

UNIVERSITI PUTRA MALAYSIA

MARICULTURE POND ECOLOGY WITH EMPHASIS ON ENVIRONMENTAL QUALITY AND PRODUCTION OF PENAEUS MONODON (FABRICIUS)

ABU HENA MUSTAFA KAMAL.

FS 2005 32

MARICULTURE POND ECOLOGY WITH EMPHASIS ON ENVIRONMENTAL QUALITY AND PRODUCTION OF PENAEUS MONODON (FABRICIUS)

By

ABU HENA MUSTAFA KAMAL

Dissertation Submitted in the Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Faculty of Science Universiti Putra Malaysia July 2005

DEDICATION

To the memory of my late grand father who is no longer to share with me during this moment

> To my parents who always inspire and encourage me to achieve my goal

> > My wife 'Sadia'

To my eldest brother Md. Iqbal whom I tried to emulate from my boyhood

and

The people who are working on sustainable development of fisheries for their livelihood

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

MARICULTURE POND ECOLOGY WITH EMPHASIS ON ENVIRONMENTAL QUALITY AND PRODUCTION OF PENAEUS MONODON (FABRICIUS)

By

ABU HENA MUSTAFA KAMAL

July 2005

Chairperson: Hishamuddin Omar, Ph. D.

Faculty: Science

In the present study, mariculture pond ecology with special reference to environmental quality and tiger shrimp *Penaeus monodon* production in old culture ponds (>3 years) and new culture ponds (<1 year) were investigated throughout the culture period in Malacca, Malaysia. The study showed that the cation exchange capacity (CEC) varies with soil texture while soil organic matter varied with the culture pond age. The concentrations of major cations depends on cation exchange capacity of soils attributed partly to chemical bonding or adsorption of colloids. Deposition of nutrient loaded suspended solids through uneaten feeds and other culture activities led to increase in the concentrations of macro and microelements onto the pond bottom at the end of the culture period. The dynamics of macro and microelements in pond and sediment waters were not distinct in old and new culture ponds throughout the culture period, but were influenced by accumulation process of living organisms, water exchange and precipitation of major cation as organic and inorganic particles.

Major groups of the macro and meiobenthos comprised of gastropods, polychaetes, bivalves, crustaceans, ostracods, nematodes, insects and crab larvae. Gastropods were the dominant group of macrobenthos followed by harpacticoid copepod as meiobenthos

throughout the culture period. The growth of shrimp was related with the macrobenthos (r=0.62, p<0.05) and meiobenthos abundance (r=0.67, p<0.05) in the culture ponds. The major groups of zooplankton in the ponds were copepods, rotifers, sergestidae, luciferans, gastropod larvae, bivalve larvae, pelagic polychaetes, nematodes, crustacean nauplii, insects and mysids. About 18-30% of the total zooplankton population decreased within one month after the release of post larvae into the ponds which revealed the significance of natural foods in culture ponds in reducing the production cost and increasing pond yield. Stomach content analysis showed that the stomach of shrimps contained a wide variety of items depending on the availability of benthic and pelagic organisms in the ponds. Higher content of natural food items were found in the stomach of shrimps collected from the old culture ponds than the new culture ponds. Although a commercial feed was provided, the juvenile, sub adult and adult P. monodon were found to be opportunistic omnivorous scavengers feeding on variety of benthic materials and organisms such as detritus, crustacean, molluscs, polychaetes, rotifers and phytoplankton. In the group of Crustacea, copepods were the major food item preyed by all stages of the shrimps throughout the culture period in the ponds.

The diversity of fungi increased at the end of culture period in both old and new culture ponds. The proliferation of fungi in general could be due to shrimp faeces and high carbon source from uneaten feeds as the culture progressed. The present study revealed that population of fungi in shrimp pond sediments were mostly of the genera of *Aspergillus* and *Penicillium* which were similar to the terrestrial soil fungi. The results showed that many activities such as feeding, nutrient status, stocking density, weather conditions, accumulation of organic matters, biological factors and pond age governed the quality of pond water, shrimp growth, production and pond ecosystem during the culture period.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

EKOLOGI KOLAM MARIKULTUR DENGAN TUMPUAN KEPADA KUALITI ALAM SEKITAR DAN PRODUKSI *PENAEUS MONODON* (FABRICIUS)

Oleh

ABU HENA MUSTAFA KAMAL

Julai 2005

Pengerusi: Hishamuddin Omar, Ph. D.

