UNIVERSITI PUTRA MALAYSIA

MARICULTURE POND ECOLOGY WITH EMPHASIS ON ENVIRONMENTAL QUALITY AND PRODUCTION OF PENAEUS MONODON (FABRICIUS)

ABU HENA MUSTAFA KAMAL.

FS 2005 32
MARICULTURE POND ECOLOGY WITH EMPHASIS ON
ENVIRONMENTAL QUALITY AND PRODUCTION OF
PENAEUS MONODON (FABRICIUS)

By

ABU HENA MUSTAFA KAMAL

Dissertation Submitted in the Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Faculty of Science
Universiti Putra Malaysia
July 2005
DEDICATION

To the memory of my late grand father who is no longer to share with me during this moment

To my parents who always inspire and encourage me to achieve my goal

My wife ‘Sadia’

To my eldest brother Md. Iqbal whom I tried to emulate from my boyhood

and

The people who are working on sustainable development of fisheries for their livelihood
In the present study, mariculture pond ecology with special reference to environmental quality and tiger shrimp *Penaeus monodon* production in old culture ponds (>3 years) and new culture ponds (<1 year) were investigated throughout the culture period in Malacca, Malaysia. The study showed that the cation exchange capacity (CEC) varies with soil texture while soil organic matter varied with the culture pond age. The concentrations of major cations depend on cation exchange capacity of soils attributed partly to chemical bonding or adsorption of colloids. Deposition of nutrient loaded suspended solids through uneaten feeds and other culture activities led to increase in the concentrations of macro and microelements onto the pond bottom at the end of the culture period. The dynamics of macro and microelements in pond and sediment waters were not distinct in old and new culture ponds throughout the culture period, but were influenced by accumulation process of living organisms, water exchange and precipitation of major cation as organic and inorganic particles.

Major groups of the macro and meiobenthos comprised of gastropods, polychaetes, bivalves, crustaceans, ostracods, nematodes, insects and crab larvae. Gastropods were the dominant group of macrobenthos followed by harpacticoid copepod as meiobenthos.
throughout the culture period. The growth of shrimp was related with the macrobenthos
\(r=0.62, \ p<0.05 \) and meiobenthos abundance \(r=0.67, \ p<0.05 \) in the culture ponds.
The major groups of zooplankton in the ponds were copepods, rotifers, sergestidae, luciferans, gastropod larvae, bivalve larvae, pelagic polychaetes, nematodes, crustacean nauplii, insects and mysids. About 18-30% of the total zooplankton population decreased within one month after the release of post larvae into the ponds which revealed the significance of natural foods in culture ponds in reducing the production cost and increasing pond yield. Stomach content analysis showed that the stomach of shrimps contained a wide variety of items depending on the availability of benthic and pelagic organisms in the ponds. Higher content of natural food items were found in the stomach of shrimps collected from the old culture ponds than the new culture ponds. Although a commercial feed was provided, the juvenile, sub adult and adult \(P. \ monodon \) were found to be opportunistic omnivorous scavengers feeding on variety of benthic materials and organisms such as detritus, crustacean, molluscs, polychaetes, rotifers and phytoplankton. In the group of Crustacea, copepods were the major food item preyed by all stages of the shrimps throughout the culture period in the ponds.

The diversity of fungi increased at the end of culture period in both old and new culture ponds. The proliferation of fungi in general could be due to shrimp faeces and high carbon source from uneaten feeds as the culture progressed. The present study revealed that population of fungi in shrimp pond sediments were mostly of the genera of \(Aspergillus \) and \(Penicillium \) which were similar to the terrestrial soil fungi. The results showed that many activities such as feeding, nutrient status, stocking density, weather conditions, accumulation of organic matters, biological factors and pond age governed the quality of pond water, shrimp growth, production and pond ecosystem during the culture period.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

EKOLOGI KOLAM MARIKULTUR DENGAN TUMPUAN KEPADA KUALITI ALAM SEKITAR DAN PRODUKSI *PENAEUS MONODON* (FABRICIUS)

Oleh

ABU HENA MUSTAFA KAMAL

Julai 2005

Pengerusi: Hishamuddin Omar, Ph. D.

