zamri Saad, DVM, PhD
Faculty : Veterinary Medicine

Infection by *Pasteurella multocida* B:2 leading to haemorrhagic septicaemia in cattle and buffaloes has been reported in many countries and is considered to be one of the most economically important livestock diseases in Southeast Asia, including Malaysia.

This study was conducted to investigate the role of intranasal vaccination on colonization of wild-type *P. multocida* B:2 and *gdhA* derivative of *P. multocida* B:2 onto the nasal mucosa and lungs of calves. Three healthy local calves, about 6 months of age, were used. The first and second calves were exposed intranasal twice at two-week interval with 3.2×10^7 CFU/mL of live wild-type *P. multocida* B:2 and 7.0×10^7 CFU/mL of live *gdhA* derivative of *P. multocida* B:2, respectively. The third calf was untreated. Two weeks after the second
exposure, all calves were killed and *in vitro* explants of the lung and nasal mucosa were immediately prepared before they were challenged with 0.5 mL of the inoculum containing 10^9 CFU/mL of live wild-type *P. multocida* B:2 and incubated at 37°C. At 2, 6, and 12 hours post-challenge, three explants from each calf were removed and processed for scanning electron microscopic (SEM) examination to determine the rate of colonization.

In vitro colonization of wild-type *P. multocida* B:2 onto the lung explants of calves exposed to either the wild-type or *gdhA* derivative of *P. multocida* B:2 was significantly ($p<0.01$) less severe than the untreated calf when mild to moderate colonization were observed. However, colonization onto the nasal mucosa showed no significant difference ($p>0.05$) between the three calves throughout the entire 12-hour study period.

Following intratracheal introduction to high dose of wild-type (3.3×10^{10} CFU/mL) and *gdhA* derivative of *P. multocida* B:2 (5.4×10^9 CFU/mL) into calves, the phagocytic efficiency of alveolar macrophages were determined at 48 h post-inoculation. Wild-type *P. multocida* B:2 resulted in clinical signs typical of haemorrhagic septicaemia, which include dullness, fever, mucous nasal discharge and salivation. Subcutaneous oedema was obvious at the lower jaw, neck and brisket areas. Post-mortem examination was concentrated primarily on the respiratory tract. The lungs, trachea and epiglottis were congested and oedematous while the associated lymph nodes were congested with petechial
haemorrhages. These changes were not observed in calves inoculated with gdhA derivative of *P. multocida* B:2. There was significant (*p*<0.05) difference in the phagocytic efficiency of alveolar macrophages and neutrophils between calves inoculated with wild-type (45.1 ± 4.1%) and those inoculated with gdhA derivative (57.3 ± 3.4%) of *P. multocida* B:2.

In conclusion, the intranasal exposures to either wild-type or the gdhA derivative of *P. multocida* B:2 was significantly reduced colonization of the respiratory tract by wild-type *P. multocida* B:2. Similarly, intra-tracheal exposures of calves to the gdhA derivative of *P. multocida* B:2 failed to establish the disease due to the more efficient phagocytosis by the neutrophils and macrophages compared to the wild-type *P. multocida* B:2. Therefore, the gdhA derivative of *P. multocida* B:2 was found to be easily eliminated by phagocytosis and was unable to survive for long period of time in the host.
Jangkitan oleh Pasteurella multocida B:2, yang boleh menyebabkan penyakit hawar berdarah pada lembu dan kerbau, telah dilaporkan berlaku dalam banyak negara. Penyakit ini dianggap sebagai salah satu penyakit ternakan yang berkepentingan ekonomi di Asia Tenggara, termasuk Malaysia.

Kajian ini dibuat untuk menyiasat peranan memberi vaksin secara intra-nasum ke atas pengkolonian P. multocida B:2 liar pada mukosa hidung dan paru-paru anak lembu. Tiga ekor anak lembu sihat, berumur kira-kira 6 bulan telah digunakan. Anak lembu pertama didedahkan kepada 3.2 × 10\(^7\) CFU/mL P. multocida B:2 liar secara intra-nasum sebanyak dua kali, sementara anak lembu kedua didedahkan kepada 7.0 × 10\(^7\) CFU/mL P. multocida B:2 terbitan gdhA hidup. Anak lembu ketiga tidak didedahkan. Dua minggu selepas dedahan
kedua, semua anak lembu dibunuh dan eksplan in vitro daripada tisu paru-paru dan mukosa nasum dibuat serta-merta sebelum eksplan dicabar menggunakan inokulum 0.5 mL yang mengandungi 10^9 CFU/mL P. multocida B:2 liar dan dieramkan pada suhu 37°C. Pada jam ke 2, 6 dan 12 selepas dicabar, sejumlah tiga eksplan dari setiap anak lembu dialih dan diproses untuk kajian mikroskop electron imbasan (SEM) bagi menentukan kadar pengkolonian.

