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Polystyrene (PS) was grafted onto oil palm empty fruit bunch (OPEFB) fiber in aqueous 

medium using ~ 2 0 2 / F e ~ +  initiator system. The grafting percentage was found to be 

dependent on the reaction period and temperature, amounts of the monomer, the 

initiator and the cocatalyst. The maximum percentage of grafting (of about 200%) was 

achieved when the reaction was carried out under the following conditions: reaction 

period; 4 hours, reaction temperature; 65OC, amounts of monomer; 52.27 mmol, 

amounts of initiator; 6.00 mmol and amounts of cocatalyst; 0.26 mmol. The reaction 

mechanism for the grafting of styrene onto OPEFB fiber was proposed and proof of 

grafting was confirmed by scanning electron microscopy (SEM) and Fourier-transform 

infrared (FT-IR) analysis. The presence of a peak around 3026 cm-' and two peaks 

between 698 and 755 cm-'in the FTIR of the product provides strong evidence on the 

presence of poly(styrene) in the product. The effects of grafting on the thermal 



properties were studied by thermogravimetry analysis (TGA). Preparation of composite 

samples were carried out by melt blending in Haake plasticorder with rotor speed of 40 

rpm at 1 70°C for 10 minutes, and then followed by hot pressing moulding. The tensile 

properties of high impact polystyrene &IPS) reinforced with OPEFB, OPEFB-g-PS 

and crude OPEFB-g-PS fiber were studied. By using OPEFB-g-PS and crude OPEFB- 

g-PS as the filler, it was found that the tensile property of the resulting composites was 

enhanced. The tensile strength of OPEFB-g-PS and crude OPEFB-g-PSIHIPS 

composites shows marginal increase up to 20% of filler content but decreases with 

further increase of the filler content. The incorporation of OPEFB fiber considerably 

improves the young modulus of the composite but is more significant when using 

OPEFB-g-PS and crude OPEFB-g-PS as the filler in HIPS composite. The elongation 

at break decreases with the increase of the filler content. The SEM micrograph shows 

that the interfacial adhesion between the OPEFB-g-PS and crude OPEFB-g-PS fibers 

with HIPS matrix are considerably improved compared to that of OPEFB fiber-HIPS 

composites. The water absorption of the composites increases as the filler loading is 

increased. However, by grafting poly(styrene) onto OPEFB fiber, the hygroscopicity of 

the composites can be reduced. The thermal stability of OPEFB-g-PSIHIPS and crude 

OPEFB-g-PSIHIPS composites are improved. Fourier transform infi-ared (FTIR) 

spectroscopy shows that the hydroxyl group absorption shift to lower wave numbers 

which indicates that the hydrogen bonding is formed. The study of the effect of adding 

various amount of the OPEFB-g-PS fiber into OPEFBIHIPS (20:80) composites was 

also carried out. Incorporation of the OPEFB-g-PS in these composites also improves 

the tensile strength and young modulus. 
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Polistirena'(PS) dicangkukkan ke atas gentian tandan kelapa sawit (OPEFB) dalam 

medium berair menggunakan sistem mangkin H ~ O ~ I F ~ ~ + .  Peratus cangkukan didapati 

bergantung kepada masa tindakbalas dan suhu, kuantiti monomer, mangkin dan ko- 

mangkin. Peratus maksimum cangkukan (lebih kurang 200%) dicapai apabila 

tindakbalas dijalankan di bawah keadaan: masa tindakbalas; 4 jam, suhu tindakbalas; 

65"C, kuantiti monomer; 52.27 mmol, kuantiti mangkin; 6.00 mmol dan kuantiti ko- 

mangkin; 0.26 mmol. Mekanisma tindakbalas untuk cangkukan stirena ke atas gentian 

- -  -- - -  -. -- 

OPEFB dicadangkan dan bukti cangkukan disahkan denrmikroskopi pengimbz - 

elektron (SEM) dan analisis Infiamerah Fourier (FTIR). Kehadiran puncak sekitar 3026 

cm-' dan dua pucak di antara 698 dan 755 cm-' di dalam FTIR menunjukkan bukti yang 

h a t  kehadiran PS dalam produk. Kesan cangkukan ke atas sifat terma dijalankan 

menggunakan analisis termogravimetri (TGA). Penyediaan sampel komposit dilakukan 



secara pengadunan leburan di dalam Haake Plasticorder dengan kelajuan rotor 40 rpm 

pada 170°C selama 10 minit, diikuti dengan pengacuan mampatan panas. Sifat tensil 

bagi polistirena hentaman tinggi (HIPS) yang diperkuatkan dengan OPEFB, OPEFB-g- 

polistirena dan 'crude' OPEFB-g-polistirena dikaji. Dengan menggunakan OPEFB-g- 

polistirena dan 'crude' OPEFB-g-polistirena sebagai pengisi di dapati meningkatkan 

sifat tensil bagi komposit tersebut. Kekuatan t end  bagi OPEFB-g-polistirena dan 

'crude'OPEFB-g-polistirena/HlPS komposit menunjukan peningkatan yang kecil 

sehingga pembebanan pengisi 20% tetapi menurun apabila pembebanan pengisi 

bertambah. Modulus young bagi komposit meningkat dengan kehadiran gentian 

OPEFB tetapi peningkatan lebih ketara apabila menggunakan OPEFB-g-polistirena dan 

'crude' OPEFB-g-polistirena sebagai pengisi di dalam komposit HIPS. Pemanjangan 

pada takat putus menurun apabila pembebanan pengisi bertambah. Mikrograf SEM 

menunjukkan perlekatan antarafasa di antara OPEFB-g-polistirena dan 'crude' OPEFB- 

g-polistirena dengan matrik HIPS adalah lebih baik dibandingkan dengan komposit 

OPEFBIHIPS. Kadar penyerapan air bertambah apabila pembebanan pengisi 

bertambah. Walaubagaimanapun dengan mencangkukkan polistirena ke atas gentian 

OPEFB boleh mengurangkan higroskopik komposit tersebut. Kestabilan terma bagi 

komposit OPEFB-g-PStHIPS dan 'crude' OPEFB-g-PS adalah lebih baik Analisis 

sinaran infiamerah fourier VTIR) menunjukan penyerapan kumpulan hidroksil beralih 

ke nombor gelombang yang lebih rendah. Ini bermakna terbentuknya ikatan hidrogen. 

