UNIVERSITI PUTRA MALAYSIA

TOXICITY OF ANTIFUNGAL DRUGS ITRAConAZOLE AND FLUCONAZOLE IN RATS

NOR SHAHIDA ABDUL RAHMAN

FPSK(M) 2004 8
TOXICITY OF ANTIFUNGAL DRUGS ITRACONAZOLE AND FLUCONAZOLE IN RATS

By

NOR SHAHIDA ABDUL RAHMAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia in Fulfilment of the Requirements for the Degree of Master of Science

March 2004
DEDICATION

“Dedicated especially to my parents Abdul Rahman Mat and Tuan Zaharah Tuan Yusoff, sisters, brothers and all those individuals behind the scenes who make me possible to complete my study successfully.”
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science

TOXICITY OF ANTIFUNGAL DRUGS ITRACONAZOLE AND FLUCONAZOLE IN RATS

By

NOR SHAHIDA ABDUL RAHMAN

March 2004

Chairman: Associate Professor Muhammad Nazrul Hakim Abdullah, Ph.D.

Faculty: Medicine and Health Sciences

Itraconazole and Fluconazole are the newer antifungal drugs that have been used for several years. Both these drugs have a broad-spectrum antifungal activity and currently are used to treat infections caused by Candida albicans, Aspergillus spp., Paracoccidioides brasiliensis, Sporothrix schenckii, Histoplasma capsulatum, Cryptococcus neoformans and many others. The objective of this study is to investigate the *in vitro* and *in vivo* cytotoxicity of these two antifungal drugs. The *in vitro* and *in vivo* cytotoxicity of fluconazole and itraconazole were studied in thirty-eight male Sprague Dawley rats. Freshly isolated rat hepatocytes were obtained for the *in vitro* treatment of fluconazole and itraconazole using a liver perfusion technique. The cell viability test was done by trypan blue exclusion. As a result, both fluconazole and itraconazole cause a reduction in cell viability of hepatocytes. However, itraconazole exerted its cytotoxicity more than fluconazole in both time- and dose-dependent manner. Meanwhile, cytotoxicity of itraconazole was reduced significantly by Phenobarbital pretreatment. Phenobarbital did not have any effect on the
cytotoxicity induced by fluconazole. *In vivo* studies revealed that rat’s liver and kidney treated with repeated-doses of itraconazole showed a significantly higher in total protein in liver and kidney and significant increase in serum ALP and ALT activity. This is in agreement with histological findings that the rat treated with repeated-doses of itraconazole showed severe histological features compared to fluconazole. Morphological changes such as inflammation and fibrosis of liver were frequently seen in repeated-doses of itraconazole. This present study suggests that Phenobarbital plays a role in the cytoprotection of hepatocytes to itraconazole-induced but not fluconazole-induced cytotoxicity *in vitro*.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KETOKSIKAN DADAH ANTI-KULAT ITRACONAZOLE DAN FLUCONAZOLE DALAM TIKUS

Oleh

NOR SHAHIDA ABDUL RAHMAN

Mac 2004

Pengerusi: Professor Madya Muhammad Nazrul Hakim Abdullah, Ph.D.

Fakulti: Perubatan dan Sains Kesihatan

AKNOWLEDGEMENTS

In the name of Allah the Most Gracious and Merciful

Without exceptions, each of the illustrations was specially selected and prepared for this project paper, whilst accepting full responsibility for the entire contents; I am indebted to many individuals who have made invaluable contributions in their specialized fields.

First and foremost, I would like to express my deepest and most sincere gratitude to my chairman of supervisory committee, Associate Professor Dr. Muhammad Nazrul Hakim Abdullah whose expert guidance, advice and support has helped me to complete this research. His kindness, affection encouragement and moral support gave me the courage and ability to overcome all the problems, which I have faced from time to time during the course of my work.

I am also indebted to members of my supervisory committee and I wish to express my deepest thanks to Prof. Dato' Dr. Abdul Salam Abdullah, Associate Professor Dr. Fauziah Othman and Dr. Wan Nordin Wan Mahmud for their interest and invaluable suggestions that had enable me to carry on with my project successfully.

I really appreciate Dr. Mohd Khairi Hussein and Puan Hasiah Abdul Hamid for their helpful and guidance throughout my project. A special mention must be given to Associate Professor Dr. Zarida Hambali for letting me used the facilities and materials
of her laboratory. I would also like to express my heartfelt appreciation to Faizah Sanat (my best friend and also partner in research), who was and still by my side during the trials and tribulation during the course of my work.