Fakulti: Sains

Di dalam kajian ini, ekologi bagi kolam marikultur dengan tumpuan kepada kualiti alam sekitar dan produksi udang harimau *Penaeus monodon* dalam kolam kultur tua (>3 tahun) dan kolam kultur baru (<1 tahun) telah dikaji sepanjang tempoh kultur di Melaka, Malaysia. Kajian ini menunjukkan keupayaan pertukaran kation berbeza mengikut tekstur tanah dan kandungan bahan organik tanah berbeza mengikut usia kolam. Kepekatan kation utama bergantung pada kemampuan pertukaran kation yang sebahagianya disebabkan oleh tindakbalas kimia atau pengabungan kolloid. Timbuntambah nutrien terhasil daripada pemendakan pepejal terampai, sisa makanan dan aktiviti pengkulturan yang lain menyebabkan peningkatan paras elemen makro dan mikro di dasar kolam di akhir masa kultur. Kajian ini mendapati tidak terdapat perbezaan yang jelas di antara elemen makro dan mikro di dasar kolam dan air dan di antara kolam baru dan kolam lama di sepanjang jangkamasa pengkulturan tetapi ia dipengaruhi oleh organisma hidup, pertukaran air dan pemendakan kation utama sebagai partikel organik dan tak organik.

Kumpulan utama bagi makro dan meiobentos terdiri daripada gastropod, poliket, bivalvia, krustasia, ostracod, nematod, serangga dan larva ketam. Gastropod merupakan
kumpulan makrobentos dominan diikuti oleh kopepod harpacticoid sebagai meiobentos di sepanjang tempoh kultur. Pertumbuhan udang adalah berkadar terus dengan kehadiran makrobentos ($r=0.62$, $p<0.05$) dan kelimpahan meiobentos ($r=0.67$, $p<0.05$) dalam kolam. Kumpulan utama bagi zooplankton dalam kolam kajian adalah kopepod, rotifer, sergestid, lusifer, larva gastropod, larva bivalvia, polikit pelagik, nematod, naupli krustasia, serangga dan misid. Dianggarkan lebih kurang 18-30% daripada jumlah zooplankton berkurangan dalam masa sebulan selepas pelepasan pasca larva udang ke dalam kolam. Keputusan ini menunjukkan kepentingan makanan semulajadi dalam kolam udang dalam mengurangkan kos makanan dan meningkatkan pengeluaran. Kajian kandungan perut udang mendapati ia mengandungi pelbagai bahan bergantung kepada kehadiran organisma bentik dan pelagik di dalam kolam. Kandungan makanan semulajadi dalam perut udang dari kolam kultur usang adalah lebih tinggi berbanding dalam kolam kultur baru. Juvenil, sub dewasa dan dewasa *P. monodon* adalah ‘scavenger’ omnivor yang memakan apa sahaja termasuk pelbagai bahan bentik dan organisma seperti detritus, krustasia, serangga, mollusk, polikit, rotifer dan fitoplankton. Dalam kumpulan krustasia, kopepod adalah makanan utama yang dimakan oleh semua peringkat hidup udang sepanjang tempoh kitaran di dalam kolam.

Kajian mendapati diversiti kulat beransur meningkat mengikut jangkamasa pengkulturan dalam kolam usang dan baru. Peningkatan populasi kulat secara amnya mungkin terhasil akibat pertambahan najis udang dan sisa makanan yang mengandung sumber karbon yang tinggi dengan jangkamasa pengkulturan. Kajian ini juga mendapati populasi kulat yang biasa dalam sedimen kolam udang terdiri daripada genus *Aspergillus* dan *Penicillium* yang sama dengan kulat daratan. Keputusan kajian
mendapati aktiviti seperti pemberian makanan, status nutrien, kepadatan pelepasan, pengaruh cuaca, pengumpulan bahan organik, faktor biologi dan umur kolam mempengaruhi kualiti air kolam, pertumbuhan udang, produksi dan ekosistem di sepanjang jangkamasa pengkulturan.
ACKNOWLEDGEMENTS

All the praise and admiration for Allah, the Almighty, Beneficial and the most Merciful, who has enabled me to submit this thesis.