Fakulti: Sains

Di dalam kajian ini, ekologi bagi kolam marikultur dengan tumpuan kepada kualiti alam sekitar dan produksi udang harimau *Penaeus monodon* dalam kolam kultur tua (>3 tahun) dan kolam kultur baru (<1 tahun) telah dikaji sepanjang tempoh kultur di Melaka, Malaysia. Kajian ini menunjukkan keupayaan pertukaran kation berbeza mengikut tekstur tanah dan kandungan bahan organik tanah berbeza mengikut usia kolam. Kepekatan kation utama bergantung pada kemampuan pertukaran kation yang sebahagiannya disebabkan oleh tindakbalas kimia atau pengabungan kolloid. Timbuntambah nutrien terhasil daripada pemendakan pepejal terampai, sisa makanan dan aktiviti pengkulturan yang lain menyebabkan peningkatan paras elemen makro dan mikro di dasar kolam di akhir masa kultur. Kajian ini mendapati tidak terdapat perbezaan yang jelas di antara elemen makro dan mikro di dasar kolam dan kolam lama di sepanjang jangkamasa pengkulturan tetapi ia dipengaruhi oleh organisma hidup, pertukaran air dan pemendakan kation utama sebagai partikel organik dan tak organik.

Kumpulan utama bagi makro dan meiobentos terdiri daripada gastropod, polikit, bivalvia, krustasia, ostracod, nematod, serangga dan larva ketam. Gastropod merupakan

kumpulan makrobentos dominan diikuti oleh kopepod harpacticoid sebagai meiobenthos di sepanjang tempoh kultur. Pertumbuhan udang adalah berkadar terus dengan kehadiran makrobentos (r=0.62, p<0.05) dan kelimpahan meiobentos (r=0.67, p<0.05) dalam kolam. Kumpulan utama bagi zooplankton dalam kolam kajian adalah kopepod, rotifer, sergestid, lusifer, larva gastropod, larva bivalvia, polikit pelagik, nematod, naupli krustasia, serangga dan misid. Dianggarkan lebih kurang 18-30% daripada jumlah zooplankton berkurangan dalam masa sebulan selepas pelepasan pasca larva udang ke dalam kolam. Keputusan ini menunjukkan kepentingan makanan semulajadi dalam kolam udang dalam mengurangkan kos makanan dan meningkatkan pengeluaran. Kajian kandungan perut udang mendapati ia mengandungi pelbagai bahan bergantung kepada kehadiran organisma bentik dan pelagik di dalam kolam. Kandungan makanan semulajadi dalam perut udang dari kolam kultur usang adalah lebih tinggi berbanding dalam kolam kultur baru. Juvenil, sub dewasa dan dewasa P. monodon adalah 'scavenger' omnivor yang memakan apa sahaja termasuk pelbagai bahan bentik dan organisma seperti detritus, krustasia, serangga, mollusk, polikit, rotifer dan fitoplankton. Dalam kumpulan krustasia, kopepod adalah makanan utama yang dimakan oleh semua peringkat hidup udang sepanjang tempoh kitaran di dalam kolam.

Kajian mendapati diversiti kulat beransur meningkat mengikut jangkamasa pengkulturan dalam kolam usang dan baru. Peningkatan populasi kulat secara amnya mungkin terhasil akibat pertambahan najis udang dan sisa makanan yang mengandung sumber karbon yang tinggi dengan jangkamasa pengkulturan. Kajian ini juga mendapati populasi kulat yang biasa dalam sedimen kolam udang terdiri daripada genus *Aspergillus* dan *Penicillium* yang sama dengan kulat daratan. Keputusan kajian

mendapati aktiviti seperti pemberian makanan, status nutrien, kepadatan pelepasan, pengaruh cuaca, pengumpulan bahan organik, faktor biologi dan umur kolam mempengaruhi kualiti air kolam, pertumbuhan udang, produksi dan ekosistem di sepanjang jangkamasa pengkulturan.