I also would like to express my sincere gratitude to all the staff: Puan Sapijah from the Histology Laboratory, Faculty of Veterinary Medicine; Puan Siti Muskinah, Puan Juita, Puan Normah, En. Rijalana and En. Ramli from the Faculty of Medicine and Health Sciences; Mr. Ho Oi Kuen from the Institute of Bioscience and En. Kufli from the Physiology Laboratory, Faculty of Veterinary Medicine for their co-operation.

Last but not least to my entire colleague, Hazliana, Rohayu Izanwati, Elysha, Azmahani, Solihah, Reezal, Ahmad Saifuddin and Yunus for their willingness to help me when I needed it most. Finally, I wish to extend my appreciation to all who are involved either directly or indirectly in this research.
TABLES OF CONTENTS

<table>
<thead>
<tr>
<th>DEDICATION</th>
<th>ii</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>ix</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxvi</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

2 LITERATURE REVIEW

2.1 Fluconazole

2.1.1 Mode of Action

2.1.2 Pharmacokinetics

2.1.3 Clinical Efficacy

2.1.4 Adverse Effects

2.2 Itraconazole

2.2.1 Mode of Action

2.2.2 Pharmacokinetics

2.2.3 Clinical Efficacy

2.2.4 Adverse Effects

2.3 Liver

2.3.1 Normal Morphology of Liver

2.3.2 Biochemical Evaluation of Liver Functions

2.3.2.1 Plasma ALT

2.3.2.2 Plasma ALP

2.4 Drug Metabolism

2.4.1 Definition

2.5 Kidney

3 GENERAL MATERIALS AND METHODS

3.1 Experimental Animals

3.2 Record of Changes in Body Weight

3.3 Collection of Blood Samples

3.4 Collection of Tissue Samples

3.5 Lesion Scoring

3.5.1 Liver

3.5.2 Kidney

3.5.3 Stomach-Duodenum

xii
3.6 Chemicals and Drugs
3.7 Methods
3.7.1 Liver Perfusion
3.7.2 Measurement of Cell Viability
3.7.3 Preparation of Supernatant
3.7.4 Protein Determination in Tissue Homogenate
3.7.5 Biochemical Evaluation of liver Functions
 3.7.5.1 Plasma ALT
 3.7.5.2 Plasma ALP

4 IN VITRO CYTOTOXICITY OF ITRA(CONAZOLE AND FLUCONAZOLE IN NORMAL RAT HEPATOCYTES
4.1 Introduction
4.2 Objective
4.3 Material and Methods
 4.3.1 Experimental Animals
 4.3.2 Isolation of Hepatocytes
 4.3.3 Treatment of Hepatocytes Suspension
 4.3.4 Statistical Analysis
4.4 Result
 4.4.1 Perfusion Process
 4.4.2 Trypan Blue Exclusion Test
 4.4.2.1 Treatment of Fluconazole in Determining Cells Viability
 4.4.2.2 Treatment of Itraconazole in Determining Cells Viability
 4.4.2.3 The Comparison of the Effect of Fluconazole and Itraconazole on Un-pretreated Hepatocytes
4.5 Discussion

5 IN VITRO CYTOTOXICITY OF ITRA(CONAZOLE AND FLUCONAZOLE IN PHENOBARBITAL-INDUCED RAT HEPATOCYTES
5.1 Introduction
5.2 Objective
5.3 Material and Methods
 5.3.1 Experimental Animals
 5.3.2 Isolation of Hepatocytes
 5.3.3 Treatment of Hepatocytes Suspension
 5.3.4 Statistical Analysis
5.4 Result
 5.4.1 Phenobarbital Pretreatment
 5.4.2 Trypan Blue Exclusion Test
 5.4.2.1 Treatment of Fluconazole on PB-induced Rat Hepatocytes in Determining Cells Viability
 5.4.2.2 Treatment of Itraconazole on PB-induced Rat Hepatocytes in Determining Cells Viability
Rat Hepatocytes in Determining Cells Viability

