

UNIVERSITI PUTRA MALAYSIA

SYNTHESIS BY PRECIPITATION AND CHARACTERISATION OF ANTIMONY TETRAOXIDE

IZHAM BIN SAIMAN.

FS 2006 14

SYNTHESIS BY PRECIPITATION AND CHARACTERISATION OF ANTIMONY TETRAOXIDE

MOHD IZHAM BIN SAIMAN

MASTER OF SCIENCE UNIVERSITI PUTRA MALAYSIA

2006

SYNTHESIS BY PRECIPITATION AND CHARACTERISATION OF ANTIMONY TETRAOXIDE

By

MOHD IZHAM BIN SAIMAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

April 2006

٩,

Especially Dedicated To My beloved wife, Siti Normadeha bt. Mohammad Amin My newborn baby, Nur Damia Safiyah bt. Mohd Izham and my family

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science

SYNTHESIS BY PRECIPITATION AND CHARACTERISATION OF ANTIMONY TETRAOXIDE

By

MOHD IZHAM BIN SAIMAN

April 2006

Chairman: Associate Professor Mohd Basyaruddin bin Abdul Rahman, PhD

Faculty : Science

Antimony oxide has found application in various area including clarification, pigment, material synthesis and catalyst. This study investigated the influence of synthesis parameters (precipitating agent and solvent) on the formation of antimony oxide powder. Characterizations of the samples were carried out by Thermogravimetry Analysis (TGA), X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, BET surface area measurement and Scanning Electron Microscopy (SEM).

Investigations on the influence of the type of precipitating agents (NaOH and NH₄OH), on the formation of antimony oxide revealed that α -Sb₂O₄ was produced after the precursors were calcined. The precursors were a mixture of Sb₄O₅Cl₂ and Sb₂O₃ phase when precipitated with NaOH but only Sb₂O₃ phase when precipitated with NaOH but only Sb₂O₃ phase when precipitated with NH₄OH. By varying the two precipitation agent, NH₄OH

solution gave better surface areas and fine morphologies for the samples compared to NaOH solution.

On the influence of solvent, ethanol gave full reflection of Sb_2O_3 and different structure phase before calcination process. No phase of the antimony oxy chloride was obtained for these samples. After calcined process, all samples gave full reflection of the α -Sb₂O₄. Usage of the NaOH as a precipitating agent gave higher surface area compared to NH₄OH samples.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

SINTESIS MELALUI PEMENDAKAN DAN PENCIRIAN ANTIMONI TETRAOKSIDA

Oleh

MOHD IZHAM BIN SAIMAN

April 2006

Pengerusi: Profesor Madya Mohd Basyaruddin bin Abdul Rahman, PhD.

Fakulti : Sains

Antimoni oksida mempunyai aplikasi dalam pelbagai bidang termasuk klarifikasian, pigmen, sintesis bahan dan pemangkinan. Kajian ini menyelidik kesan pelbagai parameter sintesis (agen pemendakan dan pelarut) ke atas pembentukan serbuk antimoni oksida. Pencirian telah dilakukan dengan mengunakan analisis termo gravitimetri (TGA), teknik Pembelauan Sinar (XRD), Spektroskopi Inframerah (FTIR), Pengukuran Luas Permukaan BET, dan Mikroskopi Pengimbas Elektron (SEM).

Kajian ke atas kesan beberapa jenis agen pemendakan (NaOH dan NH₄OH) ke atas pembentukan antimoni oksida membuktikan bahawa α -Sb₂O₄ terhasil selepas bahan pemula dikalsin. Bahan pemula adalah campuran fasa Sb₄O₅Cl₂ dan Sb₂O₃ apabila dimendakkan dengan NaOH tetapi hanya Sb₂O₃ apabila dimendakkan dengan larutan NH₄OH. Dengan membezakan kedua-dua agen

pemendakan, larutan NH4OH menberikan luas permukaan dan morfologi yang lebih baik berbanding sampel menggunakan larutan NaOH bagi sampel tersebut.