ACKNOWLEDGEMENTS

All the praise and admiration for Allah, the Almighty, Beneficial and the most Merciful, who has enabled me to submit this thesis.

It is my pleasure to express my profound sense of gratitude and indebtedness to my respected research supervisor Dr. Hishamuddin Omar, the Chairman of my supervisory committee for his guidance and inspiration during the research period. I am profound indebted to my co-supervisors Dr. Misri Kusnan and Associate Professor Dr. Faridah Abdullah, Department of Biology, Universiti Putra Malaysia for their kind supervision and suggestions to carry out my research works properly.

I would like to express my thanks Associate Prof. Dr. Siti Shapor H. Siraj, the Head of the Department of Biology and staff members for providing the suitable environment and facilities during this research. I am grateful to the Malaysian Government for financial support through Intensification of Research in Priority Areas (IRPA) projects no. 01-04-0529-EA001.

I would like to express my sincere thanks to Prof. Dr. Sasekumar of Universiti Malaya, Associate Prof. Dr. Jambari, Associate Prof. Dr. Aziz Arshad of Universiti Putra Malaysia, National Historical Museum, Chiba, Japan and Museum and Art Gallery of the Northern Territory, Australia for identification of polychaeta and mollusca. The technical help provided by Prof. Dr. Shirayama in University of Tokyo and Drs. Idris Abdul Ghani in Universiti Putra Malaysia is also greatly acknowledged. My sincere thank goes to Prof. Dr. Claude E. Boyd, University of Auburn, USA for

providing the literatures on soil and water properties, which help me a lot to compile this thesis. Thank you once again Prof. for your contribution.

I would like to appreciate the cooperation of Dr. Farshad the Ex Technical Manager of Progressive Aquaculture Sdn Bhd, Perak and Dato Prof. Dr. Alang Perang Abdul Rahman B. Zaiuddin Chairman of Farmer's Organization Authority Malaysia (Lembaga Pertubuhan Peladang) for allowing me to collect samples from shrimp ponds in Malacca. Special thank goes to Dr. S. Shamarina, Department of Biology, Universiti Putra Malaysia for helping statistical analysis. My appreciate goes to the Vice Chancellor of University of Chittagong and Director of Institute of Marine Sciences, University of Chittagong for giving permission to come Malaysia to compile my thesis work.

My sincere respect to my parents, my wife, elder brothers and sisters for their unfailing support and encouragement for my higher study. Heartfelt thanks are due to all of my friends/elders for their suggestion, encouragement and help during the work especially; Dr. Yap C. K., Dr. Farshad, Dr. Hamid, Loo Khi Kin, Ms Ang, Kennedy, Saufi, Halim, Azmain, Mahmood, Nurul Vai, Nurul Vabi, Jahed Vai, Mahfuza Apa, Navid, Helen, Amin, Vabi and En Hidir.

Last, but not least, I am thankful to all of my well-wishers whom have helped me in any form.

TABLE OF CONTENTS

	Page
DEDICATION	ii
ABSTRACT	iii
ABSTRAK	v
ACKNOWLEDGEMENTS	viii
APROVAL SHEETS	Х
DECLARATION	xii
LIST OF TABLES	xvii
LIST OF FIGURES	· XX
LIST OF PLATES	xxi

CHAPTER

I	INTRODUCTION	1
	Background of the Study	1
	Statement of the Problems	2
	Significance of the Study	5
	Objectives of the Study	7
IJ	LITERATURE REVIEW	8
	Taxonomy and Biological Features of P. monodon Fabricius	8
	Feeding Biology	9
	Nutrition and Growth Requirement of P. monodon Fabricius	11
	Protein and Amino Acids	12
	Lipid and Fatty Acids	13
	Carbohydrates and Energy	15
	Fiber and Ash	16
	Vitamins	16
	Culture of Tiger Shrimp P. monodon Fabricius	17
	Selection of Sites for P. monodon Fabricius Culture	19
	Shrimp Farm and Pond Design	21
	Preparation of Culture Pond	24
	Liming	24
	Fertilization of Pond and Phytoplankton Management	25
	Water Intake in the Pond	26
	Selection of Fry and Acclimatization	27
	Stocking Density	28
	Food and Feeding	29
	Water Management	33
	Water Exchange	33
	Aeration	35
	Nutrients in Pond Ecosystem	37
	Roles of Natural Foods in Pond	38
	Stomach Content of Shrimps	40
	Microorganisms in Pond Ecosystem	41