It is my pleasure to express my profound sense of gratitude and indebtedness to my respected research supervisor Dr. Hishamuddin Omar, the Chairman of my supervisory committee for his guidance and inspiration during the research period. I am profound indebted to my co-supervisors Dr. Misri Kusnan and Associate Professor Dr. Faridah Abdullah, Department of Biology, Universiti Putra Malaysia for their kind supervision and suggestions to carry out my research works properly.

I would like to express my thanks Associate Prof. Dr. Siti Shapor H. Siraj, the Head of the Department of Biology and staff members for providing the suitable environment and facilities during this research. I am grateful to the Malaysian Government for financial support through Intensification of Research in Priority Areas (IRPA) projects no. 01-04-0529-EA001.

I would like to express my sincere thanks to Prof. Dr. Sasekumar of Universiti Malaya, Associate Prof. Dr. Jambari, Associate Prof. Dr. Aziz Arshad of Universiti Putra Malaysia, National Historical Museum, Chiba, Japan and Museum and Art Gallery of the Northern Territory, Australia for identification of polychaeta and mollusca. The technical help provided by Prof. Dr. Shirayama in University of Tokyo and Drs. Idris Abdul Ghani in Universiti Putra Malaysia is also greatly acknowledged. My sincere thank goes to Prof. Dr. Claude E. Boyd, University of Auburn, USA for
providing the literatures on soil and water properties, which help me a lot to compile this thesis. Thank you once again Prof. for your contribution.

I would like to appreciate the cooperation of Dr. Farshad the Ex Technical Manager of Progressive Aquaculture Sdn Bhd, Perak and Dato Prof. Dr. Alang Perang Abdul Rahman B. Zaiuddin Chairman of Farmer’s Organization Authority Malaysia (Lembaga Pertubuhan Peladang) for allowing me to collect samples from shrimp ponds in Malacca. Special thank goes to Dr. S. Shamarina, Department of Biology, Universiti Putra Malaysia for helping statistical analysis. My appreciate goes to the Vice Chancellor of University of Chittagong and Director of Institute of Marine Sciences, University of Chittagong for giving permission to come Malaysia to compile my thesis work.

My sincere respect to my parents, my wife, elder brothers and sisters for their unfailing support and encouragement for my higher study. Heartfelt thanks are due to all of my friends/elders for their suggestion, encouragement and help during the work especially; Dr. Yap C. K., Dr. Farshad, Dr. Hamid, Loo Khi Kin, Ms Ang, Kennedy, Saufi, Halim, Azmain, Mahmood, Nurul Vai, Nurul Vabi, Jahed Vai, Mahfuza Apa, Navid, Helen, Amin, Vabi and En Hidir.

Last, but not least, I am thankful to all of my well-wishers whom have helped me in any form.
I certify that an Examination Committee met on 22nd July 2005 to conduct the final examination of Abu Hena Mustafa Kamal on his Doctor of Philosophy thesis entitled “Mariculture Pond Ecology with Emphasis on Environmental Quality and Production of \textit{Penaeus monodon} (Fabricius)” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

\textbf{Siti Shapor Siraj, PhD}
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

\textbf{Fatimah Md. Yusoff, PhD}
Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

\textbf{Mohd Salleh Kamaruddin, PhD}
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

\textbf{Claude E. Boyd, PhD}
Professor
Auburn University
United States of America
(External Examiner)

\begin{center}
\textbf{GULAM RUSUL RAHMAT ALI, PhD}
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia
\end{center}

\begin{center}
Date: 22 AUG 2005
\end{center}
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Hishamuddin Omar, Ph.D.
Lecturer
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Misri Kusnan, Ph. D.
Lecturer
Faculty of Science
Universiti Putra Malaysia
(Member)

Faridah Abdullah, Ph. D.
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

AINI IDERIS, Ph. D.
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 08 SEP 2005
DECLARATION

I hereby declare that the thesis based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

ABU HENA MUSTAFA KAMAL

Date: 19/8/05
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>APROVAL SHEETS</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xxi</td>
</tr>
</tbody>
</table>

CHAPTER

I INTRODUCTION

- Background of the Study 1
- Statement of the Problems 2
- Significance of the Study 5
- Objectives of the Study 7