5.4.2.3 Comparison Between PB-induced and Normal Rat Hepatocytes after Treatment with Fluconazole

5.4.2.4 Comparison Between PB-induced and Normal Rat Hepatocytes after Treatment with Itraconazole

5.4.2.5 The Comparison on the Effects of Fluconazole and Itraconazole on PB-induced Rat Hepatocytes

5.5 Discussion

6 IN VIVO CYTOTOXICITY OF ITRACONAZOLE AND FLUCONAZOLE

6.1 Introduction

6.2 Objective

6.3 Material and Methods

6.3.1 Experimental Animals

6.3.2 Collection of Blood Samples

6.3.3 Protein Assay

6.3.4 Liver Function Test

6.3.5 Histology

6.3.5.1 Light Microscopy

6.3.5.2 Lesion Scoring

6.3.6 Statistical Analysis

6.3.7 Results

6.3.7.1 Effects of the Acute and Chronic Dose of Fluconazole and Itraconazole Treatment in Rat

6.3.7.2 Changes in Body Weight

6.3.7.3 Liver and Kidney Weight after Acute and Chronic Dosing with Fluconazole and Itraconazole

6.3.7.4 Total Protein in Liver and Kidney after Acute and chronic Dosing with Fluconazole and Itraconazole

6.3.7.5 Activities of Serum ALP and ALT before and after treatment with Acute and Chronic Doses of Fluconazole and Itraconazole

6.3.7.6 Morphology Study of Liver, Kidney, Stomach and Duodenum of Rats Treated with Single and Repeated Doses of Fluconazole and Itraconazole