	Physico-Chemical Parameters of Culture Pond Water	42
	Temperature and Salinity	43
	Dissolved Oxygen	44
	Hydrogen ion Concentration (pH)	45
	Turbidity	45
	Ammonia	46
	Nitrite and Nitrate	46
	Hydrogen Sulfide (H ₂ S)	48
	Phosphate	48
	Light	49
	World Wide Production of Shrimp	49
Ш	GENERAL MATERIALS AND METHODS	51
	Location of the Study Ponds.	51
	Period of Study and Collection of Sample	51
	Description of Culture Protocol	51
IV	PHYSICAL AND CHEMICAL CHARACTERISTICS OF SOIL	AND
	WATER IN P. MONODON CULTURE PONDS	54
	Introduction	54
	Materials and Methods	56
	Analysis of Macro and Microelements of Pond and Sediment Water	56
	Collection and Analysis of Pond Soils	56
	Analysis of Soil pH	57
	Analysis of Soil Texture	57
	Analysis of Total Phosphorus	59
	Analysis of Total Nitrogen	59
	Analysis of Total Sulphur	60
	Analysis of Total Carbon (TC)	61
	Analysis of Organic Matter (OM)	61
	Analysis of Organic Carbon (OC)	62
	Cation Exchange Capacity (CEC)	62
	Analysis of Soil Macro and Microelements.	62
	Digestion of Soil	62
	Statistical Analysis	63
	Results	63
	Physical and Chemical Factors of Pond Soils	63
	Elements in Pond Soils	67
	Macro elements	6/
	Microelements	68
	Macro and Microelements in Pond and Sediment Water	/0 75
	Discussion	13
	Physical and Unemical Factors of Pond Solls	10
	Elements in Pond Solis	63 02
	Macro elements	03 04
	When the section of Marcalements	00 QA
	Fond and Sediment water Macro and Microelements	07

V	ABUNDANCE AND COMPOSITION OF MACRO AND MEIOBEN	THOS
	IN P. MONODON CULTURE PONDS	92
	Introduction	92
	Materials and Methods	93
	Collection of Macro and Meiobenthos	93
	Shannon Diversity Index	93
	Statistical Analysis	94
	Results	94
	Abundance and Composition of Macrobenthos	94
	Abundance and Composition Meiobenthos	99
	Discussion	104
	Macrobenthos	104
	Meiobenthos	108
v	I ZOOPLANKTON COMMUNITY IN COMMERCIAL P. MONO	DON
	CULTURE PONDS	111
	Introduction	111
	Materials and Methods	112
	Collection of Zooplankton	112
	Shannon Diversity Index	113
	Statistical Analysis	113
	Results	113
	Discussion	118
V	II FEEDING BEHAVIOUR AND FOOD PREFERENCE OF DIFFE	RENT
	STAGES OF POND CULTURED TIGER SHRIMP P. MONODON	122
	Introduction	122
	Materials and Methods	123
	Collection of Shrimps	123
	Estimation of Foregut Content	123
	Results	124
	Discussion	131
VI	II DIVERSITY AND COMPOSITION OF SOIL FUNGI IN P. MONO	DDON
	CULTURE PONDS	136
	Introduction	136
	Materials and Methods	137
	Sampling of Sediment	137
	Preparation of Agar Media	138
	Isolation of Soil Fungi by Soil Dilution Plate Method	139
	Agar Slant Preparation	139
	Identification of Fungi	140
	Results	140
	Discussion	141