Pengkolonian in vitro oleh P. multocida B:2 liar ke atas eksplan paru-paru yang didedah sama ada kepada P. multocida B:2 liar atau P. multocida B:2 terbitan gdhA menunjukkan pengurangan bermakna ($p<0.01$) berbanding anak lembu tidak didedah. Akan tetapi, kadar pengkolonian ke atas mukosa nasum tidak menunjukkan perbezaan bermakna ($p>0.05$) di kalangan ketiga-tiga anak lembu terbabit.

Selaras dengan pemberian intra-trakea dos tinggi P. multocida B:2 liar dan terbitan gdhA kepada anak lembu, kecekapan fagositosis oleh makrofaj alveolus dikaji selepas 48 jam. P. multocida B:2 liar menghasilkan petanda klinikal mirip penyakit hawar berdarah. Ini termasuklah kemurungan, demam, lelehan hidung dan pengliuran. Edema subkutis jelas kelihatan pada bahagian rahang bawah, leher dan brisket. Pemeriksaan bedah-siasat yang ditumpukan kepada trakus pernafasan menunjukkan kesesakan dan edema pada paru-paru, trakea dan epiglotis sementara nodus limfa berkaitan turut sesak dan pendarahan petekia. Perubahan ini tidak pula dilihat berlaku ke atas anak lembu yang diberikan P. multocida B:2 terbitan gdhA. Terdapat perbezaan bermakna ($p<0.05$) pada
kadar kecekapan fagositosis oleh makrofaj alveolus dan neutrofil di antara anak lembu yang diberi organisma liar (45.1 ± 4.1%) dengan yang diberi organisma terbitan gdhA (57.3 ± 3.4%).

ACKNOWLEDGEMENTS

Most importantly and as always, I would like to express my sincere gratitude and deep appreciation to my supervisor, Professor Dr. Mohd Zamri Saad for his dedicated supervision, advice, encouragement and support during my study in Universiti Putra Malaysia.

My appreciation and gratitude are also extended to my co-supervisors, Associate Professor Dr. Noordin M. Mustapha and Associate Professor Dr. Jasni Sabri for their continuous guidance and suggestions throughout the course of my study. In addition, I would like to express my special thanks to Dr. Md. Sabri Mohd Yusoff for his advice, contributions and encouragements in the completion of this project.

I also want to express my deep thanks and gratitude to:

- All the staff of Histopathology laboratory, Virology Lab, Bacteriology Lab, Electron Microscopy Unit, Institute of Bioscience especially to Mrs. Latifah, Dr. Shafarin, Mrs. Ernie, Ms. Sarah, Ms. Ina, Ms. Nur, Dr. Didik for their help, sharing of knowledge, understanding, encouragement and support.
- Mr. Kamaruddin, Mr. Arif, Mr. Noraziman and Mr. Kamal for their valuable technical assistances and invaluable time spent.
• Many thanks to my friends, Mr. L. V. Thuc, Mr. H. Ky, , Mr. Ng. A. Nghia, Dr Ng. T. Thanh, Ms. Atyah, Mr. Firdaus, Mrs. Jamilah, Dr. Khin, Dr. Sriyanto and Mrs. Aan for their support and encouragements.

I am deeply grateful to Prof Dr. Mohd Zamri Saad for the financial sponsor which helps me to pursue my study in Universiti Putra Malaysia. In addition, I wish to express my sincere thank to Dr. N. H. Hung, Dr. T. T. Phan, Associate Dr. L. H. Manh, Mr. P. H. Dung, Dr. L. N. Thach and Dr. N. P. Dang, Department of Veterinary Medicine, Can Tho University, Vietnam for their continuous guidance, support and encouragements. My greatly appreciation goes to Can Tho University for the approval and support during my study in UPM

Lastly, I would like to give my special thanks to my greatest family, my adored parents, all my sisters and brothers for their infinity loves, support and spiritual encouragements. Especially to my beloved husband for his great sacrifice, patient love, understanding that enabled me to complete this work.

Thank you.
I certify that an Examination Committee has met on 20th May 2009 to conduct the final examination of Chau Thi Huyen Trang on her Master of Veterinary Science thesis entitled "Establishment of infection by Pasteurella multocida B:2 in calves" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of Examination Committee are as follows:

Abdul Rani Bahaman, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Mohd Hair Bejo, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Md Sabri Mohd Yusoff, PhD
Senior Lecturer
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Srihadi Agungpriyono, PhD
Associate Professor
Faculty of Veterinary Medicine
Institut Pertanian Bogor
(External Examiner)

BUJANG KIM HUAT, PhD
Professor Deputy Dean
School of Graduate Studied
Universiti Putra Malaysia

Date:....................
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Veterinary Science. The members of the Supervisory Committee are as follows:

Mohd Zamri Saad, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Noordin Mohammed Mustapha, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Jasni Sabri, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any degree at UPM or other institutions.

