

UNIVERSITI PUTRA MALAYSIA

STATISTICAL INFERENCE ON THE MODIFIED GUMBEL DISTRIBUTION PARAMETERS

AHMED ALI OMAR HURAIRAH.

FS 2006 35

STATISTICAL INFERENCE ON THE MODIFIED GUMBEL DISTRIBUTION PARAMETERS

AHMED ALI OMAR HURAIRAH

DOCTOR OF PHILOSOPHY UNIVERSITI PUTRA MALAYSIA

2006

.

.

STATISTICAL INFERENCE ON THE MODIFIED GUMBEL DISTRIBUTION PARAMETERS

By

AHMED ALI OMAR HURAIRAH

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Doctor of Philosophy

August 2005

TO Salman Suha and Malak

Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of requirements for the degree of Doctor of Philosophy

STATISTICAL INFERENCE ON THE MODIFIED GUMBEL DISTRIBUTION PARAMETERS

By

AHMED ALI OMAR HURAIRAH

August 2005

Chairman: Associate Professor Noor Akma Ibrahim, PhD

Faculty : Science

The work in this thesis is concerned with the progress and development of the Gumbel distribution by the introduction of a new parameter namely, the shape parameter. Generalization of the Gumbel distribution is established. The work is also concerned with the investigation of the finite sample performance of asymptotic inference procedures using the likelihood function based on the modified distributions. The study includes investigating the adequacy of asymptotic inferential procedures in small samples. The maximum likelihood estimator of the parameters of modified distributions is not available in closed form. Thus a simulation study is conducted to investigate the bias, asymptotic variance (ASV), finite sample variance (FSV), and the mean square error (MSE) of the maximum likelihood estimator of the parameters of the modified distribution are intractable. Therefore three standard large sample statistics based on maximum likelihood estimator were considered, which are the likelihood ratio, the Wald, and the Rao statistics. Their performances in finite samples in terms of their sizes and powers are investigated and compared. Confidence intervals based

on the likelihood ratio, the Wald, and the Rao statistics were studied. The performances in terms of the attainment of the nominal error probability and symmetry of lower and upper probabilities were investigated and compared.

The main findings of the simulation studies of the inference procedures for the parameters of the modified Gumbel distribution indicate that the estimate of the shape parameter is nearly unbiased, while estimates of the location and scale parameters tend to be slightly biased for small sample size of the univariate distribution, while for bivariate models, estimate of the scale and shape parameters performance are satisfactory in terms of bias and variance in all the situations considered.

In the hypothesis testing of the modified distribution, the likelihood ratio statistic appears to perform better than the Wald and the Rao statistics. Interval estimates for the scale parameter based on Wald and Rao statistics are highly symmetric and tend to be slightly anticonservative, while intervals based on the likelihood ratio statistics are in general symmetric and attain the nominal error probability. For the shape parameter, all intervals tend to be symmetric in the lower and upper error probabilities.

Results of the simulations also indicate that the modified extreme value models can contribute meaningfully in solving several problems of the environmental data, particularly the air pollution data.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENTAKBIRAN STATISTIK BAGI PARAMETER BERTABURAN GUMBEL TERUBAHSUAI

Oleh

AHMED ALI OMAR HURAIRAH

Ogos 2005

Pengerusi: Profesor Madya Noor Akma Ibrahim, PhD

Fakulti: Sains

Kajian di dalam tesis ini adalah mengenai perkembangan dan lanjutan bagi taburan Gumbel. Ubahsuaian kepada taburan ini dilakukan dengan memperkenalkan suatu parameter baru iaitu parameter bentuk. Pengitlakan taburan dibina. Penyelidikan keatas perlakuan asimptotik sampel terhingga bertaburan n ilai ekstrem terubahsuai dengan menggunakan kaedah fungsi kebolehjadian diterokai. K ajian juga meliputi penyelidikan keatas kecukupan prosedur pentakbiran asimptotik bagi sampel kecil. Anggaran kebolehjadian maksimum bagi parameter taburan terubahsuai ini tidak boleh diperoleh secara tertutup. Yang demikian kajian simulasi dilaksanakan untuk mengkaji kepincangan, ralat piawai asimptotik, varians sampel terhingga d an ralat kuasa dua min keatas penganggar kebolehjadian maksimum ini. Prosedur yang tepat untuk menguji hipotesis bagi taburan terubahsuai ini adalah rumit dan sukar. Oleh itu tiga statistik piawai sampel besar berdasarkan penganggar kebolehjadian maksimum telah dipertimbangkan iaitu ujian nisbah kebolehjadian, ujian Wald dan statistik Rao. Kemampuan tiga ujian ini diselidiki dan dibanding berdasarkan kuasa dan saiz ujian.

dikaji seterusnya. Perlakuannya dari segi kemampuan mencapai ralat kebarangkalian nominal dan memperoleh kebarangkalian yang simetri di sebelah bawah dan atas diselidiki dan dibanding.

