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Purely siliceous MCM-4 1 (SiMCM-4 1) and aluminium-containing MCM-4 1 

(AIMCM-41) with different ratios of AVSi were synthesized following a modified 

procedure of Ryoo and Kim (1 995). PolypyrroleJMCM-4 1 (PPyJMCM-4 1) 

conductive polymer nanocomposite films was electrochemically prepared on Indium 

Tin Oxide (ITO) glass electrode from an aqueous solution of pyrrole monomer and p- 

toluene sulfonate dopant in a suspension of prepared MCM-41. Various PPy/MCM- 

41 nanocomposite films were obtained by varying the experimental conditions with 

the objective of producing conductive polymer nanocomposites with enhanced 

thermal and conductivity properties. The prepared nanocomposite films were 

characterized by Fourier Transform Infrared (FTIR) Spectroscopy, X-ray diffraction 

(XRD) analysis, Thermogravimetric Analysis, Scanning Electron Microscopy (SEM), 

Transmission Electron Microscopy (TEM) and conductivity measurements. From 



observations of the XRD patterns, nanocomposites prepared at low AVSi ratio 

(PPyJA130 and PPyJA140) and PPyJSiMCM-41 showed better crystallinity compared 

to those prepared at high AlJSi ratio (PPyJA160 and PPyJA180) which was observed to 

be amorphous. FTIR and XRD studies showed that the PPy and SiMCM-41 are the 

most compatible for the formation of PPyJSiMCM-41 nanocomposite. The TGA 

analysis and conductivity studies showed that the best nanocomposite was 

PPyJSiMCM-41 which was found to be the most thermally stable with the highest 

conductivity of 5.24 SJcm. This sample was obtained with optimum condition with 

0.5 M pyrrole, 0.1 M p-toluene sulfonate and 3 g/dm3 MCM-41 at 1.2 volt (vs SCE). 
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MCM-41 dalam bentuk silika tulen (SiMCM-41) dan MCM-41 yang mengandungi 

aluminium dengan nisbah AVSi yang berbeza telah disintesis mengikut prosedur 

Ryoo dan Kim (1995) yang telah diubahsuai. Filem nanokomposit polimer pengalir 

bagi polipiroVMCM-4 1 (PPylMCM-4 1) telah disediakan melalui kaedah elektrokimia 

di atas elektrod kaca Indium Stanum Oksida (ITO) daripada larutan akuas yang 

mengandungi monomer pirol, dopan p-toluena sulfonat dan larutan terampai MCM- 

4 1. Pelbagai nanokomposit filem PPyMCM-4 1 diperolehi dengan pelbagai keadaan 

eksperimen dengan objektif untuk menyediakan nanokomposit polimer pengalir yang 

lebih stabil terhadap tenna dan mempunyai sifat pengalir elektrik yang baik. 

Pencirian filem nanokomposit polimer pengalir PPyIMCM-4 1 yang telah disediakan 

telah dilakukan menggunakan infia merah transfonnasi Fourier (FTIR), pembelauan 

sinar-X (XRD), kajian terma, mikroskopi imbasan elektron (SEM), mikroskopi 



pancaran elektron (TEM) dan penentukuran kekonduksian. Analisis daripada XRD, 

menunjukkan nanokomposit polimer pengalir PPylSiMCM-41 dan PPyIMCM-41 

dengan nisbah AVSi yang rendah (PPylA130 dan PPylA140) adalah bersifat kristal 

berbanding dengan disediakan menggunakan nisbah AlISi yang tinggi (PPylA160 dan 

PPylA180) adalah bersifat amorfhs. Dari kajian FTIR dan XRD pula menunjukkan 

PPy dan SiMCM-41 adalah yang paling sesuai untuk pembentukan filem 

nanokomposit PPyIMCM-4 1. Dari kajian terma dan penentukuran kekonduksian, 

PPyISiMCM-41 adalah nanokomposit yang terbaik dan paling stabil terhadap terma 

dengan nilai konduktiviti tertinggi iaitu 5.24 Slcm. Filem tersebut disediakan dengan 

larutan pirol berkepekatan 0.5 My 0.1 M larutan p-toluena sulfonat dan 3g/dm'3 

MCM-41 pada keupayaan 1.2 v (melawan SCE). 
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CHAPTER I 

INTRODUCTION 

Nanostructures Materials 

The trend to smaller and smaller structures, that is, miniaturization, is well known 

in the manufacturing and microelectronics industries, as evidenced by the rapid 

increase in computing power through reduction on chips of the area and volume 

needed per transistor (Roher, 1993). Smallness in itself is not the goal. Instead, it 

is the realization, or now possibly even in the expectation, that the new properties 

intrinsic to novel structures will enable breakthroughs in a multitude of 

technologically important areas (Gleiter, 1989). 

Of particular interest to materials scientists is the fact that nanostructures have 

higher surface areas than do conventional materials. The impact of nanostructure 

on the properties of high surface area materials is an area of increasing importance 

to understanding, creating and improving materials for diverse aplications. High 

surface areas can be attained either by fabricating small particles or clusters where 

the surface-to-volume ratio of each particle is high, or by creating materials where 

the void surface area (pores) is high compared to the amount of bulk support 

materials. Materials such as highly dispersed supported metal catalysts and gas 

phase clusters fall into the former category, and microporous (nanometer-pored) 



materials such as zeolites, high surface area inorganic oxides, porous carbons, and 

amorphous silicas fall into the latter category. 