IX	EFFECTS OF PHYSICO-CHEMICAL AND BIOLOGICAL	PARAMETERS
	ON GROWTH, SURVIVAL AND PRODUCTION OF P.	MONODON IN
	PONDS	144
	Introduction	144
	Materials and Methods	145
	Pond Water Parameters	145
	Detection of Pond Water Parameters	145
	Analysis of Total Suspended Solid (TSS)	145
	Analysis Biochemical Oxygen Demand (BOD ₃)	146
	Pond and Sediment Water Nutrients	147
	Collection of samples	147
	Analysis of Pond and Sediment Water	147
	Determination of Water Nitrate (NO ₃ ⁻)	147
	Determination of Water Ammonium (NH4 ⁺)	148
	Determination of Water Phosphate (PO ₄ ⁼)	148
	Determination of Total Sulphur (TS)	149
	Analysis of Water Chlorophyll	149
	Collection of Shrimps and Production Parameters of Shrimp	150
	Statistical Analysis	151
	Results	151
	Physico-chemical Factors of Water	151
	Chlorophyll Content of Water	155
	Pond and Sediment Water Nutrients	155
	Production Parameters of Shrimps	157
	Discussion	160
	Physico-chemical Factors of Water	160
	Chlorophyll Content of Water	164
	Pond and Sediment Water Nutrients	165
	Production Parameters of Shrimps	167
X	GENERAL DISCUSSION AND CONCLUSIONS	171
	REFERENCES	181
	APPENDIX	208
	VITAE	210

LIST OF TABLES

Table		Page
1	Food habit of <i>Penaeus monodon</i> in the wild at different development stages (Adopted from Pascual, 1988a)	10
2	Recommended protein levels in commercial shrimp feed as fed basis (Akiyama and Chwang, 1989)	13
3	Recommended lipid levels in commercial shrimp feed as fed basis (Akiyama and Chwang 1989; Chen, 1993)	14
4	Lime requirements of bottom mud based on pH and texture (Avault, 1999)	25
5	Recommended temperature and salinity acclimation times for penaeid post larvae (Maugle, 1987)	28
6	Different stocking density levels for <i>P. monodon</i> and expected production ranges per hectare per crop (Apud 1988)	30
7	Standard feeding time, frequency and feeding distribution for semi- intensive shrimp farm (Apud 1988; Akiyama 1993)	32
8	Standard feeding rates of semi intensive tiger shrimp farm (Apud, 1988; Akiyama 1993)	32
9	Conceptual water exchange rates for tiger shrimp farm (C P Aquaculture Business Davelopment Department, 1002)	25
10	Safe concentrations of NH_4^+ , NH_3 -N and nitrite-N for <i>P. monodon</i> at	55
11	Physical and chemical parameters (mean \pm standard error) of soil from	47
12	shrimp culture ponds Physical and chemical parameters (mean \pm standard error) of soil	65
13	throughout the culture period in old culture ponds Physical and chemical parameters (mean \pm standard error) of soil	63
14	throughout the culture period in new culture ponds Macro elements concentrations (mean \pm standard error) of soil from	66
15	shrimp culture ponds Concentrations of soil macro elements (mean \pm standard error) of old and	67
16	new <i>P. monodon</i> culture ponds throughout the culture period Microelements concentrations (mean + standard error) of soil from	68
17	shrinp culture ponds Concentrations of soil microalements (mean \pm standard error) of old R	69
17	monodon culture ponds throughout the culture period	69
18	Concentrations of soil microelements (mean \pm standard error) of new <i>P</i> . monodon culture ponds throughout the culture period	70
19	Macro and microelements concentrations (mean \pm standard error) of culture pond water	71
20	Macro and microelements concentrations (mean \pm standard error) of sediment water of culture ponds	71
21	Concentrations of pond water macro and microelements (mean \pm standard error) of old <i>P. monodon</i> culture ponds throughout the culture period	72
22	Concentrations of pond water macro and microelements (mean \pm standard error) of new <i>P. monodon</i> culture ponds throughout the culture period	72