Penemuan utama daripada kajian simulasi keatas prosedur pentakbiran bagi parameter bertaburan ekstrem terubahsuai menunjukkan penganggar parameter bentuk adalah saksama manakala penganggar parameter lokasi dan skala sedikit pincang pada sampel saiz kecil yang bertaburan univariat. Bagi model bivariat prestasi penganggar skala dan bentuk adalah memuaskan terhadap kepincangan dan varians bagi semua keadaan.

Dalam menguji hipotesis taburan terubahsuai ini, perlakuan statistik kebolehjadian nisbah adalah lebih baik berbanding ujian Wald dan Rao. Anggaran selang bagi parameter skala berlandaskan statistik Wald dan Rao adalah simetri dan bersifat antikonservatif secara tidak keterlaluan manakala selang berlandaskan statistik nisbah kebolehjadian secara amnya adalah simetri dan mencapai ralat kebarangkalian yang nominal. Bagi parameter bentuk, kesemua selang menghampiri simetri disebelah bawah dan atas ralat kebarangkalian.

Keputusan daripada kajian simulasi juga menunjukkan model nilai ekstrem terubahsuai boleh menyumbang secara berkesan dalam menyelesaikan masalah yang melibatkan data persekitaran terutamanya data pencemaran udara.

ACKNOWLEDGEMENTS

First of all I would like to thank All Mighty Allah for everything. I am extremely grateful to my supervisor Assoc. Prof. Dr. Noor Akma Ibrahim for her excellent supervision, invaluable guidance, helpful discussions and continuous encouragement. My thanks also goes to the members of my supervisory committee, Assoc. Prof. Dr. Isa Bin Daud and Assoc. Prof. Dr. Kassim Bin Haron for their invaluable discussions, comments, and help.

Also I would like to extend my thanks to all members of Dept. of Mathematics, Faculty of Science, Universiti Putra Malaysia, for their kind assistance during my studies. This particularly goes to Assoc. Prof. Dr. Mohd. Rizam Abu Bakar, Head of Dept. of Mathematics, Assoc. Prof. Dr. Harun bin Budin, Assoc. Prof. Dr. Mat Yusoff Abdullah and Assoc. Prof. Dr. Malik Hj Abu Hassan for their help and continuous encouragement

I wish to express my thanks to all my friends, especially to Dr. Walid. A. Abu-Dayyeh, and my dear friends, Adel Mohammed Ahmed, Adel. A. Alraziqi, Dr. Ateq Salem, Dr. Galal Fakirah, Abd-Alrhman Thabet, Faiz Elfaki, Salisu Garba Mohd, Dr. Mohammed Alghul and Iing Lukman for their encouragement and support. My utmost gratitude to Abdul Kudus for helping me with the programming.

My special thanks and deep gratitude goes to my beloved wife, for her patience, sacrifice and moral support throughout this period of study. My special thanks also goes to my mother, father, brothers and sisters for all their support.

TABLE OF CONTENTS

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	v
ACKNOWLEDGEMENTS	vii
APPROVAL	ix
DECLARATION	х
LIST OF TABLES	XV
LIST OF FIGURES	xix