CHAU THI HUYEN TRANG

Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATION</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER

1 **INTRODUCTION** 1

2 **LITERATURE REVIEW** 4

 2.1 *Pasteurella multocida* 4
 2.1.1 Morphology 5
 2.1.2 Bacteria isolation and identification 6
 2.1.3 Virulent factors 6

 2.2 Haemorrhagic septicaemia 9
 2.2.1 Source of infection 11
 2.2.2 Routes of infection 12
 2.2.3 Clinical signs 12
 2.2.4 Pathogenesis 14
 2.2.5 Pathology 16
 2.2.6 Host response 17

 2.3 Live *gdhA* derivative of *P. multocida* B:2 18

 2.4 Phagocytosis 19

 2.5 Bacterial colonization in the respiratory tract 24

 2.6 Bacterial clearance rate in the lungs 26

3 **IN VITRO COLONIZATION OF WILD-TYPE *PASTEURELLA MULTOCIDA* B:2 IN CALVES FOLLOWING INTRANASAL EXPOSURE TO A LIVE *gdhA* DERIVATIVE *PASTEURELLA MULTOCIDA* B:2** 28

 3.1 Introduction 28

 3.2 Materials and methods 29
4 PHAGOCYTIC EFFICIENCY OF THE NEUTROPHILS AND ALVEOLAR MACROPHAGE OF CALVES AGAINST
PASTEURELLA MULTOCID A B:2
4.1 Introduction 53
4.2 Material and methods 54
 4.2.1 Experimental animals 54
 4.2.2 Bacterial strains 54
 4.2.3 Inoculums preparation 55
 4.2.4 Experimental procedure 56
 4.2.5 Sample processing 58
 4.2.6 Samples collection and preparation 58
 4.2.7 Statistical analysis 60
4.3 Results 60
 4.3.1 Clinical observations 60
 4.3.2 Pathological changes 62
 4.3.3 Bacteria detection 64
 4.3.4 Phagocytic efficiency 70
4.4 Discussion 74

5 GENERAL DISCUSSION 77

REFERENCES 86
APPENDICES 96
BIODATA OF STUDENT 104
LIST OF PUBLICATIONS 105
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.</td>
<td>Average colonization score for wild-type P. multocida B:2 onto the lung explants of calves following intranasal exposures to live wild type or gdhA derivative of P. multocida B:2 at different times post-inoculation</td>
<td>42</td>
</tr>
<tr>
<td>3.2</td>
<td>Average colonization score for wild-type P. multocida B:2 onto the nasal mucosal explants of calves following intranasal exposures to live wild type or gdhA derivative of P. multocida B:2 at different times post-inoculation</td>
<td>47</td>
</tr>
<tr>
<td>4.1</td>
<td>Scoring system for the lesions in respiratory tract</td>
<td>57</td>
</tr>
<tr>
<td>4.2</td>
<td>Summary of the phagocytic efficiency</td>
<td>71</td>
</tr>
</tbody>
</table>
LIST OF PLATES