II LITERATURE REVIEW

- Taxonomy and Biological Features of *P. monodon* Fabricius 8
 - Feeding Biology 9
- Nutrition and Growth Requirement of *P. monodon* Fabricius 11
 - Protein and Amino Acids 12
 - Lipid and Fatty Acids 13
 - Carbohydrates and Energy 15
 - Fiber and Ash 16
 - Vitamins 16
- Culture of Tiger Shrimp *P. monodon* Fabricius 17
 - Selection of Sites for *P. monodon* Fabricius Culture 19
 - Shrimp Farm and Pond Design 21
- Preparation of Culture Pond 24
 - Liming 24
 - Fertilization of Pond and Phytoplankton Management 25
 - Water Intake in the Pond 26
- Selection of Fry and Acclimatization 27
- Stocking Density 28
- Food and Feeding 29
- Water Management 33
 - Water Exchange 33
 - Aeration 35
- Nutrients in Pond Ecosystem 37
- Roles of Natural Foods in Pond 38
- Stomach Content of Shrimps 40
- Microorganisms in Pond Ecosystem 41
Physico-Chemical Parameters of Culture Pond Water

Temperature and Salinity

Dissolved Oxygen

Hydrogen ion Concentration (pH)

Turbidity

Ammonia

Nitrite and Nitrate

Hydrogen Sulfide (H₂S)

Phosphate

Light

World Wide Production of Shrimp

III GENERAL MATERIALS AND METHODS

Location of the Study Ponds.

Period of Study and Collection of Sample

Description of Culture Protocol

IV PHYSICAL AND CHEMICAL CHARACTERISTICS OF SOIL AND WATER IN P. MONODON CULTURE PONDS

Introduction

Materials and Methods

Analysis of Macro and Microelements of Pond and Sediment Water

Collection and Analysis of Pond Soils

Analysis of Soil pH

Analysis of Soil Texture

Analysis of Total Phosphorus

Analysis of Total Nitrogen

Analysis of Total Sulphur

Analysis of Total Carbon (TC)

Analysis of Organic Matter (OM)

Analysis of Organic Carbon (OC)

Cation Exchange Capacity (CEC)

Analysis of Soil Macro and Microelements.

Digestion of Soil

Statistical Analysis

Results

Physical and Chemical Factors of Pond Soils

Elements in Pond Soils

Macro elements

Microelements

Macro and Microelements in Pond and Sediment Water

Discussion

Physical and Chemical Factors of Pond Soils

Elements in Pond Soils

Macro elements

Microelements

Pond and Sediment Water Macro and Microelements
V ABUNDANCE AND COMPOSITION OF MACRO AND MEIOBENTHOS IN P. MONODON CULTURE PONDS

Introduction 92
Materials and Methods 93
Collection of Macro and Meiobenthos 93
Shannon Diversity Index 93
Statistical Analysis 94
Results 94
Abundance and Composition of Macrobenthos 94
Abundance and Composition Meiobenthos 99
Discussion 104
Macrobenthos 104
Meiobenthos 108

VI ZOOPLANKTON COMMUNITY IN COMMERCIAL P. MONODON CULTURE PONDS

Introduction 111
Materials and Methods 112
Collection of Zooplankton 112
Shannon Diversity Index 113
Statistical Analysis 113
Results 113
Discussion 118

VII FEEDING BEHAVIOUR AND FOOD PREFERENCE OF DIFFERENT STAGES OF POND CULTURED TIGER SHRIMP P. MONODON

Introduction 122
Materials and Methods 123
Collection of Shrimps 123
Estimation of Foregut Content 123
Results 124
Discussion 131

VIII DIVERSITY AND COMPOSITION OF SOIL FUNGI IN P. MONODON CULTURE PONDS

Introduction 136
Materials and Methods 137
Sampling of Sediment 137
Preparation of Agar Media 138
Isolation of Soil Fungi by Soil Dilution Plate Method 139
Agar Slant Preparation 139
Identification of Fungi 140
Results 140
Discussion 141
IX EFFECTS OF PHYSICO-CHEMICAL AND BIOLOGICAL PARAMETERS ON GROWTH, SURVIVAL AND PRODUCTION OF P. MONODON IN PONDS