CHAPTER

1	INTRO	DDUCTION	
	1.1	Introduction	1
	1.2	Some Key Words and Definitions	4
		1.2.1 Statistical Inference	5
		1.2.2 The likelihood Function	6
		1.2.3 Asymptotic Theory	8
		1.2.4 Simulation in Statistics	9
		1.2.5 Air Pollution	11
	1.3	Objective of the Thesis	12
	1.4	Scope of the Thesis	13
2	LITE	RATURE REVIEW	
	2.1	Introduction	16
	2.2	A brief History	17
	2.3	The Role of Extreme Value Theory	17
	2.4	Inferences on the Parameters of the Extreme Value	
		Distributions	18
	2.5	Bivariate Extreme Value Models	24
	2.6	Applications of Extreme Value Models	25
3	UNIVA	RIATE EXTREME VALUE DISTRIBUTION	
	3.1	The Extreme Value Distributions	29
		3.1.1 Examples of Extreme Value Distributions	32
	3.2.	Modified Gumbel Distribution	34
		3.2.1 Two-Parameter Modified Gumbel	
		Distribution	35
		3.2.2 Three- parameter Modified Gumbel	
		Distribution	36
		3.2.3 Moments of the Modified Gumbel	
		Distribution	36
	3.3	Generalization of the Gumbel Distribution	39
		3.3.1 Properties of Generalized Gumbel	
		Distribution	40

	3.4	Characterization Theorems	43
4	MAXIMUN	A LIKELIHOOD ESTIMATION ON THE	
) GUMBEL DISTRIBUTION	
	4.1	Maximum Likelihood Estimation	47
	4.2	Computation of the Maximum Likelihood Estimator	50
		4.2.1 The Newton-Raphson Method	51
	4.3	Maximum Likelihood Estimation of the Modified	
		Gumbel Distribution	52
		4.3.1 Maximum Likelihood Estimation of the Two-	
		Parameter Modified Gumbel Distribution	56
	4.4	Maximum Likelihood Estimators for Finite Sample	58
		4.4.1 Asymptotic Standard Error	59
	4.5	The Simulation Study	60
		4.5.1 Results of the Simulation of the Three-	
		parameter Modified Distribution	65
		4.5.2 Results of the Simulation of the Two-	
		parameter Modified Distribution	68
	4.6	Comparison of the Modified Gumbel Distribution	
		with other Models	72
	4.7	Summary and Conclusions	80
5	TESTING	HYPOTHESES FOR MODIFIED GUMBEL	
	DISTRIBU	TION	
	5.1	Testing Hypotheses	82
	5.2	Hypothesis Testing for Large Sample	83
	5.3	Testing Hypothesis for the Modified Gumbel	
		Distribution	89
		5.3.1 Testing Hypothesis for the Scale Parameter	
		σ	89
		5.3.2 Testing Hypothesis for the Shape Parameter	
		eta	91
	5.4	Testing Hypothesis for S cale and Shape P arameters	
		in Finite Sample	92
		5.4.1 The Simulation Study	92
		5.4.2 Estimation of the Modified Distribution	
		Parameters	92
		5.4.3 Results of the Simulation	93
	5.5	Summary and Conclusion	102
6	APPROXIN	MATE CONFIDENCE INTERVAL FOR THE	
		O GUMBEL DISTRIBUTION	
	6.1	Confidence Intervals for Large Sample	105
	6.2	Likelihood ratio, Wald and Rao Intervals	106
	6.3	Confidence Intervals for the Parameters of the	
		Modified Distribution	110
		6.3.1 Confidence Interval Based on Likelihood	
		Ratio Statistic	110
		6.3.2 Confidence Interval Based on Wald Statistic	111
		6.3.3 Confidence Interval Based on Rao Statistic	112

