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Investigation was carried out between binary and ternary series in order to determine 

the role of transition metal (TM) ions in calcium phosphate glass. Various transition 

metal ions in calcium phosphate glass (TM0)y ( C a 0 ) 0 . ~ ~ - ~  (P20s)o.7, (TM = Cu, Mn 

and Zn) in the composition range 0.011x10.09 were prepared by traditional melt 

quenching technique. Optical absorption, dielectric spectroscopy, X-ray diffraction 

and Fourier Transform Infrared (FTIR) spectroscopy have been used to characterize 

the structural, optical and electrical features of the glasses. All of the samples under 

study have been confirmed to be amorphous by X-ray diffraction (XRD) 

measurements. Results from FTIR spectroscopy showed that the spectra were 

dominated by the spectral characteristic of P2O5 in a fingerprint region below 1500 

cm". From the absorption edge studies, the values of optical band gap (EopJ and 

energy gap (E,) have been evaluated using Urbach absorbance rule. The values of 

optical band gap (Eop,) recorded for binary CaO-P205 glasses ranges from 3.578 to 

2.1 14 eV while for ternary series CaO-P205 doped with Cu20, CuO, MnO and ZnO 

ranging from 2.1 14 to 1.697 eV, 3.310 to 1.718 eV, 3.030 to 3.279 and from 2.747 

to 2.989 eV. Binary and ternary series doped with CU+ and ~ n ~ +  showed the energy 



gap, E, increased with metal oxide and dopant materials ranges from 0.500 to 1.564 

eV, 0.681 to 0.736 eV and from 0.246 to 0.283 eV. CaO-P205 glasses doped with, 

cu2+ and zn2+ recorded inverse pattern where the values ranging from 1.863 to 

0.600 eV and from 1 .1  72 to 0.744 eV. Optical band gap (E,,,) and energy gap (E,) is 

suggested to be associated with structural disorder in the sample. A number of 

physical studies have also been conducted which include refractive index and 

density. The density of the glass was determined by Archimedes Principle. 

Refractive Index was determined at 589.3 nrn and 632.6 nrn and was found to agree 

with Lorentz-Lorenz equation where the refractive index increased with increase of 

density of the samples. Dielectric permittivity was measured in the temperature 

range of 25 to 300°C. Dielectric permittivity and dielectric loss factor for all samples 

decreased with frequency and increased with temperature between range 1 x 1 o3 to 1 

Hz and from 1 x 10" to 1 x lop3 Hz. From the empirical data, other values such as 

molar volume and molar refractivity have been computed. Ionic refractivity, ionic 

radii and field strength have been interpreted from the obtained data. It is obvious 

that the refractive index varies with molar refractivity, which depends on the 

polarizability of the ions in the samples, density and molecular weight. Those 

properties were found to be sensitively depends on its compositions. 
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Kajian telah dibuat diantara sistem perduaan dan pertigaan dalarn menentukan 

peranan logam peralihan dalam sistem asas kaca fosfat. Pelbagai logam peralihan di 

dalam kaca kalsium fosfat (TMO), + (CaO)o.30_, (P205)0.7, (TM = Cu, Mn and Zn) di 

dalam komposisi 0.011~20.09, telah dihasilkan menggunakan teknik sepuh lebur. 

Penyerapan optik, spektroskopi dielektrik, pembelauan sinar-X dan sepktroskopi 

Jelmaan Fourier Inframerah (FTIR) telah digunakan untuk menggambarkan cirri 

struktur, optic dan dielektrik yang berlaku dalam semua sampel. Semua sampel 

dalam pengajian ini telah disahkan sebagai amof i s  melalui pengukuran pembelauan 

sinar-X (XRD). Keputusan spectra FTIR telah didominasi oleh spektra bahan P2O5 

dalam rantau pencirian 1500 cm". Melalui kajian pinggir penyerapan, nilai bagi 

jurang jalur optik (Eop,) dan jurang tenaga (E,) telah dinilai menggunakan peraturan 