A focus of frontline interdisciplinary research today is the development of the 

conceptual framework and the experimental background of the science of 

nanostructured materials and the perspectives of its technological applications. 

We consider some current directions in the preparation, characterization, 

manipulation and interrogation of nanomaterials, in conjunction with the 

modeling of the unique structure-dynamics-function relations of nanostructures 

and their assemblies. The implications of quantum size and shape effects on the 

energetics, nuclear-electronic level sctructure, electric-optical response and 

dynamics, reveal new unique physical phenomena that qualitatively differ from 

those of the bulk matter and provide avenues for the control of the function of 

nanostructures. Current applications in the realm of nanoelectronics, 

nanooptoelectronics and information nanoprocessing are addressed and other 

directions highlighted. Chemical sciences make a central contribution to this 

novel and exciting scientific-technological area. 

Nanoscience and nanotechnology pertain to the synthesis, characterization, 

exploration, interrogation, exploitation and utilization of nanostructured materials, 

which are characterized by at least one dimension in the nanometer 

(1 nm = 10-~m) range. Such nanostructured systems constitute a bridge between 

single molecules and infinite bulk systems. Individual nanostructured involve 

clusters, nanoparticles, nanocrystals, quantum dots, nanowires and nanotubes, 



while collections of nanostructured involve arrays, assemblies and superlattices of 

individual nanostructured (Rao and Cheetham, 200 1). Table 1.1 lists some typical 

dimensions of nanomaterials (Rao and Cheetham, 2001). The chemical and 

physical properties of nanomaterials can significantly differ from those of the 

atomic-molecular or the bulk materials of the same chemical composition. The 

uniqueness of the structural characteristics, energetics, response, dynamics and 

chemistry of nanostuctures is novel and constituent the experimental and 

conceptual background for the novel field of nanoscience. Suitable control of the 

properties and response of nanostructures can lead to new devices and 

technologies. 

Perspectives in Nanoscience and Nanotechnology 

The emerging nanoworld encompasses entirely new and novel means of 

investigating structures and systems. Species as small as single atoms and 

molecules will be manipulated and even exploited as atomic switches (Eigler et 

al., 1997; Wada 1997). Computer-controlled scanning probe microscopy enables 

real-time, hands-on nanostructures manipulation. Nanomanipulators have been 

designed to operate in scanning and transmission electron microscope as well. A 

nanomanipulator gives virtual telepresence on the surface, with a scale factor of a 

million to one. Optical tweezers provide another approach to hold and move 

nanometer structures, a capability special useful in investigating dynamics of 

molecules and particles (Mehta et al., 1999). 



Table 1.1: Nanostructures and their assemblies (Rao and Cheetham, 2001) 

Nanostructure Size Material 

Cluster 
Nanocrystals 
Quantum dots 

Other nanoparticles 

Nanobiomaterials 
Photosynthetic reaction 
center 

Nanowires 

Nanotubes 

Nanobiorods 

2D arrays of 
Nanoparticles 

Surfaces and 
thin films 

3D superlattices of 
nanoparticles 

Radius: 1 - 1 Onm 

Radius: 1 - 1 OOnm 

Radius 5- 10nm 

Diameter: 1 - 100nrn 

Diameter: 1 - 100nm 

Diameter: 5nm 

Area : several nm2 

Thickness : 1 - 1000nm 

Radius: several nm 

Insulators, 
semiconductors, metals, 
magnetic materials 

Ceramic oxides 

Membrane protein 

Metals, semiconductors, 
oxides, sulfides, nitrides 

Carbon, layered 
chalcogenides 

DNA 

Metals, semiconductors, 
Magnetic materials 

Insulators, 
semiconductors 

Metals, DNA 
Metals, semeconductors, 
magnetic materials 

Quantum structures, that is nanoparticles and nanocrystals of metals and 

of semiconductors, nanostructures, nanowires and nanobiological systems 

Assemblies of nanostructures (e.g., nanoparticles and nanowires) and the 

use of biological system (e.g., DNA) as molecular nanowires, as well as 

templates for metallic or semiconducting nanostructures 

Theoretical and computational studies that provided the conceptual 

framework for structure, dynamics, response and transport in 



nanostructures. Theory and simulations in chemical sciences are unique in 

the building of conceptual bridges with experiment. 

Questions such as "How does a polymer move, generates force, respond to an 

applied force and unfold?" can be answered by the use of optical tweezers (Weiss, 

1999). It is noteworthy that the positioning of nanoparticles accurately and 

reliably on a surface by using the tip of an atomic force microscope as a robot has 

already been accomplished. Large-scale operation requiring parallel tip arrays is 

now being explored in several laboratories. 

Novel potential developments in the realm of nanotechnology pertain to 

nanomaterials, molecular and biological nanomachines, biological and medical 

applications and environmental protection and improvement. Consolidated 

nanostructures employing both ceramic and metallic materials are being 

increasingly recognized as important in creating new generations of ultra high- 

strength, tough structural materials, new types of ferromagnets, strong and ductile 

cements and new biomedical prosthetics. Typical of the nanostructured hard 

materials are CoIWC and FeITiC nanocomposites. Nanoparticle-reinforced 

polymers are being considered for automotive parts. Several nanostructured 

alloys of high strength have been discovered and are in an advanced stage for use. 

Besides high-strength materials, dispersions and powders, as well as large bodies 

of novel morphologies, are being discovered. Coatings with highly improved 

features resulting from the incorporation of nanoparticles are being developed. 