6.4	Confidence Intervals for Finite Sample	113
	6.4.1 Simulation Study	114
	6.4.2 Estimation of the Modified Distribution	
	Parameters	114
	6.4.3 Results of the Simulation Study	117
	6.4.4 Intervals Based on the Likelihood Ratio,	
	Wald, and Rao Statistics	119
6.5	Summary and conclusion	128
	TIVARIATE EXTREME VALUE DISTRIBUTIONS	
7.1	Multivariate Extreme Value Distributions	130
7.2	Bivariate Extreme Value Distribution	130
	7.2.1 Properties of Bivariate Extreme Value	
	Distribution	131
	7.2.2 Some Bivariate Extreme Value Distribution	132
7.3	The Gumbel Logistic Model	134
7.4	The Gumbel mixed model	137
7.5	Modified Gumbel Logistic Using Three-Parameter	
	Marginal Model	141
	7.5.1 Estimation of the Modified Gumbel	
	Logistic Model	142
	7.5.2 Modified Gumbel Logistic Using Two-	
	Parameter Marginal Model	145
	7.5.3 Estimation of the Modified Gumbel Logistic	140
7(Using Two-Parameter Marginal Model	146
7.6	Modified Gumbel Mixed Model Using Three-	1 47
	Parameter Marginal Model	147
	7.6.1 Estimation of the Modified Gumbel Mixed	
	Model Using Three-Parameter Marginal Model	
		148
	7.6.2 Modified Gumbel Mixed Using Two- Parameter Marginal Model	150
	7.6.3 Estimation of the Modified Gumbel Mixed	
	Model Using Two-Parameter Marginal Model	
7.7	The Simulation Study	151
1.1	7.7.1 Results of the Simulation	152
7.8	Summary and Conclusions	164
	PPLICATION OF MODIFIED MODELS TO AIR UTION DATA	
8.1	Applications of Modified Models	166
8.2	Analysis of Air Pollution Data Using Modified	100
0.2	Univariate Model	166
	8.2.1 Simulation Study for the Three-Parameter	
	Modified Gumbel Model	167
	8.2.2 Results of the Simulation of the Three-	10/
	Parameter Modified Gumbel Model	168
8.3	Analysis of Air Pollution Data Using Two-	100
0.5	Parameter Modified Gumbel	180
		100

7

8

•

		8.3.1	Result	s of the Simulation	of the Tw	/0-	
			Param	eter Modified Gum	nbel		181
		8.3.2	Compa	rison of Distributi	ons Used	in Air	
				on Data			190
	8.4	Analys	sis of Ai	r Pollution Data Us	sing Modi	fied	
		-	ate Mod		U		193
		8.4.1	Simula	tion Study for Mod	lified Biva	riate	
			Models	-			194
		8.4.2	Results	of the Simula	ation of	Modified	
			Gumbe	l logistic Model			194
		8.4.3	Analys	is of Air Poll	ution Da	ata Using	
			Modifi	ed Gumbel Mixed	Model	-	204
		8.4.4	Results	of the Simulation	on of the	Modified	
			Gumbe	l Mixed Model			204
		8.4.5	Compa	rison of the Bivari	iate Mode	ls Used in	
			Air Pol	lution Data			210
	8.5	Probab	oilities o	of Air Pollutants	Using the	Modified	
		Gumbe	el Distri	bution	-		213
		8.5.1	Compa	rison the Probabil	ities of th	e Gumbel	
			and M	odified Gumbel M	Iodels		225
	8.6	Summ	ary and	Conclusions			228
9	CONCLUS	IONS	AND	SUGGESTION	FOR F	URTHER	
	RESEARCI	H					
	9.1	Conclu	isions				230
	9.2	Sugges	stions fo	r Further Research	l		235
REFERENCI	ES						237
APPENDICE							247
BIODATA O		HOR					251
LIST OF PUI							252

LIST OF TABLES

Table		Page
4.1	Statistical Properties of the MLE for the Three-Parameter Modified Gumbel Distribution	66
4.2	Statistical Properties of the MLE for the Two-Parameter Modified Gumbel Distribution	69
4.3	Statistical Properties of MLE of Modified Gumbel and other Models	73
5.1	Size of the Likelihood Ratio, Wald, and Rao Statistics for Testing $H_0: \sigma = 0$ Versus $H_1: \sigma \neq 0$, $\alpha = 0.01$	94
5.2	Size of the Likelihood Ratio, Wald, and Rao Statistics for Testing $H_0: \sigma = 0$ Versus $H_1: \sigma \neq 0$, $\alpha = 0.05$	94
5.3	Size of the Likelihood Ratio, Wald, and Rao Statistics for Testing $H_0: \sigma = 0$ Versus $H_1: \sigma \neq 0$, $\alpha = 0.1$	94
5.4	Size of the Likelihood Ratio, WalD, and Rao Statistics for Testing $H_0: \beta = 0$ Versus $H_1: \beta \neq 0$, $\alpha = 0.01$	95
5.5	Size of the likelihood Ratio, Wald, and Rao Statistics for Testing $H_0: \beta = 0$ Versus $H_1: \beta \neq 0$, $\alpha = 0.05$	95
5.6	Size of the Likelihood Ratio, Wald, and Rao Statistics for Testing $H_0: \beta = 0$ Versus $H_1: \beta \neq 0$, $\alpha = 0.01$	95
5.7	Power of the Likelihood Ratio, Wald, and Rao Statistics for Testing $H_0: \sigma = 0$ Versus $H_1: \sigma \neq 0$, $\alpha = 0.01$	98
5.8	Power of the Likelihood Ratio, Wald, and Rao Statistics for Testing $H_0: \sigma = 0$ Versus $H_1: \sigma \neq 0$, $\alpha = 0.05$	98
5.9	Power of the Likelihood Ratio, Wald, and Rao Statistics for Testing $H_0: \sigma = 0$ Versus $H_1: \sigma \neq 0$, $\alpha = 0.1$	98
5.10	Power of the Likelihood Ratio, Wald, and Rao Statistics for Testing $H_0: \beta = 0$ Versus $H_1: \beta \neq 0, \alpha = 0.01$	99
5.11	Power of the Likelihood Ratio, Wald, and Rao Statistics for Testing $H_0: \beta = 0$ Versus $H_1: \beta \neq 0$, $\alpha = 0.05$	99