6.3.8 Discussion

7 GENERAL DISCUSSION AND CONCLUSION

8 RECOMMENDATION
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIBLIOGRAPHY</td>
<td>145</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>157</td>
</tr>
<tr>
<td>BIODATA OF THE AUTHOR</td>
<td>170</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Most common clinical adverse effects in 4,048 subjects receiving fluconazole</td>
<td>10</td>
</tr>
<tr>
<td>4.1</td>
<td>Time-dependent viability of rat hepatocytes during incubation with various concentrations of fluconazole at different time points</td>
<td>37</td>
</tr>
<tr>
<td>4.2</td>
<td>Dose-dependent viability of rat hepatocytes during incubation with various concentrations of fluconazole at different time points</td>
<td>38</td>
</tr>
<tr>
<td>4.3</td>
<td>Time-dependent viability of rat hepatocytes during incubation with various concentrations of itraconazole at different time points</td>
<td>40</td>
</tr>
<tr>
<td>4.4</td>
<td>Dose-dependent viability of rat hepatocytes during incubation with various concentrations of itraconazole at different time points</td>
<td>41</td>
</tr>
<tr>
<td>5.1</td>
<td>Time-dependent viability of PB-induced rat hepatocytes during incubation with various concentrations of fluconazole at different time points</td>
<td>59</td>
</tr>
<tr>
<td>5.2</td>
<td>Dose-dependent viability of PB-induced rat hepatocytes during incubation with various concentrations of fluconazole at different time points</td>
<td>60</td>
</tr>
<tr>
<td>5.3</td>
<td>Time-dependent viability of PB-induced rat hepatocytes during incubation with various concentrations of itraconazole at different time points</td>
<td>63</td>
</tr>
<tr>
<td>5.4</td>
<td>Dose-dependent viability of PB-induced rat hepatocytes during incubation with various concentrations of itraconazole at different time points</td>
<td>64</td>
</tr>
<tr>
<td>6.1</td>
<td>Effects of single-doses treatment of fluconazole and itraconazole on liver and kidney weight of rat</td>
<td>102</td>
</tr>
<tr>
<td>6.2</td>
<td>Effects of repeated-doses treatment of fluconazole and itraconazole on liver and kidney weight of rat</td>
<td>103</td>
</tr>
<tr>
<td>6.3</td>
<td>Effect of itraconazole on samples for acute group at different doses</td>
<td>125</td>
</tr>
<tr>
<td>6.4</td>
<td>Effect of fluconazole on samples for acute group at different doses</td>
<td>125</td>
</tr>
<tr>
<td>6.5</td>
<td>Effect of fluconazole on samples of chronic group at different doses</td>
<td>126</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>6.6</td>
<td>Effect of itraconazole on samples of chronic group at different doses</td>
<td>126</td>
</tr>
<tr>
<td>6.7</td>
<td>Effects of fluconazole and itraconazole on samples for the acute group</td>
<td>127</td>
</tr>
<tr>
<td>6.8</td>
<td>Effects of fluconazole and itraconazole on samples for the acute group</td>
<td>127</td>
</tr>
<tr>
<td>6.9</td>
<td>Effects of fluconazole and itraconazole on samples for the chronic group</td>
<td>128</td>
</tr>
<tr>
<td>6.10</td>
<td>Effects of fluconazole and itraconazole on samples for the chronic group</td>
<td>128</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Chemical structure of fluconazole and itraconazole</td>
<td>2</td>
</tr>
<tr>
<td>4.1 Time-dependent cytotoxicity of fluconazole and itraconazole on un-pretreated rat hepatocytes at 0mM</td>
<td>44</td>
</tr>
<tr>
<td>4.2 Time-dependent cytotoxicity of fluconazole and itraconazole on un-pretreated rat hepatocytes at 0.0001mM</td>
<td>44</td>
</tr>
<tr>
<td>4.3 Time-dependent cytotoxicity of fluconazole and itraconazole on un-pretreated rat hepatocytes at 0.001mM</td>
<td>45</td>
</tr>
<tr>
<td>4.4 Time-dependent cytotoxicity of fluconazole and itraconazole on un-pretreated rat hepatocytes at 0.01mM</td>
<td>45</td>
</tr>
<tr>
<td>4.5 Time-dependent cytotoxicity of fluconazole and itraconazole on un-pretreated rat hepatocytes at 0.1mM</td>
<td>46</td>
</tr>
<tr>
<td>4.6 Time-dependent cytotoxicity of fluconazole and itraconazole on un-pretreated rat hepatocytes at 1.0mM</td>
<td>46</td>
</tr>
<tr>
<td>4.7 Dose-dependent cytotoxicity of fluconazole and itraconazole on un-pretreated rat hepatocytes at 0.25hr.</td>
<td>47</td>
</tr>
<tr>
<td>4.8 Dose-dependent cytotoxicity of fluconazole and itraconazole on un-pretreated rat hepatocytes at 0.5hr.</td>
<td>47</td>
</tr>
<tr>
<td>4.9 Dose-dependent cytotoxicity of fluconazole and itraconazole on un-pretreated rat hepatocytes at 0.75hr.</td>
<td>48</td>
</tr>
<tr>
<td>4.10 Dose-dependent cytotoxicity of fluconazole and itraconazole on un-pretreated rat hepatocytes at 1hr.</td>
<td>48</td>
</tr>
<tr>
<td>4.11 Dose-dependent cytotoxicity of fluconazole and itraconazole on un-pretreated rat hepatocytes at 2hr.</td>
<td>49</td>
</tr>
<tr>
<td>4.12 Dose-dependent cytotoxicity of fluconazole and itraconazole on un-pretreated rat hepatocytes at 3hr.</td>
<td>49</td>
</tr>
<tr>
<td>4.13 Dose-dependent cytotoxicity of fluconazole and itraconazole on un-pretreated rat hepatocytes at 4hr.</td>
<td>50</td>
</tr>
</tbody>
</table>
4.14 Dose-dependent cytotoxicity of fluconazole and itraconazole on un-pretreated rat hepatocytes at 5hr.