Berdasarkan kesan pelarut, etanol telah memberikan refleksi yang penuh bagi Sb₂O₃ tetapi berbeza fasa sebelum proses kalsin. Tidak terdapat fasa antimoni oksiklorida dikesan pada sampel ini. Semua sampel telah menunjukkan refleksi yang penuh bagi α-Sb₂O₄ selepas proses pengkalsinan. Penggunaan NaOH sebagai agen pemendakan telah memberikan luas permukaan yang lebih tinggi berbanding sampel menggunakan larutan NH4OH.

ACKNOWLEDGEMENTS

In The Name of ALLAH S.W.T., the Most Merciful, Most Compassionate For The Blessing and Strength

First and foremost, I would like to express my sincere and deepest appreciation to my supervisor, Assoc. Prof. Dr. Mohd Basyaruddin Abdul Rahman, for his valuable discussions and suggestions, guidance, encouragement and inspiration throughout my Master degree journey. My pleasure thanks also to my cosupervisors Dr. Irmawati Ramli, Assoc. Prof. Dr. Abdul Halim Abdullah and Assoc. Prof. Dr Sharifah Bee Abdul Hamid for their supervision and invaluable advice throughout this study. Heartfelt thanks are extended to all the laboratory assistants in Department of Chemistry especially Mr. Zulhisham and Mrs. Rusnani and also to Mrs. Faridah from Institute of Bioscience for their favourable help and advice.

I am also very grateful to all my lab mates and our Science Officer Mrs. Zaidina, whose help, suggestions, encouragement and companion are of great help in sustaining the morale and enthusiasm. Last but not least, I would like to express my deepest gratitude to my beloved family especially my wife, who has always believe in me, and endured with me during difficult times. Without their unconditional and endless love, it would not have been possible for me to complete this Master of Science thesis. Financial support from the Universiti Putra Malaysia and the Ministry of Science, Technology and Environment in the form of Scholarship and PASCA Graduate Scheme are gratefully acknowledged.

TABLE OF CONTENTS

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	v
ACKNOWLEDGEMENTS	vii
APPROVAL	viii
DECLARATION	x
LIST OF TABLES	xiii
LIST OF FIGURES	xiv
LIST OF ABBREVIATION	xix

CHAPTER

1	INTRODUCTION				
	1.1	1.1 Antimony Oxides			
	1.2	Antim	Antimony Trioxide, Sb ₂ O ₃		
	1.3	Antimony Tetraoxide, Sb ₂ O ₄			
	1.4	Antim	Antimony Pentaoxide, Sb ₂ O ₅		
	1.5	Sb ₆ O ₁₃	- }	8	
	1.6	The M	ajor Applications of Antimony Oxide	9	
		1.6.1	Catalyst	9	
		1.6.2	Flame Retardant	13	
		1.6.3	Glasses	15	
		1.6.4	Thin Film	16	
	1.7	Prepa	ration of Antimony Oxide	18	
		1.7.1	Preparation Methods	18	
		1.7.2	Effects of The Preparation Parameters	19	
	1.8	Objec	tives of This Study	22	
2	SAM	IPLE SY	NTHESIS AND CHARACTERISATION	23	
	2.1 Preparation of Antimony Oxide via Different Precipitation				
		Parameters			
		2.1.1	Influence of Precipitating Agent NaOH Concentration	23	
		2.1.2	Influence of Precipitating Agent NH4OH	24	
			Concentration		
	2.2 Preparation of Antimony Oxide via Ethanol Solvent			24	
		2.2.1	Influence of Precipitating Agents (NaOH/ NH4OH)	24	
			Concentration		
	2.3 Samples Characterizations				
		2.3.1	Thermogravimetry Analysis (TGA)	25	
		2.3.2	X-Ray Diffraction Analysis (XRD)	25	
		2.3.3	BET Specific Surface Area Measurements	26	
		2.3.4	Fourier Transform Infrared (FTIR)	28	