5.12	Power of the Likelihood Ratio, Wald, and Rao Statistics for Testing $H_0: \beta = 0$ Versus $H_1: \beta \neq 0, \alpha = 0.1$	99
6.1	Lower, Upper, and Total Error Probabilities of Intervals Based on the Likelihood Ratio, Wald and Rao Statistics for the Scale Parameter when $\alpha = 0.01$	117
6.2	Lower, Upper, and Total Error Probabilities of Intervals Based on the Likelihood Ratio, Wald and Rao Statistics for the Scale Parameter when $\alpha = 0.05$	117
6.3	Lower, Upper, and Total Error Probabilities of Intervals Based on the Likelihood Ratio, Wald and Rao Statistics for the Scale Parameter when $\alpha = 0.1$	118
6.4	Lower, Upper, and Total Error Probabilities of Intervals Based on the Likelihood Ratio, Wald and Rao Statistics for the Shape Parameter when $\alpha = 0.01$	118
6.5	Lower, Upper, and Total Error Probabilities of Intervals Based on the Likelihood Ratio, Wald and Rao Statistics for the Shape Parameter when $\alpha = 0.05$	118
6.6	Lower, Upper, and Total Error Probabilities of Intervals Based on the Likelihood Ratio, Wald and Rao Statistics for the Shape Parameter when $\alpha = 0.1$	119
7.1	Summary Statistics of MLE for Modified Gumbel Logistic Model	155
7.2	Summary Statistics of MLE for Modified Gumbel Mixed Model	160
8.1	Summary Statistics of the Three-Parameter Modified Gumbel based on original and extreme PM_{10} data	168
8.2	Summary Statistics of the Three-Parameter Modified Gumbel based on original and extreme SO_2 data	169
8.3	Summary Statistics of the Three-Parameter Modified Gumbel based on original and extreme CO data	170
8.4	Summary Statistics of the Three-Parameter Modified Gumbel based on original and extreme NO_2 data	171
8.5	Summary Statistics of the Two-Parameter Modified Gumbel based on original and extreme PM_{10} data	181
8.6	Summary Statistics of the Two-Parameter Modified Gumbel based on original and extreme SO_2 data.	182

8.7	Summary Statistics of the Two-Parameter Modified Gumbel based on original and extreme CO data.	183
8.8	Summary Statistics of the Two-Parameter Modified Gumbel based on original and extreme NO_2 data.	184
8.9	Summary Statistics of CO Data in 1997-2000 of Two-Parameter Modified Gumbel Distribution and Other Models	191
8.10	Summary Statistics of PM_{10} and SO_2 of Modified Gumbel Logistic Model	195
8.11	Summary Statistics of PM_{10} and CO of Modified Gumbel Logistic Model	196
8.12	Summary Statistics of PM_{10} and NO_2 of Modified Gumbel Logistic Model	198
8.13	Summary Statistics of SO_2 and CO of Modified Gumbel Logistic Model	199
8.14	Summary Statistics of SO_2 and NO_2 of Modified Gumbel Logistic Model	201
8.15	Summary Statistics of CO and NO_2 of Modified Gumbel Logistic Model	202
8.16	Summary Statistics of PM_{10} and SO_2 of Modified Gumbel Mixed Model	205
8.17	Summary Statistics of PM_{10} and NO_2 of Modified Gumbel Mixed Model	206
8.18	Summary Statistics of SO_2 and CO of Modified Gumbel Mixed Model	207
8.19	Summary Statistics of SO_2 and NO_2 of Modified Gumbel Mixed Model	207
8.20	Summary Statistics of CO and NO_2 of Gumbel Logistic and Modified Gumbel Logistic Model	210
8.21	Summary Statistics of SO_2 and CO of Gumbel Mixed and Modified Gumbel Mixed Model	212
8.22	Probabilities of PM_{10} for the years 1997-2000	215
8.23	Probabilities of SO_2 for the years 1997-2000	219
8.24	Probabilities of CO for the years 1997-2000	221