penyerapan Urbach. Nilai jurang jalur optik (Eop,) untuk siri perduaan kaca 

CaO-P205 dicatatkan bermula dari 3.578 ke 2.1 14 eV manakala bagi siri pertigaan 

CaO-P205 yang didop dengan Cu20, CuO, MnO dan ZnO bermula dari 2.1 14 ke 

1.697 eV, 3.310 ke 1.718 eV, 3.030 ke 3.279 dan dari 2.747 ke 2.989 eV. Siri 

perduaan dan pertigaan yang didop dengan cu2+ d m  ~ n ~ +  menunjukkan jurang 



tenaga, E, bertambah dengan logam oksida dan bahan dop dalam lingkungan nilai 

0.500 ke 1.564 eV, 0.681 ke 0.736 eV dan dari 0.246 ke 0.283 eV. Kaca P20s yang 

didop dengan cu2+ dan 2n2+ mencatatkan sebaliknya dimana bacaan bermula dari 

1.863 ke 0.600 eV dan dari 1 .I72 ke 0.744 eV. Nilai jurang jalur optik (E,,,) dan 

jurang tenaga (E,) dicadangkan berkaitan dengan struktur rawak dalam sampel. 

Beberapa pengajian fizikal juga telah dijalankan termasuk indeks biasan dan 

ketumpatan. Ketumpatan kaca telah diukur menggunakan prinsip Archimedes. 

Indeks biasan telah diukur pada 589.3 nm dan 632.8 nm dan telah dikenalpasti 

menepati persaman Lorentz-Lorenz yang mana nilai tersebut meningkat dengan 

ketumpatan bagi sampel. Ketelusan dielektrik telah diukur pada julat suhu dari 25 

. hingga 300°C. Data menunjukkan ketelusan dielektrik dm faktor kehilangan 

dielektrik bagi semua sampel menurun dengan peningkatan frekuensi dan 

meningkat dengan peningkatan suhu dari linkungan nilai 1 x lo3 to 1 Hz dan dari 1 

x lo-' ke 1 x lo5 Hz. Dari nilai data empirikal yang diukur, nilai-nilai lain seperti 

isipadu molar dan pembiasan molar telah dikira. Pembiasan ion, jejari ion clan 

kekuatan medan bahan telah dianggar melalui data yang diperolehi. Jelas sekali 

bahawa indeks biasan berkadar songsang dengan pembiasan molar yang bergantung 

kepada pengutuban ion dalam sampel, ketumpatan dan berat molekul. Semua sifat 

didapati begitu sensitif pergantungannya kepada komposisi bahan tersebut. 
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CHAPTER 1 

INTRODUCTION 

Introduction 

A glass can be defined as an amorphous solid completely lacking in long range 

order, exhibiting a region of glass transformation behavior and periodic atomic 

structure. Its atoms are arranged randomly. Therefore it has no unit cell and at 

most it has only short-range order or locally crystalline. 

Glasses generally show optical isotropy, reversible softening and solidification 

and a certain dependence of their properties on thermal history. Unlike other 

amorphous substances, they have the general feature (both inorganic and organic 

glasses) of changing their physical properties (e.g thermal expansion, resistivity) 

in the transformation region in which the metastable glass melt form glass. 

As may be expected, much of the glass science is developed on the basis of the 

major commercial uses of glass. More than 99% of the commercial tonnage 

consists of glass compositions that are oxides. A large percentage of these are 

silica-based. This includes even the highly specialized application of glass to 

microelectronic packaging where the annual volume of sale may be low but 

glass is the "value-adding" component, i.e., the application of glass enhances the 

value of assembly after the incorporating process. It is not surprising when the 

term "glass" is used in scientific conversation, oxide glasses are usually implied. 

The chemistry of glass is considered here as a classified survey of findings on 