		2.3.5 Scanning Electron Microscopy (SEM)	29
3	EFFE PHY	ECT OF DIFFERENT PRECIPITATION AGENTS ON THE SICO-CHEMICAL PROPERTIES OF ANTIMONY OXIDE	30
	3.1	Introduction	30
		3.1.1 Thermogravimetry Analysis (TGA)	30
	3.2	Influence of Precipitating Agent Concentration by Using	33
		NaOH as a Precipitating Agent	
		3.2.1 Titration Curves	33
		3.2.2 Phase Identification Using Powder XRD Technique	35
		3.2.3 Fourier- Transform Infrared (FTIR)	39
		3.2.4 BET Specific Surface Area Measurements	41
		3.2.5 Scanning Electron Microscopy (SEM)	41
	3.3	Influence of Precipitating Agent Concentration by Using	47
		NH4OH as a Precipitating Agent	
		3.3.1 Titration Curves	47
		3.3.2 Phase Identification Using Powder XRD Technique	49
		3.3.3 Fourier- Transform Infrared (FTIR)	52
		3.3.4 BET Specific Surface Area Measurements	54
		3.3.5 Scanning Electron Microscopy (SEM)	55
	3.4	Conclusion	57
4	EFFE	CT OF SOLVENTS ON THE PHYSICO-CHEMICAL	62
	PRO	PERTIES OF ANTIMONY OXIDE	
	4.1	Introduction	62
	4.2	Influence of Precipitating Agent Concentration by Using	62
		NaOH as a Precipitating Agent	
		4.2.1 Titration Curves	62
		4.2.2 Phase Identification Using Powder XRD Technique	65
		4.2.3 Fourier- Transform Infrared (FTIR)	68
		4.2.4 BET Specific Surface Area Measurements	69
		4.2.5 Scanning Electron Microscopy (SEM)	70
	4.3	Influence of Precipitating Agent Concentration by Using	76
		NH4OH as a Precipitating Agent	
		4.3.1 Titration Curves	76
		4.3.2 Phase Identification Using Powder XRD Technique	78
		4.3.3 Fourier- Transform Infrared (FTIR)	81
		4.3.4 BET Specific Surface Area Measurements	82
		4.3.5 Scanning Electron Microscopy (SEM)	83
	4.4	Conclusion	84
5	CON	ICLUSIONS	89
RF	FEREN	NCES	91
RI/		A OF THE AUTHOD	71 07
חמ	JUAI	A OF THE AUTHON	71

LIST OF TABLES

Table		Page
1.1	Summary of Thermal Analysis Results by Cody et al., 1979	3
3.1	The crystallite sizes for SbNa _{0.5-3.0} based on XRD data	39
3.2	Specific surface area at different concentration of NaOH	41
3.3	The crystallite sizes for $SbNH_{0.5-3.0}$ based on XRD data	52
3.4	Specific surface area at different concentration of NH4OH	54
4.1	The crystallite sizes for SbetNa $_{0.5}$, SbetNa $_{1.0}$, SbetNa $_{2.0}$ and	68
	SbetNa _{3.0} based on XRD data	
4.2	Specific surface area at different concentration of NaOH using	70
	ethanol as a solvent.	
4.3	The crystallite sizes for SbetNH $_{0.5-3.0}$ based on XRD data	80
4.4	Specific surface area at different concentration of NH4OH using	83
	ethanol as a solvent	