8.25	Probabilities of NO_2 for the years 1997-2000	223
8.26	Probabilities of PM_{10} of the modified Gumbel and Gumbel distributions for the years 1997-2000	226

LIST OF FIGURES

Figure		Page
3.1	Densities for the Frechet, Weibull, and Gumbel functions	30
3.2	Probability density functions of the modified model in several values of the shape parameter β	35
4.1	Relation between the bias of the estimators and sample size	67
4.2	Relationship between the ASV of the estimators and sample size	67
4.3	Relationship between the MSE of the estimators and sample size	68
4.4	Relationship between the bias of estimators of modified Gumbel and the sample size	70
4.5	Relationship between the ASV of estimators of modified Gumbel and the sample size	71
4.6	Relationship between the MSE of estimators of modified Gumbel distribution and the sample size	71
4.7	Relationship between the bias of estimators of modified Gumbel and the sample size	74
4.8	Relationship between the bias of estimators of Gumbel and the sample size	74
4.9	Relationship between the bias of estimators of Weibull and the sample size	75
4.10	Relationship between the bias of the scale estimator for distributions and the sample size	75
4.11	Relationship between the bias of the shape estimator of Modified Gumbel and Weibull distributions and the sample size	75
4.12	Finite sample variance and asymptotic variance of the scale estimator of Modified Gumbel	76
4.13	Finite sample variance and asymptotic variance of the shape estimator of Modified Gumbel	76
4.14	Finite sample variance and asymptotic variance of the location estimator of Gumbel distribution	77

4.15	Finite sample variance and asymptotic variance of the scale estimator of Gumbel distribution	77
4.16	Finite sample variance and asymptotic variance of the scale estimator of Weibull distribuion	77
4.17	Finite sample variance and asymptotic variance of the shape estimator of Weibull distribution	78
4. 18	Relationship between the MSE of estimators of Modified Gumbel and the sample size	78
4.19	Relationship between the MSE of estimators of Gumbel and the sample size	79
4.20	Relationship between the MSE of estimators of Weibull and the sample size	79
4.21	Relationship between the MSE of the scale estimator of distributions and the sample size	79
4.22	Relationship between the MSE of the shape estimator of distributions and the sample size	80
5.1	Size of the likelihood ratio, Wald, and Rao statistics for testing scale parameter (σ) when $\alpha = 0.01$	96
5.2	Size of the likelihood ratio, Wald, and Rao statistics for testing scale parameter (σ) when $\alpha = 0.05$	96
5.3	Size of the likelihood ratio, Wald, and Rao statistics for testing scale parameter (σ) when $\alpha = 0.1$	96
5.4	Size of the likelihood ratio, Wald, and Rao statistics for testing shape parameter (β) when $\alpha = 0.01$	97
5.5	Size of the likelihood ratio, Wald, and Rao statistics for testing shape parameter (β) when $\alpha = 0.05$	97
5.6	Size of the likelihood ratio, Wald, and Rao statistics for testing shape parameter (β) when $\alpha = 0.1$	9 7
5.7	Power of the likelihood ratio, Wald, and Rao statistics for testing scale parameter (σ) when $\alpha = 0.01$	100
5.8	Power of the likelihood ratio, Wald, and Rao statistics for testing scale parameter (σ) when $\alpha = 0.05$	100