23	Concentrations of sediment water macro and microelements (mean \pm standard error) of old <i>P. monodon</i> culture ponds throughout the culture period	74
24	Concentrations of sediment water macro and microelements (mean \pm standard error) of new <i>P. monodon</i> culture ponds throughout the culture period	74
25	Comparison of macro elements ranges in shrimp pond soils from regional studies with the present results	84
26	Concentration of soil macro elements of the culture ponds and their category according to Boyd <i>et al.</i> (1994b)	84
27	Concentration of soil microelements (mean \pm standard error) of the culture ponds and it category according to Boyd <i>et al.</i> (1994b)	87
28	Comparison of water and sediment water chemical properties with regional studies	91
29	Species composition of macrobenthos from old and new culture ponds during the culture period	95
3U 21	culture period of the studied ponds	96
32	during the culture period Shannon diversity index and evenness of meiobenthos throughout the	100
33	culture period of the studied ponds Species composition of zooplankton from old and new culture ponds	102
34	during the culture period Shannon diversity index and evenness of zooplanktons throughout the	114
35	culture period of the study ponds Frequency of stomach studied in different ages and sizes of <i>P. monodon</i>	116
36	from old culture ponds during the culture period Frequency of stomach studied in different ages and sizes of <i>P. monodon</i>	126
37	from new culture ponds during the culture period Natural food organisms and their estimated quantity in the stomachs of	127
38	PL ₁₅ stocked in the old and new culture ponds Natural food organisms and their estimated quantity in the stomachs of	128
39	Natural food organisms and their estimated quantity in the stomachs of	129
40	Natural food organisms and their estimated quantity in the stomach of shrimp at 7 th week of the culture in old and new culture ponds	129
41	Natural food organisms and their estimated quantity in the stomach of shrimps at 10 th week of the culture in old and new culture ponds	130
42	Natural food organisms and their estimated quantity in the stomach of shrimp at 13 th week of the culture in old and new culture ponds	130
43	Natural food organisms and their estimated quantity in the stomach of 12 specimens of shrimp at 16 th week of the culture in new culture ponds	130
44	Soil fungi isolated from shrimp culture ponds during the culture period $(cfu/g \times 10^2)$	141
45	Physico-chemical parameters (mean \pm standard error) of old and new culture ponds throughout the culture period	151
46	Physico-chemical parameters (mean \pm standard error) of old <i>P. monodon</i> culture ponds throughout the culture period	152

Physico-chemical parameters (mean \pm standard error) of new <i>P. monodon</i> culture ponds throughout the culture period Pond water and sediment water nutrients (mean \pm standard error) of <i>P. monodon</i> culture ponds Concentrations of pond water and sediment water nutrients (mean \pm standard error) of old <i>P. monodon</i> culture ponds throughout the culture	152 156 157
Pond water and sediment water nutrients (mean \pm standard error) of <i>P</i> . monodon culture ponds Concentrations of pond water and sediment water nutrients (mean \pm standard error) of old <i>P</i> . monodon culture ponds throughout the culture	156 157
Concentrations of pond water and sediment water nutrients (mean \pm standard error) of old <i>P. monodon</i> culture ponds throughout the culture	157
period	
Concentrations of pond water and sediment water nutrients (mean \pm standard error) of new <i>P. monodon</i> culture ponds throughout the culture period	157
Relationship between the pond status and production parameters during the culture period.	158
Growth performance of tiger shrimp <i>P. monodon</i> cultured at different culture ponds	158
Estimated feeding areas of old and new culture ponds of tiger shrimp <i>P. monodon</i> .	159
Comparison of shrimp production, stocking density and culture duration from regional studies with present study	170
	period Concentrations of pond water and sediment water nutrients (mean \pm standard error) of new <i>P. monodon</i> culture ponds throughout the culture period Relationship between the pond status and production parameters during the culture period. Growth performance of tiger shrimp <i>P. monodon</i> cultured at different culture ponds Estimated feeding areas of old and new culture ponds of tiger shrimp <i>P. monodon</i> . Comparison of shrimp production, stocking density and culture duration from regional studies with present study