LIST OF FIGURES

Figure		Page
1.1	The orientation structure of antimony trioxide, Sb ₂ O ₃	2
1.2	The orientation structure of antimony tetraoxide, Sb_2O_4	5
1.3	The orientation structure of antimony pentaoxide, Sb_2O_5	7
1.4	Parameters affecting the properties of the precipitate and main	21
	properties influenced	
3.1	Thermogram curve for the SbNa sample before calcined	32
	process	
3.2	Thermogram curve for the SbNH sample before calcined	32
	process	
3.3	Titration curves of the SbNa _{0.5} , SbNa _{1.0} , SbNa _{2.0} , and SbNa _{3.0}	35
	using NaOH as a precipitating agent	
3.4	XRD patterns of the SbNa _{0.5} and SbNa _{1.0} before calcined	37
	showed similar patterns with $Sb_4O_5Cl_2$	
3.5	XRD patterns of SbNa _{2.0} and SbNa _{3.0} before calcined showed	37
	similar pattern of Sb ₂ O ₃	
3.6	XRD patterns of the SbNa $_{0.5}$, SbNa $_{1.0}$, SbNa $_{2.0}$ and SbNa $_{3.0}$ after	38
	calcined at 873 K for 5 hours	
3.7	Infrared spectra of SbNa _{0.5} , SbNa _{1.0} , SbNa _{2.0} and SbNa _{3.0}	40
3.8	SEM micrographs of SbNa _{0.5} after calcined at 873 K for 5 hours	43
	(a) magnification 1500x, (b) magnification 7000x	
	(c) magnification 12000x	

- 3.9 SEM micrographs of SbNa_{1.0} after calcined at 873 K for 5 hours 44
 (a)magnification 1500x (b)magnification 7000x
 (c) magnification 12000x
- 3.10 SEM micrographs of SbNa_{2.0} after calcined at 873 K for 5 hours 45
 (a) magnification1500x, (b) magnification 7000x
 (c) magnification 12000x
- 3.11 SEM micrographs of SbNa_{3.0} after calcined at 873 K for 5 hours 46
 (a) magnification 1500x, (b) magnification 7000x
 - (c) magnification 12000x
- 3.12 Titration curves of the SbNH_x whereas x = 0.5, 1.0, 2.0, and 3.0 48 M of NH₄OH
- 3.13 XRD patterns of the SbNH_{0.5}, SbNH_{1.0}, SbNH_{2.0} and SbNH_{3.0} 50 before calcined similar assigned to Sb₂O₃ from JCPDS File No:11-0689
- 3.14 XRD patterns of the SbNH_{0.5}, SbNH_{1.0}, SbNH_{2.0} and SbNH_{3.0} 51 after calcined at 873 K for 5 hours.
- 3.15 Infrared spectra of SbNH_x where x = 0.5, 1.0, 2.0, and 3.0 M of 53 NH₄OH
- 3.16 SEM micrographs of SbNH_{0.5} at 873 K for 5 hours (a) 58 magnification 1500x, (b) magnification 7000x (c) magnification 12000x
- 3.17 SEM micrographs of SbNH_{1.0} at 873 K for 5 hours (a) 59 magnification 1500x, (b) magnification 7000x (c) magnification

12000x

- 3.18 SEM micrographs of SbNH_{2.0} at 873 K for 5 hours (a) 60 magnification 1500x, (b) magnification 7000x (c) magnification 12000x
- 3.19 SEM micrographs of SbNH_{3.0} at 873 K for 5 hours (a) 61 magnification 1500x, (b) magnification 7000x (c) magnification 12000x
- 4.1 Titration curves of the SbetNa_{0.5}, SbetNa_{1.0}, SbetNa_{2.0} and 65 SbetNa_{3.0}
- 4.2 XRD patterns of the SbetNa_{0.5}, SbetNa_{1.0}, SbetNa_{2.0} and Sbet_{3.0} 66
 before calcined at 873 K for 5 hours matched with Sb₂O₃ from
 JCPDS File
- 4.3 XRD patterns of the SbetNa_{0.5}, SbetNa_{1.0}, SbetNa_{2.0} and 67 SbetNa_{3.0} after calcined at 873 K for 5 hours matched with α -Sb₂O₄ from JCPDS File
- 4.4 FTIR spectra of SbetNa_{0.5}, SbetNa_{1.0}, SbetNa_{2.0}, and SbetNa_{3.0} 69 samples
- 4.5 SEM micrographs of SbetNa_{0.5} at 873 K for 5 hours (a) 72 magnification 1500x, (b) magnification 7000x (c) magnification 12000x
- 4.6 SEM micrographs of SbetNa_{1.0} at 873 K for 5 hours (a) 73 magnification 1500x, (b) magnification 7000x (c) magnification
 12000x