5.9	Power of the likelihood ratio, Wald, and Rao statistics for testing scale parameter (σ) when $\alpha = 0.1$	100
5.10	Power of the likelihood ratio, Wald, and Rao statistics for testing shape parameter (β) when $\alpha = 0.01$	101
5.11	Power of the likelihood ratio, Wald, and Rao statistics for testing shape parameter (β) when $\alpha = 0.05$	101
5.12	Power of the likelihood ratio, Wald, and Rao statistics for testing shape parameter (β) when $\alpha = 0.1$	101
6.1	Error probability of likelihood ratio intervals for the scale parameter (σ) when $\alpha = 0.01$	120
6.2	Error probability of likelihood ratio intervals for the scale parameter (σ) when $\alpha = 0.05$	120
6.3	Error probability of likelihood ratio intervals for the scale parameter (σ) when $\alpha = 0.1$	121
6.4	Error probability of likelihood ratio intervals for the shape parameter (β) when $\alpha = 0.01$	121
6.5	Error probability of likelihood ratio intervals for the shape parameter (β) when $\alpha = 0.05$	121
6.6	Error probability of likelihood ratio intervals for the shape parameter (β) when $\alpha = 0.1$	122
6.7	Error probability of Wald intervals for the scale parameter (σ) when $\alpha = 0.01$	123
6.8	Error probability of Wald intervals for the scale parameter (σ) when $\alpha = 0.05$	123
6.9	Error probability of Wald intervals for the scale parameter (σ) when $\alpha = 0.1$	124
6.10	Error probability of W ald intervals for the shape parameter (β) when $\alpha = 0.01$	124
6.11	Error probability of W ald intervals for the shape parameter (β) when $\alpha = 0.05$	124

6.12	Error probability of W ald intervals for the shape parameter (β) when $\alpha = 0.1$	125
6.13	Error probability of Rao intervals for the scale parameter (σ) when $\alpha = 0.01$	126
6.14	Error probability of Rao intervals for the scale parameter (σ) when $\alpha = 0.05$	126
6.15	Error probability of Rao intervals for the scale parameter (σ) when $\alpha = 0.1$	127
6.16	Error probability of Rao intervals for the shape parameter (β) when $\alpha = 0.01$.	127
6.17	Error probability of Rao intervals for the shape parameter (β) when $\alpha = 0.05$	127
6.18	Error probability of Rao intervals for the shape parameter (β) when $\alpha = 0.1$	128
7.1	Relationship between the bias of the estimators and sample size of variable X	156
7.2	Relationship between the bias of the estimators and sample size of variable Y	156
7.3	Finite sample variance and asymptotic variance for the scale estimators of variable X	157
7.4	Finite sample variance and asymptotic variance of the shape estimators of variable X	157
7.5	Finite sample variance and asymptotic variance of the scale estimators of variable Y	157
7.6	Finite sample variance and asymptotic variance of the shape estimators of variable Y	158
7.7	Relationship between the mean square error of the estimators and sample size of variable X	158
7.8	Relationship between the mean square error of the estimators and sample size of variable Y	159
7.9	Relationship between the bias of the estimators and sample size of variable X	161
	xxii	

xxii

7.10	Relationship between the bias of the estimators and sample size of variable Y	161
7.11	Finite sample variance and asymptotic variance of the scale estimator of variable X	162
7.12	Finite sample variance and asymptotic variance of the shape estimator of variable X	162
7.13	Finite sample variance and asymptotic variance of the scale estimator of variable Y	163
7.14	Finite sample variance and asymptotic variance of the shape estimator of variable Y	163
7.15	Relationship between the mean square error of the estimators and sample size in variable X	164
7.16	Relationship between the mean square error of the estimators and sample size in variable Y	164
8.1	Relationship between the bias and the years of the location estimator based on original and extreme PM_{10} data	172
8.2	Relationship between the bias and the years of the scale estimator based on original and extreme PM_{10} data	172
8.3	Relationship between the bias and the years of the shape estimator based on original and extreme PM_{10} data	172
8.4	Relationship between the bias and the years of the location estimator based on original and extreme SO_2 data	172
8.5	Relationship between the bias and the years of the scale estimator based on original and extreme SO_2 data	173
8.6	Relationship between the bias and the years of the shape estimator based on original and extreme SO_2 data	173
8.7	Relationship between the bias and the years of the location estimator based on original and extreme CO data	174
8.8	Relationship between the bias and the years of the scale estimator based on original and extreme CO data	174
8.9	Relationship between the bias and the years of the shape estimator based on original and extreme CO data	174
8.10	Relationship between the bias and the years of the location estimator based on original and extreme NO_2 data	175