Introduction 144
Materials and Methods 145
Pond Water Parameters 145
 Detection of Pond Water Parameters 145
 Analysis of Total Suspended Solid (TSS) 145
 Analysis Biochemical Oxygen Demand (BOD₃) 146
Pond and Sediment Water Nutrients 147
 Collection of samples 147
Analysis of Pond and Sediment Water 147
 Determination of Water Nitrate (NO₃⁻) 147
 Determination of Water Ammonium (NH₄⁺) 148
 Determination of Water Phosphate (PO₄³⁻) 148
 Determination of Total Sulphur (TS) 149
 Analysis of Water Chlorophyll 149
Collection of Shrimps and Production Parameters of Shrimp 150
Statistical Analysis 151
Results 151
 Physico-chemical Factors of Water 151
 Chlorophyll Content of Water 155
 Pond and Sediment Water Nutrients 155
 Production Parameters of Shrimps 157
Discussion 160
 Physico-chemical Factors of Water 160
 Chlorophyll Content of Water 164
 Pond and Sediment Water Nutrients 165
 Production Parameters of Shrimps 167

X GENERAL DISCUSSION AND CONCLUSIONS 171

REFERENCES 181
APPENDIX 208
VITAE 210
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Food habit of Penaeus monodon in the wild at different development stages (Adopted from Pascual, 1988a)</td>
</tr>
<tr>
<td>2</td>
<td>Recommended protein levels in commercial shrimp feed as fed basis (Akiyama and Chwang, 1989)</td>
</tr>
<tr>
<td>3</td>
<td>Recommended lipid levels in commercial shrimp feed as fed basis (Akiyama and Chwang, 1989; Chen, 1993)</td>
</tr>
<tr>
<td>4</td>
<td>Lime requirements of bottom mud based on pH and texture (Avault, 1999)</td>
</tr>
<tr>
<td>5</td>
<td>Recommended temperature and salinity acclimation times for penaeid post larvae (Maugle, 1987)</td>
</tr>
<tr>
<td>6</td>
<td>Different stocking density levels for P. monodon and expected production ranges per hectare per crop (Apud, 1988)</td>
</tr>
<tr>
<td>7</td>
<td>Standard feeding time, frequency and feeding distribution for semi intensive shrimp farm (Apud, 1988; Akiyama, 1993)</td>
</tr>
<tr>
<td>8</td>
<td>Standard feeding rates of semi intensive tiger shrimp farm (Apud, 1988; Akiyama, 1993)</td>
</tr>
<tr>
<td>9</td>
<td>Conceptual water exchange rates for tiger shrimp farm (C P Aquaculture Business Development Department, 1992)</td>
</tr>
<tr>
<td>10</td>
<td>Safe concentrations of NH$_4^+$, NH$_3$-N and nitrite-N for P. monodon at various stages</td>
</tr>
<tr>
<td>11</td>
<td>Physical and chemical parameters (mean ± standard error) of soil from shrimp culture ponds</td>
</tr>
<tr>
<td>12</td>
<td>Physical and chemical parameters (mean ± standard error) of soil throughout the culture period in old culture ponds</td>
</tr>
<tr>
<td>13</td>
<td>Physical and chemical parameters (mean ± standard error) of soil throughout the culture period in new culture ponds</td>
</tr>
<tr>
<td>14</td>
<td>Macro elements concentrations (mean ± standard error) of soil from shrimp culture ponds</td>
</tr>
<tr>
<td>15</td>
<td>Concentrations of soil macro elements (mean ± standard error) of old and new P. monodon culture ponds throughout the culture period</td>
</tr>
<tr>
<td>16</td>
<td>Microelements concentrations (mean ± standard error) of soil from shrimp culture ponds</td>
</tr>
<tr>
<td>17</td>
<td>Concentrations of soil microelements (mean ± standard error) of old P. monodon culture ponds throughout the culture period</td>
</tr>
<tr>
<td>18</td>
<td>Concentrations of soil microelements (mean ± standard error) of new P. monodon culture ponds throughout the culture period</td>
</tr>
<tr>
<td>19</td>
<td>Macro and microelements concentrations (mean ± standard error) of culture pond water</td>
</tr>
<tr>
<td>20</td>
<td>Macro and microelements concentrations (mean ± standard error) of sediment water of culture ponds</td>
</tr>
<tr>
<td>21</td>
<td>Concentrations of pond water macro and microelements (mean ± standard error) of old P. monodon culture ponds throughout the culture period</td>
</tr>
<tr>
<td>22</td>
<td>Concentrations of pond water macro and microelements (mean ± standard error) of new P. monodon culture ponds throughout the culture period</td>
</tr>
</tbody>
</table>
Concentrations of sediment water macro and microelements (mean ± standard error) of old P. monodon culture ponds throughout the culture period