- 4.7 SEM micrographs of SbetNa_{2.0} at 873 K for 5 hours (a) 74 magnification 1500x, (b) magnification 7000x (c) magnification 12000x
- 4.8 SEM micrographs of SbetNa_{3.0} at 873 K for 5 hours (a) 75 magnification 1500x, (b) magnification 7000x (c) magnification 12000x
- 4.9 Titration curves of the SbetNH_{0.5}, SbetNH_{1.0}, SbetNH_{2.0}, and 77 SbetNH_{3.0}
- 4.10 XRD patterns of the SbetNH samples before calcined similar 80 pattern of Sb₂O₃ (mixture of valentinite and senarmontite form)
- 4.11 XRD patterns of the SbetNH $_{0.5}$, SbetNH $_{1.0}$, SbetNH $_{2.0}$ and 81 SbetNH $_{3.0}$ after calcined at 873 K for 5 hours
- 4.12 FT-IR spectra of SbetNH_{0.5}, SbetNH_{1.0}, SbetNH_{2.0}, and 82 SbetNH_{3.0} samples
- 4.13 SEM micrographs of SbetNH_{0.5} at 873 K for 5 hours (a) 85 magnification 1500x, (b) magnification 7000x (c) magnification 12000x
- 4.14 SEM micrographs of SbetNH_{1.0} at 873 K for 5 hours (a) 86 magnification 1500x, (b) magnification 7000x (c) magnification 12000x
- 4.15 SEM micrographs of SbetNH_{2.0} at 873 K for 5 hours (a) 87

magnification 1500x, (b) magnification 7000x (c) magnification 12000x

4.16 SEM micrographs of SbetNH_{3.0} at 873 K for 5 hours (a) 88 magnification 1500x, (b) magnification 7000x (c) magnification 12000x

LIST OF ABBREVIATIONS

BET	Brunauer-Emmet-Teller			
DTA	Differential Thermal Analysis			
FTIR	Fourier Transform Infrared Spectroscopy			
FWHM	Full-Width at Half Maximum			
JCPDS	Joint Committee on Powder Diffraction Standards			
SbNa _{0.5}	The antimony oxide sample using 0.5 M of NaOH solution			
SbNa _{1.0}	The antimony oxide sample using 1.0 M of NaOH solution			
SbNa _{2.0}	The antimony oxide sample using 2.0 M of NaOH solution			
SbNa _{3.0}	The antimony oxide sample using 3.0 M of NaOH solution			
SbNH _{0.5}	The antimony oxide sample using 0.5 M of NH_4OH solution			
SbNH _{1.0}	The antimony oxide sample using 1.0 M of NH ₄ OH solution			
SbNH _{2.0}	The antimony oxide sample using 2.0 M of NH_4OH solution			
SbNH _{3.0}	The antimony oxide sample using 3.0 M of NH ₄ OH solution			
SbetNa _{0.5}	The antimony oxide sample using ethanol solvent and 0.5 M of NaOH solution			
SbetNa _{1.0}	The antimony oxide sample using ethanol solvent and 1.0 M of NaOH solution			
SbetNa _{2.0}	The antimony oxide sample using ethanol solvent and 2.0 M of NaOH solution			
SbetNa _{3.0}	The antimony oxide sample using ethanol solvent and 3.0 M of NaOH solution			
SbetNH _{0.5}	The antimony oxide sample using ethanol solvent and 0.5			

M of NH4OH solution

SbetNH _{1.0}	The antimony oxide sample using ethanol solvent and 1.0 M of NH ₄ OH solution
SbetNH _{2.0}	The antimony oxide sample using ethanol solvent and 2.0 M of NH4OH solution
SbetNH _{3.0}	The antimony oxide sample using ethanol solvent and 3.0 M of NH4OH solution
SEM	Scanning Electron Microscopy
TG	Thermogravimetry
XRD	X-Ray Diffraction
XPS	X-Ray Photoelectron Spectroscopy