4.15 Dose-dependent cytotoxicity of fluconazole and itraconazole on un-pretreated rat hepatocytes at 6hr.

5.1 Time-dependent cytotoxicity of fluconazole on PB-induced and normal rat hepatocytes at 0mM

5.2 Time-dependent cytotoxicity of fluconazole on PB-induced and normal rat hepatocytes at 0.0001mM

5.3 Time-dependent cytotoxicity of fluconazole on PB-induced and normal rat hepatocytes at 0.001mM

5.4 Time-dependent cytotoxicity of fluconazole on PB-induced and normal rat hepatocytes at 0.01mM

5.5 Time-dependent cytotoxicity of fluconazole on PB-induced and normal rat hepatocytes at 0.1mM.

5.6 Time-dependent cytotoxicity of fluconazole on PB-induced and normal rat hepatocytes at 1.0mM

5.7 Dose-dependent cytotoxicity of fluconazole on PB-induced and normal rat hepatocytes at 0.25hr.

5.8 Dose-dependent cytotoxicity of fluconazole on PB-induced and normal rat hepatocytes at 0.5hr.

5.9 Dose-dependent cytotoxicity of fluconazole on PB-induced and normal rat hepatocytes at 0.75hr.

5.10 Dose-dependent cytotoxicity of fluconazole on PB-induced and normal rat hepatocytes at 1hr.

5.11 Dose-dependent cytotoxicity of fluconazole on PB-induced and normal rat hepatocytes at 2hr.

5.12 Dose-dependent cytotoxicity of fluconazole on PB-induced and normal rat hepatocytes at 3hr.

5.13 Dose-dependent cytotoxicity of fluconazole on PB-induced and normal rat hepatocytes at 4hr.

5.14 Dose-dependent cytotoxicity of fluconazole on PB-induced and normal rat hepatocytes at 5hr.
5.15 Dose-dependent cytotoxicity of fluconazole on PB-induced and normal rat hepatocytes at 6hr.

5.16 Time-dependent cytotoxicity of itraconazole on PB-induced and normal rat hepatocytes at 0mM

5.17 Time-dependent cytotoxicity of itraconazole on PB-induced and Normal rat hepatocytes at 0.0001mM

5.18 Time-dependent cytotoxicity of itraconazole on PB-induced and normal rat hepatocytes at 0.001mM

5.19 Time-dependent cytotoxicity of itraconazole on PB-induced and normal rat hepatocytes at 0.01mM

5.20 Time-dependent cytotoxicity of itraconazole on PB-induced and normal rat hepatocytes at 0.1mM

5.21 Time-dependent cytotoxicity of itraconazole on PB-induced and normal rat hepatocytes at 1.0mM

5.22 Dose-dependent cytotoxicity of itraconazole on PB-induced and normal rat hepatocytes at 0.25hr.

5.23 Dose-dependent cytotoxicity of itraconazole on PB-induced and normal rat hepatocytes at 0.5hr.

5.24 Dose-dependent cytotoxicity of itraconazole on PB-induced and normal rat hepatocytes at 0.75hr.

5.25 Dose-dependent cytotoxicity of itraconazole on PB-induced and normal rat hepatocytes at 1hr.

5.26 Dose-dependent cytotoxicity of itraconazole on PB-induced and normal rat hepatocytes at 2hr.

5.27 Dose-dependent cytotoxicity of itraconazole on PB-induced and normal rat hepatocytes at 3hr.

5.28 Dose-dependent cytotoxicity of itraconazole on PB-induced and normal rat hepatocytes at 4hr.

5.29 Dose-dependent cytotoxicity of itraconazole on PB-induced and normal rat hepatocytes at 5hr.

5.30 Dose-dependent cytotoxicity of itraconazole on PB-induced and normal rat hepatocytes at 6hr.
5.31 Time-dependent cytotoxicity of fluconazole and itraconazole on PB-induced rat hepatocytes at 0mM