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.</td>
<td>Steps of a macrophage ingesting a pathogen</td>
<td>23</td>
</tr>
<tr>
<td>3.1.</td>
<td>Bronchus associated lymphoid tissue (BALT) surrounding a bronchus in the lung of calf 2 following intra-nasal exposure to live gdhA derivative of P. multocida B:2. H & E, ×100</td>
<td>38</td>
</tr>
<tr>
<td>3.2.</td>
<td>Lung section of calf 1 that was exposed to live wild-type P. multocida B:2 showing thickened inter-alveolar septa. There was a BALT surrounding one of the bronchioles. H & E, ×100</td>
<td>39</td>
</tr>
<tr>
<td>3.3.</td>
<td>Lung section of the control calf showing no abnormality. H & E, ×1,000</td>
<td>40</td>
</tr>
<tr>
<td>3.4.</td>
<td>Scanning electron micrographs of the lung explants of calf 2 that was challenged with wild-type P. multocida B:2 12-hr post-challenge showing few bacteria attached to the lung surface. Bar = 10 μm</td>
<td>43</td>
</tr>
<tr>
<td>3.5.</td>
<td>Scanning electron micrographs of the lung explants of calf 1 that was challenged with wild-type P. multocida B:2 12-hr post-challenge showing moderate attachment of bacteria. Bar = 10 μm</td>
<td>44</td>
</tr>
<tr>
<td>3.6.</td>
<td>Scanning electron micrographs of the lung explants of calf 3 that was challenged with wild-type P. multocida B:2 at 12-hr post-challenge showing numerous bacterial attachment. Bar = 10 μm</td>
<td>45</td>
</tr>
<tr>
<td>3.7.</td>
<td>Scanning electron micrograph of a nasal mucosa explants that was challenged with wild-type P. multocida B:2 at 2-hr post-challenge showing few and mild bacteria colonization onto lung surface. Bar = 10 μm</td>
<td>48</td>
</tr>
<tr>
<td>3.8.</td>
<td>Scanning electron micrograph of a lung explants that was challenged with wild-type P. multocida B:2 at 12-hr post-challenge showing numerous and severe bacteria colonization onto the lung surface and mucus. Bar = 10 μm</td>
<td>49</td>
</tr>
<tr>
<td>4.1.</td>
<td>A calf exposed intra-tracheal to the wild-type P. multocida B:2 showing lacrimation, hyper-salivation and respiratory distress</td>
<td>61</td>
</tr>
</tbody>
</table>
4.2. A calf clinically affected with wild-type *P. multocida* B:2 following intra-tracheal infection. Note the mucous nasal discharge and swollen at around neck and brisket areas.

4.3. Lung section of a calf of Group 1 at 48 hours post-infection showing congested alveolar capillaries and numerous neutrophilic leukocyte infiltrations. H & E, ×400.

4.4. Lung section of a calf of Group 1 at 48 hours post-infection. Note the presence of neutrophils and oedematous infiltrations in the bronchiole. H & E, ×400.

4.5. Lung section of a calf at 48 hours post-infection showing congested alveolar capillaries and numerous neutrophilic leukocyte infiltrations. Bacteria were readily observed in the alveolar space surrounded by neutrophils. H & E, ×1,000.

4.6. Detection of *P. multocida* B:2 from samples of calves exposed to wild-type *P. multocida* B:2.

4.7. Detection of *P. multocida* B:2 from samples of calves exposed to live *gdhA* derivative of *P. multocida* B:2.

4.8. Lung washing fluid of a calf at 48 hours post-infection by *P. multocida* B:2 showing phagocytosed bacteria within the cytoplasm of neutrophils (arrow). Giemsa, ×1,000.

4.9. Lung washing fluid of a calf at 48 hours post-infection by *P. multocida* B:2 showing a neutrophil is in process of engulfing a bacterium (arrow). Note the vacuolations within the phagocytic cells. Giemsa, ×1,000.
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>One-way analysis of variance</td>
</tr>
<tr>
<td>BALT</td>
<td>Bronchus-associated lymphoid tissue</td>
</tr>
<tr>
<td>BHI</td>
<td>Brain heart infusion broth</td>
</tr>
<tr>
<td>bp</td>
<td>Base pair</td>
</tr>
<tr>
<td>cm²</td>
<td>Centimeter square</td>
</tr>
<tr>
<td>CFU/mL</td>
<td>Colony forming unit</td>
</tr>
<tr>
<td>EMEM</td>
<td>Eagle’s minimum essential medium</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylene diaminetetra acetic</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>Deoxyribonucleotide triphosphate</td>
</tr>
<tr>
<td>gdhA</td>
<td>Glutamate dehydrogenase</td>
</tr>
<tr>
<td>IgG</td>
<td>Immunoglobulin G</td>
</tr>
<tr>
<td>IgA</td>
<td>Immunoglobulin A</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>HS</td>
<td>Haemorrhagic septicaemia</td>
</tr>
<tr>
<td>H & E</td>
<td>Hematoxylin and eosin</td>
</tr>
<tr>
<td>Kbp</td>
<td>Kilobase pair</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>LSD</td>
<td>Least significant difference</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>Symbol</td>
<td>Term</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>pH</td>
<td>Puissance hydrogen (Hydrogen-ion concentration)</td>
</tr>
<tr>
<td>p.i</td>
<td>Post inoculation</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscopy</td>
</tr>
<tr>
<td>sd</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris-acetate-EDTA buffer</td>
</tr>
<tr>
<td>UPM</td>
<td>Universiti Putra Malaysia</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>%</td>
<td>Percent/percentage</td>
</tr>
<tr>
<td>µl</td>
<td>Microlitre</td>
</tr>
<tr>
<td>µg</td>
<td>Microgram</td>
</tr>
<tr>
<td>mL</td>
<td>Millilitre</td>
</tr>
<tr>
<td>°C</td>
<td>Degree centigrade</td>
</tr>
</tbody>
</table>