Kajian terhadap kesan penambahan pelbagai kuantiti OPEFB-g-polistirena kedalam 

komposit OPEFB/HIPS (20:80) juga dijalankan. Penambahan OPEFB-g-polistirena di 

dalam komposit ini juga meningkatkan kekuatan tensil dan modulus young. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

In recent years, significant efforts have been made to manufacture natural fibers 

reinforced thermoplastic composites. The rationale behind these efforts is that the use 

of natural fibers offers several advantages, such as low cost, low density, high 

toughness, acceptable specific strength, enhanced energy recovery, recyclables and 

biodegradability (Misra et al. 2003). 

Lignocellulosic filler and fiber have recently been investigated in synthetic polymer 

composite systems. Their potential to enhance the mechanical properties over a neat 

polymer matrix (particularly impact toughness and stiffness) and to reduce the final cost 

of the material as well as to increase the biodegradable component content within the 

materials make the use of biobased polymer very attractive. Cellulose-containing fibers 

such as wood fiber, sisal fiber and rice straws have been studied in the context of their 

reinforcing properties within conventional thermoplastic materials. Various matrix 

materials combine with natural fibers including polypropylene (Ichazo et al. 2000), 

various polystyrene (Maldas et al. 1988; Nair et al. 1996; Maldas et al. 1989), 

polyethylene (Raj et al. 1989) and polyvinyl chloride (Kamel, 2004). 



A common problem associated with these composite systems is poor interfacial 

adhesion between the hydrophobic matrix material and the hydrophilic filler, which 

contributed to the poor mechanical properties in the final material. This problem may 

be addressed by grafting hydrophobic vinyl monomer onto backbone of cellulose fiber. 

Grafting of synthetic polymeric chains is one of the most recurrent used methods to 

increase the compatibility between cellulose and a variety of synthetic polymer (Bledzki 

and Gassan, 1999). Grafting of lignocellulosic material such as sisal fiber (Mishra et al. 

200 l), jute (Chauhan et al. 2000; Mohanty and Singh, 1998; Gosh and Ganguly, 1994; 

Moharana and Tripathy, 1991), kenaf (Eromosele and Bayero, 1999) and pineapple leaf 

(Mohanty et al. 1996) have been done successfdly using a different type of initiator. 

In this research oil palm empty h i t  bunch (OPEFB) are grafted with polystyrene to 

modifL the surface of OPEFB fiom hydrophilic to hydrophobic fillers and make it 

compatible with hydrophobic matrices when it is used as filler in high impact 

polystyrene (HIPS) composite. 

OPEFB fiber is a natural fiber derived from an oil palm tree (Elaeis guineesis). It is one 

of the lignocellulosic materials of great importance in Malaysia since a large quantity is 

generated by oil palm industries, which is estimated to be about 8 million tones peryear 

(Rozman et al. 2000). The utilization of OPEFB offers several advantages such as low 

density, greater defonnability, less abrasiveness to equipment, biodegradability, cheap 



and also reduces environmental problems related to the disposal of the oil palm wastes 

(Rozman et al. 2001). 

1 2  Copolymers 

A polymer whose chain molecules are composed of more than one kind of repeating 

chemical units is commonly called copolymer (Ghosh, 2002). The copolymer is 

categorized into four types depending on the orders of monomer in the polymer 

backbone. 

1. Alternating copolymers: When the monomers are arranged in alternating fashion. 

The alternating copolymer is represented as follows: 

2. In a random copolymers, the monomers may follow in any order: 

3. Block copolymers are polymer chains consisting of segments with different chemical 

composition. The block copolymers is represented as follows: 



4. Graft copolymers: Graft copolymers are prepared when long or short sequences of 

one monomer appear as grafted or pendent chains linked to a backbone of long 

sequences of another monomer. The structure is assumed as follows: 

(Note: A and B are different monomer units) 

Thermoplastics 

Thermoplastics offer many advantages over traditional materials such as low density, 

low energy for manufacturing and low processing costs. Thermoplastic also can be 

reshaped and recycled (Crawford, 1981). It's generally divided into two classes of 

molecular arrangement, amorphous and semicrystalline. Amorphous and 

semicrystalline structures are showed in Figures 1.1 (a) and 1.1 (b) respectively. 



Figure l.l(a): Amorphous 

Figure l.l(b): Semicrystalline 

Polymer-Fiber Composites 

A polymer-fiber composite is any material made of a fiber and a matrix (Figure 1.2). 

The matrix, which is a stuff that holds the fibers, transfers applied load to these fibers 

and protect them fiom harmful environmental effects. When the composite material is 

formed into a shape, the matrix protects the fiber fiom damage. Thermosets and 

thermoplastic are an examples of ideal matrices (Jayaraman, 2003). 