5.32 Time-dependent cytotoxicity of fluconazole and itraconazole on PB-induced rat hepatocytes at 0.0001mM

5.33 Time-dependent cytotoxicity of fluconazole and itraconazole on PB-induced rat hepatocytes at 0.001mM

5.34 Time-dependent cytotoxicity of fluconazole and itraconazole on PB-induced rat hepatocytes at 0.01mM

5.35 Time-dependent cytotoxicity of fluconazole and itraconazole on PB-induced rat hepatocytes at 0.1mM

5.36 Time-dependent cytotoxicity of fluconazole and itraconazole on PB-induced rat hepatocytes at 1.0mM

5.37 Dose-dependent cytotoxicity of fluconazole and itraconazole on PB-induced rat hepatocytes at 0.25hr.

5.38 Dose-dependent cytotoxicity of fluconazole and itraconazole on PB-induced rat hepatocytes at 0.5hr.

5.39 Dose-dependent cytotoxicity of fluconazole and itraconazole on PB-induced rat hepatocytes at 0.75hr.

5.40 Dose-dependent cytotoxicity of fluconazole and itraconazole on PB-induced rat hepatocytes at 1hr.

5.41 Dose-dependent cytotoxicity of fluconazole and itraconazole on PB-induced rat hepatocytes at 2hr.

5.42 Dose-dependent cytotoxicity of fluconazole and itraconazole on PB-induced rat hepatocytes at 3hr.

5.43 Dose-dependent cytotoxicity of fluconazole and itraconazole on PB-induced rat hepatocytes at 4hr.

5.44 Dose-dependent cytotoxicity of fluconazole and itraconazole on PB-induced rat hepatocytes at 5hr.

5.45 Dose-dependent cytotoxicity of fluconazole and itraconazole on PB-induced rat hepatocytes at 6hr.

6.1 Mean body weight of rats treated with repeated-doses of fluconazole

xxi
6.2 Mean body weight of rats treated with repeated-doses of itraconazole

6.3 The mean total protein in liver of rats treated with single-doses of fluconazole

6.4 The mean total protein in liver of rats treated with single-doses of itraconazole

6.5 The mean total protein in liver of rats treated with repeated-doses of fluconazole

6.6 The mean total protein in liver of rats treated with repeated-doses of itraconazole

6.7 The mean total protein in kidney of rats treated with single-doses of fluconazole

6.8 The mean total protein in kidney of rats treated with single-doses of itraconazole

6.9 The mean total protein in kidney of rats treated with repeated-doses of fluconazole

6.10 The mean total protein in kidney of rats treated with repeated-doses of itraconazole

6.11 The comparison of the mean total protein in liver of rats treated with single-doses of fluconazole and itraconazole

6.12 The comparison of the mean total protein in liver of rats treated with repeated-doses of fluconazole and itraconazole

6.13 The comparison of the mean total protein in kidney of rats treated with single-doses of fluconazole and itraconazole

6.14 The comparison of the mean total protein in kidney of rats treated with repeated-doses of fluconazole and itraconazole

6.15 The mean plasma ALT levels in rats treated with single-doses of fluconazole

6.16 The mean plasma ALT levels in rats treated with single-doses of itraconazole

6.17 The mean plasma ALP levels in rats treated with single-doses of fluconazole
6.18 The mean plasma ALP levels in rats treated with single-doses of itraconazole

6.19 The mean plasma ALT levels in rats treated with repeated-doses of fluconazole

6.20 The mean plasma ALT levels in rats treated with repeated-doses of itraconazole

6.21 The mean plasma ALP levels in rats treated with repeated-doses of fluconazole

6.22 The mean plasma ALP levels in rats treated with repeated-doses of itraconazole

6.23 The mean plasma ALT levels of pre-treated rats with single-doses of fluconazole and itraconazole

6.24 The mean plasma ALT levels of post-treated rats with single-doses of fluconazole and itraconazole

6.25 The mean plasma ALP levels of pre-treated rats with single-doses of fluconazole and itraconazole

6.26 The mean plasma ALP levels of post-treated rats with single-doses of fluconazole and itraconazole

6.27 The mean plasma ALT levels of pre-treated rats with repeated-doses of fluconazole and itraconazole

6.28 The mean plasma ALT levels of post-treated rats with repeated-doses of fluconazole and itraconazole

6.29 The mean plasma ALP levels of pre-treated rats with repeated-doses of fluconazole and itraconazole

6.30 The mean plasma ALP levels of post-treated rats with repeated-doses of fluconazole and itraconazole

6.31 Light micrograph of liver from normal non-treated rat

6.32 Light micrograph of rat’s liver treated with repeated high dose of 100mg/kg fluconazole

6.33 Light micrograph of rat’s liver treated with repeated high dose of 100mg/kg fluconazole
6.34 Light micrograph of rat’s liver treated with repeated high dose of 100mg/kg itraconazole

6.35 Light micrograph of rat’s liver treated with repeated high dose of 100mg/kg itraconazole

6.36 Light micrograph of rat’s liver treated with repeated high dose of 100mg/kg itraconazole

6.37 Light micrograph of rat’s liver treated with repeated high dose of 100mg/kg itraconazole

6.38 Light micrograph of kidney from normal non-treated rat

6.39 Light micrograph of rat’s kidney treated with single dose of itraconazole

6.40 Light micrograph of rat’s kidney treated with single dose of itraconazole

6.41 Light micrograph of rat’s kidney treated with repeated high dose of itraconazole

6.42 Light micrograph of stomach from normal non-treated rat

6.43 Light micrograph of stomach from normal non-treated rat

6.44 Light micrograph of rat’s stomach treated with repeated high dose of 100mg/kg itraconazole

6.45 Light micrograph of duodenum from normal non-treated rat

A Perfusion buffer I

A Perfusion buffer II

B Complete medium

C Tissue dehydration in the histokinette

D Staining process (Hematoxylin and Eosin)

E Effect of chronic and acute fluconazole treatment on total protein in liver and kidney of rat

F Effect of chronic and acute itraconazole treatment on total protein in liver and kidney of rat

xxiv