CHAPTER 1

INTRODUCTION

1.1 Antimony Oxides

Antimony oxides are known to exist in several different compositions and displayed polymorphism. The two common forms of Sb₂O₃ are the cubic phase senarmontite and orthorhombic phase valentinite. The polymorphic forms of Sb₂O₄ are the orthorhombic α phase (cervantite) and a high-temperature monoclinic β phase [1]. Antimonic acid can be described as Sb₂O₅.XH₂O, its dehydration and thermal decomposition product being Sb₆O₁₃, i.e., Sb₂O_{4.35}; further heating of Sb₆O₁₃ yields Sb₂O₄ as the final composition [2].

1.2 Antimony Trioxide, Sb₂O₃

Antimony trioxide can adopt two crystal structures, both which are stable at room temperature [1]. Cubic Sb₂O₃ (senarmontite) consists of Sb₄O₆ units, which can exist as molecules in the gas phase; orthorhombic Sb₂O₃ (valentinite) has a layered structure, in which long chains (each "link" contains three O²⁻ ions and shares four Sb³⁺ ions) are held together by weak Sb-O interactions [3]. The idealised geometry of the Sb^{III}

coordination can be described as a deformed tetrahedron with the oxygen at three corners and the lone electronic pair of antimony at the fourth corner (Figure 1.1).

Figure 1.1: The orientation structure of antimony trioxide, Sb₂O₃ [4]

Commercial samples of unspecified Sb₂O₃ may contain both allotropes, but their separation is not considered essential prior to the preparation of mixed-metal oxide catalysts.

Table 1.1 showed that when senarmontite is heated in air at 293 K/min, it was detected that volatilization of Sb_2O_3 and oxidation to Sb_2O_4 occurred simultaneously. A total of about 21% weight loss was observed between 773 and 933 K [1].

Identification ^a	Heating rate K/min	Atmosphere at 100 cm³/min	Reaction temp, K	Residue	Condensate
Sb ₂ O ₃ Sen	293	air	773-913 vol. of Sen.	α-Sb ₂ O ₄ ,933-1208 K	Sen. ^b above 1223 K
Sb ₂ O ₃ Sen	293	N ₂	773-1023 vol of Sen.	-	-
Sb ₂ O ₃ Val	293	air	773-833 vol of Val.	α-Sb ₂ O ₄ ,843-1208 K	Sen. above 1223 K
Sb ₂ O ₃ Val	293	N ₂	773-1063 vol of Val.	-	Sen.
α -Sb ₂ O ₄	293	air	1050-onset ^c of vol	mostly α-Sb ₂ O ₄ ; minor β-Sb ₂ O ₄	Sen. ^b at 1468 K
α -Sb ₂ O ₄	293	N ₂	1273-onset ^c of vol	a-Sb ₂ O ₄	Sen. ^b at 1373 K
β-Sb ₂ O ₄	293	air	1323-onset of vol	β-Sb ₂ O ₄ at 1473 K	Sen. ^b at 1473 K
β-Sb ₂ O ₄	293	N ₂	1243-onset of vol	β-Sb ₂ O ₄ at 1403 K	Sen. at 1403 K
Sb ₂ O ₅ .XH ₂ 0	323	air	923-1123 Sb ₆ O ₁₃	α-Sb ₂ O ₄ ,1163-1243 K	Sen. above 1243 K
Sb ₂ O ₅ .XH ₂ 0	323	N ₂	923-1173 Sb ₆ O ₁₃	α-Sb ₂ O ₄ , 1223-onset of vol	Sen. above 1223 K

Table 1.1: Summary of Thermal Analysis Results by Cody et al. [1]

^aKey: Sen.=senarmontite, Val.=valentinite, vol=volatilization. ^bSenarmontite found in cooler region of furnace, valentinite in the moderate temperature region and α-Sb₂O₄ in the hooter temperature zone. ^cVaries according to method of preparation and atmosphere employed