Concentrations of sediment water macro and microelements (mean ± standard error) of new P. monodon culture ponds throughout the culture period

Comparison of macro elements ranges in shrimp pond soils from regional studies with the present results

Concentration of soil macro elements of the culture ponds and their category according to Boyd et al. (1994b)

Concentration of soil microelements (mean ± standard error) of the culture ponds and its category according to Boyd et al. (1994b)

Comparison of water and sediment water chemical properties with regional studies

Species composition of macrobenthos from old and new culture ponds during the culture period

Species composition of meiobenthos from old and new culture ponds during the culture period

Species composition of zooplankton from old and new culture ponds during the culture period

Shannon diversity index and evenness of macrobenthos throughout the culture period of the studied ponds

Shannon diversity index and evenness of meiobenthos throughout the culture period of the studied ponds

Shannon diversity index and evenness of zooplanktons throughout the culture period of the study ponds

Frequency of stomach studied in different ages and sizes of P. monodon from old culture ponds during the culture period

Frequency of stomach studied in different ages and sizes of P. monodon from new culture ponds during the culture period

Natural food organisms and their estimated quantity in the stomachs of PL15 stocked in the old and new culture ponds

Natural food organisms and their estimated quantity in the stomachs of post larvae at 1st week of the culture in old and new culture ponds

Natural food organisms and their estimated quantity in the stomachs of post larvae at 4th week of the culture in old and new culture ponds

Natural food organisms and their estimated quantity in the stomach of shrimp at 7th week of the culture in old and new culture ponds

Natural food organisms and their estimated quantity in the stomach of shrimps at 10th week of the culture in old and new culture ponds

Natural food organisms and their estimated quantity in the stomach of shrimp at 13th week of the culture in old and new culture ponds

Natural food organisms and their estimated quantity in the stomach of 12 specimens of shrimp at 16th week of the culture in new culture ponds

Soil fungi isolated from shrimp culture ponds during the culture period (cfu/g X 10^2)