LIST OF FIGURES

Figure		Page
1	Life cycle and ecology of <i>P. monodon</i> in different stages and habitats (Adopted from Brock and Moss, 1992)	9
2	A speculated food web model in an extensive shrimp culture pond ecosystem (Kildow and Huguenin, 1974)	18
3	A semi intensive shrimp pond ecosystem and its function (Funge-Smith and Briggs, 1998)	19
4	A typical lay out design of semi intensive culture ponds (C. P Shrimp News, 1993a)	23
5	Population of macrobenthos in old culture ponds during the culture period	96
6	Population of macrobenthos in new culture ponds during the culture period	96
7	Percent composition of macrobenthos in old culture ponds during the culture period	98
8	Percent composition of macrobenthos in new culture ponds during the culture period	99
9	Population of meiobenthos in old culture ponds during the culture period	101
10	Population of meiobenthos in new culture ponds during the culture period	101
11	Percent composition of meiobenthos in old ponds during the culture period	103
12	Percent composition of meiobenthos in new ponds during the culture period	103
13	Relationship between total macrobenthos and shrimp growth in old culture ponds during the culture period	107
14	Relationship between total macrobenthos and shrimp growth in new culture ponds during the culture period	107
15	Relationship between total meiobenthos and shrimp growth in old culture ponds during the culture period	109
16	Relationship between total meiobenthos and shrimp growth in new culture ponds during the culture period	109
17	Population of zooplankton in old culture ponds during the culture period	115
18	Population of zooplankton in new culture ponds during the culture period	115
19	Percent composition of zooplankton in old culture ponds during the culture period	117
20	Percent composition of zooplankton in new culture ponds during the culture period	117
21	Total rainfall (mm) of Malaysia within the sampling period April 2001 July 2002 (Source: Malaysian Metrological Department 2001-2002)	153
22	Air temperature (°C) of Malaysia within the sampling period April 2001-July 2002 (Source: Malaysian Metrological Department 2001-	100
	2001-501y 2002 (Source: Maraysian Metrological Department 2001- 2002)	153
23	The growth (g) of <i>P. monodon</i> cultured in old and new culture ponds throughout the culture period	159

LIST OF PLATES

P

]	Page

Plate		Page
1	Old shrimp culture pond in Malacca	52
2	New shrimp culture pond in Malacca	53
3	Some of the macrobenthos found in old and new culture ponds during the culture period; [A] <i>Stenothyra polita</i> [B] <i>Cerithidea cingulata</i> [C] <i>Fairbankia</i> sp. (x12) [D] <i>Syncera brevicula</i> (x8) [E] <i>Gelonia ceylonica</i> [F] <i>Anadara granosa</i> (x10) [G] <i>Syncera</i> sp. (x10) [H] <i>Namalycostis</i> <i>abiuma</i> (x8) [I] <i>Capitella capitata</i> (x10) [J] Spionidae (Family; x8)	
	[K] Notomastus sp. (x10) [L] Cypridina sp. (x25)	97
4	Some of meiobenthos found in the old and new shrimp culture ponds throughout the culture period; [A] <i>Euterpina acutifrons</i> (x40) [B] <i>Nitokra affinis</i> (x32) [C] <i>Euterpina</i> sp. (x32) [D] <i>Tisbe</i> sp. (x25) [E] <i>Tegastes</i> sp. (x40) [F] <i>Cerithidae</i> larvae (x20) [G] Nerillidae (Family; x10) [H] <i>Spirina</i> sp. (x25) [I] Parasitic mites (Hydrachnellidae; x32) [J] <i>Sabatiera</i> sp. (x40) [K] <i>Puparium</i> larvae (Diptera; x32) [L]	
	Syllidae (Family; x8)	102
5	Some of the zooplankton found in the shrimp culture ponds [A] Acartia sp. (x12) [B] Labidocera sp. (x12) [C] Oithona sp. (x25) [D]	116
6	Appendages or body parts of natural food organisms found in the stomachs during different sampling period [A] Phytoplankton (4 th week; x32) [B] Crustacean appendages (7 th week; x8) [C] Ostracodes (7 th week; x16) [D] Gastropod (10 th week; x20) [E] Crustacean mouth organ (10 th week; x16) [F] Polychaetes (10 th week; x20) [I] Rotifer (13 th week; x12) [G] Polychaetes (16 th week; x10) [H] Mysid	110
7	(Crustacean) appendage (16^{th} week; x10) Mature surface and typical conidial head of isolated fungi from shrimp pond sediments [A] <i>Trichoderma</i> sp. [B] <i>Penicillium decumben</i> [C] <i>P</i>	128
	oxalicum Cont'd	142
7 Cont'd	[D] Penicillium chrysogenum series [E] Aspergillus flavus group [F] Aspergillus flavipes	143

CHAPTER I

INTRODUCTION

Background of the Study

Shrimp culture has been developed in many countries over the past decade, in which this activity attained great economic and social importance. Among the cultivated shrimps, tiger shrimp *Penaeus monodon* is the most important species for coastal aquaculture in many countries, particularly in Asia and Northern Australia. In those regions, tiger shrimp is more preferred due to its availability, fast growth, hardy quality and high price (Shang, 1986). The most common tiger shrimp production practices are either extensive or intensive culture. The extensive system completely depends on natural productivity while the intensive systems require auxiliary inputs and capital (Folke and Kautsky, 1989).