Physico-chemical parameters (mean ± standard error) of old and new culture ponds throughout the culture period
47 Physico-chemical parameters (mean ± standard error) of new *P. monodon* culture ponds throughout the culture period
48 Pond water and sediment water nutrients (mean ± standard error) of *P. monodon* culture ponds
49 Concentrations of pond water and sediment water nutrients (mean ± standard error) of old *P. monodon* culture ponds throughout the culture period
50 Concentrations of pond water and sediment water nutrients (mean ± standard error) of new *P. monodon* culture ponds throughout the culture period
51 Relationship between the pond status and production parameters during the culture period.
52 Growth performance of tiger shrimp *P. monodon* cultured at different culture ponds
53 Estimated feeding areas of old and new culture ponds of tiger shrimp *P. monodon*.
54 Comparison of shrimp production, stocking density and culture duration from regional studies with present study
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Life cycle and ecology of P. monodon in different stages and habitats</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>(Adopted from Brock and Moss, 1992)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A speculated food web model in an extensive shrimp culture pond ecosystem</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>(Kildow and Huguenin, 1974)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A semi intensive shrimp pond ecosystem and its function (Funge-Smith</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>and Briggs, 1998)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>A typical lay out design of semi intensive culture ponds (C. P Shrimp</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>News, 1993a)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Population of macrobenthos in old culture ponds during the culture period</td>
<td>96</td>
</tr>
<tr>
<td>6</td>
<td>Population of macrobenthos in new culture ponds during the culture period</td>
<td>96</td>
</tr>
<tr>
<td>7</td>
<td>Percent composition of macrobenthos in old culture ponds during the culture period</td>
<td>98</td>
</tr>
<tr>
<td>8</td>
<td>Percent composition of macrobenthos in new culture ponds during the culture period</td>
<td>99</td>
</tr>
<tr>
<td>9</td>
<td>Population of meiobenthos in old culture ponds during the culture period</td>
<td>101</td>
</tr>
<tr>
<td>10</td>
<td>Population of meiobenthos in new culture ponds during the culture period</td>
<td>101</td>
</tr>
<tr>
<td>11</td>
<td>Percent composition of meiobenthos in old ponds during the culture period</td>
<td>103</td>
</tr>
<tr>
<td>12</td>
<td>Percent composition of meiobenthos in new ponds during the culture period</td>
<td>103</td>
</tr>
<tr>
<td>13</td>
<td>Relationship between total macrobenthos and shrimp growth in old culture</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>ponds during the culture period</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Relationship between total macrobenthos and shrimp growth in new culture</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>ponds during the culture period</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Relationship between total meiobenthos and shrimp growth in old culture</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>ponds during the culture period</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Relationship between total meiobenthos and shrimp growth in new culture</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>ponds during the culture period</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Population of zooplankton in old culture ponds during the culture period</td>
<td>115</td>
</tr>
<tr>
<td>18</td>
<td>Population of zooplankton in new culture ponds during the culture period</td>
<td>115</td>
</tr>
<tr>
<td>19</td>
<td>Percent composition of zooplankton in old culture ponds during the culture</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>period</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Percent composition of zooplankton in new culture ponds during the culture</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>period</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Total rainfall (mm) of Malaysia within the sampling period April 2001</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>July 2002 (Source: Malaysian Metrological Department 2001-2002)</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Air temperature (°C) of Malaysia within the sampling period April 2001-July</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>2002 (Source: Malaysian Metrological Department 2001-2002)</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>The growth (g) of P. monodon cultured in old and new culture ponds</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>throughout the culture period</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF PLATES

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Old shrimp culture pond in Malacca</td>
<td>52</td>
</tr>
<tr>
<td>2</td>
<td>New shrimp culture pond in Malacca</td>
<td>53</td>
</tr>
<tr>
<td>3</td>
<td>Some of the macrobenthos found in old and new culture ponds during the culture period; [A] Stenothyra polita [B] Cerithidea cingulata [C] Fairbankia sp. (x12) [D] Syncera brevicula (x8) [E] Gelonia ceylonica [F] Anadara granosa (x10) [G] Syncera sp. (x10) [H] Namalycostis abiona (x8) [I] Capitella capitata (x10) [J] Spionidae (Family; x8) [K] Notomastus sp. (x10) [L] Cypridina sp. (x25)</td>
<td>97</td>
</tr>
<tr>
<td>4</td>
<td>Some of the meiobenthos found in the old and new shrimp culture ponds throughout the culture period; [A] Euterpina acutifrons (x40) [B] Nitokra affinis (x32) [C] Euterpina sp. (x32) [D] Tisbe sp. (x25) [E] Tegastes sp. (x40) [F] Cerithiidae larvae (x20) [G] Nereididae (Family; x10) [H] Spirina sp. (x25) [I] Parasitic mites (Hydrachnellidae; x32) [J] Sabatiera sp. (x40) [K] Puparium larvae (Diptera; x32) [L] Syllidae (Family; x8)</td>
<td>102</td>
</tr>
<tr>
<td>5</td>
<td>Some of the zooplankton found in the shrimp culture ponds [A] Acartia sp. (x12) [B] Labidocera sp. (x12) [C] Oithona sp. (x25) [D] Crustacean larvae (x20) [E] Brachionus sp. (x40) [F] Sagitta sp. (x8)</td>
<td>116</td>
</tr>
<tr>
<td>6</td>
<td>Appendages or body parts of natural food organisms found in the stomachs during different sampling period [A] Phytoplankton (4th week; x32) [B] Crustacean appendages (7th week; x8) [C] Ostracodes (7th week; x16) [D] Gastropod (10th week; x20) [E] Crustacean mouth organ (10th week; x16) [F] Polychaetes (10th week; x20) [I] Rotifer (13th week; x12) [G] Polychaetes (16th week; x10) [H] Mysid (Crustacean) appendage (16th week; x10)</td>
<td>128</td>
</tr>
<tr>
<td>7 Cont’d</td>
<td></td>
<td>143</td>
</tr>
</tbody>
</table>
Shrimp culture has been developed in many countries over the past decade, in which this activity attained great economic and social importance. Among the cultivated shrimps, tiger shrimp *Penaeus monodon* is the most important species for coastal aquaculture in many countries, particularly in Asia and Northern Australia. In those regions, tiger shrimp is more preferred due to its availability, fast growth, hardy quality and high price (Shang, 1986). The most common tiger shrimp production practices are either extensive or intensive culture. The extensive system completely depends on natural productivity while the intensive systems require auxiliary inputs and capital (Folke and Kautsky, 1989).