The world growth of cultured shrimp production is similar to the four phases of the theoretical growth curve of the marketed commodity i.e. development, growth, maturity and decline. The initial development phase started after 1930s, when Motosaku Fujinaga succeeded in spawning the kuruma shrimp *Penaeus japonicus* in Japan (Shigueno, 1975). In the 1970s some of the Asian countries such as those in the Indian subcontinent, Indonesia, Taiwan and Thailand started shrimp culture in traditional tidal trapping ponds and produced about 30,000 tonnes of cultured crustacean as by product from extensive milkfish or mullet culture. The growth phase started in the 1980s. Cultured shrimp production steadily increased to a moderate 100,000 tonnes in the early 1980s, and then entered an exponential growth phase that peaked in 1988, when cultured shrimp output reached 580,000 tonnes worldwide. The maturity phase started between 1988 and 1992 when the production increased slowly.

However, after 1992, the worldwide production experienced slight reduction (Csava, 1994).

The bulk of shrimp farming takes place in the earthen ponds. The major impacts of this industry are the conversion of mangrove forests into culture ponds and discharging of harmful by products into the coastal ecosystems, which ended with negative results through eutrophication (Chua *et al.*, 1989). Due to its profitability, there is always demand to open new mangrove area for shrimp culture. Old unproductive ponds are likely to be abandoned and new ponds are constructed. In long run, this activities is not healthy to the environment because mangrove forest is essential for preventing coastal area from tsunami, land erosion, nutrient trap and cycling, spawning and nursery ground for many commercially important fishery resources including shrimps (Ong, 1982; Ong *et al.*, 1993; Kamarudin personal communication). The environmental problems and impacts caused by shrimp farm and its effluent have to be addressed urgently.

Statement of Problems

In shrimp pond ecosystem, the bottom sediment plays an important role in the balance of culture systems and concomitantly on the growth and survival of aquatic organisms. Shrimps spend much of their time on the pond bottom; therefore, pond bottom conditions are more critical for shrimp than most other aquaculture species. The condition of culture pond soil influences the quality of water. It also serves as a biological filter through the adsorption of the organic residues of food, shrimp excretions and algal metabolites (Chien and Ray, 1990). The culture pond sediment can be divided into two components i.e. the pond soil component (the pond bottom and

dykes) and the accumulated sediment component (the sludge that accumulates on the pond bottom during culture) (Briggs and Funge-Smith, 1994). Gradually over the period of time, the compositions of shrimp pond soil altered by residues from feeds and fertilizers, settling of dead plankton and accumulation of sediment and salts (Hopkins *et al.*, 1994). The concentration of nutrients and productivity of phytoplankton in pond waters are related to pH and nutrient concentrations in pond soils (Boyd, 1995b; Boyd and Munsiri, 1996, 1997). In addition, the concentrations of several nutrients and other elements increased over time in shrimp pond soils (Boyd *et al.*, 1994b; Munsiri *et al.*, 1996a; Ritvo *et al.*, 1998a). Differences in the concentrations are most likely related to the properties of different pond bottom condition and possibly due to the action of certain variables i.e. temperature, rainfall, salinity, microbial activity, feeding, liming, fertilizers, water exchange, paddle wheels and other products. At present, the information on effects of element concentrations in pond soil and water on pond productivity and shrimp production is still scanty.

The presence of appropriate natural floral and faunal composition in the pond also determines the success of shrimp farming. Beside the artificial diet, natural organisms such as phytoplankton, zooplankton and benthos are the most important food source in semi intensive culture pond. They are rich in protein, vitamins, minerals and other essential growth elements compared to artificial feed. However, monitoring of natural communities on the affect of shrimp growth has shown the complexity in the earthen pond. Besides, it is difficult to figure out the individual parameter which is responsible for shrimp growth. Probably no single parameter is responsible (Rubright *et al.*, 1981). Generally, application of fertilizer in the culture pond may increase the pond productivity through the increase of phytoplankton abundance which promotes the