The world growth of cultured shrimp production is similar to the four phases of the theoretical growth curve of the marketed commodity i.e. development, growth, maturity and decline. The initial development phase started after 1930s, when Motosaku Fujinaga succeeded in spawning the kuruma shrimp *Penaeus japonicus* in Japan (Shigueno, 1975). In the 1970s some of the Asian countries such as those in the Indian subcontinent, Indonesia, Taiwan and Thailand started shrimp culture in traditional tidal trapping ponds and produced about 30,000 tonnes of cultured crustacean as by product from extensive milkfish or mullet culture. The growth phase started in the 1980s. Cultured shrimp production steadily increased to a moderate 100,000 tonnes in the early 1980s, and then entered an exponential growth phase that peaked in 1988, when cultured shrimp output reached 580,000 tonnes worldwide. The maturity phase started between 1988 and 1992 when the production increased slowly.
However, after 1992, the worldwide production experienced slight reduction (Csava, 1994).

The bulk of shrimp farming takes place in the earthen ponds. The major impacts of this industry are the conversion of mangrove forests into culture ponds and discharging of harmful byproducts into the coastal ecosystems, which ended with negative results through eutrophication (Chua et al., 1989). Due to its profitability, there is always demand to open new mangrove area for shrimp culture. Old unproductive ponds are likely to be abandoned and new ponds are constructed. In long run, this activities is not healthy to the environment because mangrove forest is essential for preventing coastal area from tsunami, land erosion, nutrient trap and cycling, spawning and nursery ground for many commercially important fishery resources including shrimps (Ong, 1982; Ong et al., 1993; Kamarudin personal communication). The environmental problems and impacts caused by shrimp farm and its effluent have to be addressed urgently.

Statement of Problems

In shrimp pond ecosystem, the bottom sediment plays an important role in the balance of culture systems and concomitantly on the growth and survival of aquatic organisms. Shrimps spend much of their time on the pond bottom; therefore, pond bottom conditions are more critical for shrimp than most other aquaculture species. The condition of culture pond soil influences the quality of water. It also serves as a biological filter through the adsorption of the organic residues of food, shrimp excretions and algal metabolites (Chien and Ray, 1990). The culture pond sediment can be divided into two components i.e. the pond soil component (the pond bottom and
dykes) and the accumulated sediment component (the sludge that accumulates on the pond bottom during culture) (Briggs and Funge-Smith, 1994). Gradually over the period of time, the compositions of shrimp pond soil altered by residues from feeds and fertilizers, settling of dead plankton and accumulation of sediment and salts (Hopkins et al., 1994). The concentration of nutrients and productivity of phytoplankton in pond waters are related to pH and nutrient concentrations in pond soils (Boyd, 1995b; Boyd and Munsiri, 1996, 1997). In addition, the concentrations of several nutrients and other elements increased over time in shrimp pond soils (Boyd et al., 1994b; Munsiri et al., 1996a; Ritvo et al., 1998a). Differences in the concentrations are most likely related to the properties of different pond bottom condition and possibly due to the action of certain variables i.e. temperature, rainfall, salinity, microbial activity, feeding, liming, fertilizers, water exchange, paddle wheels and other products. At present, the information on effects of element concentrations in pond soil and water on pond productivity and shrimp production is still scanty.

The presence of appropriate natural floral and faunal composition in the pond also determines the success of shrimp farming. Beside the artificial diet, natural organisms such as phytoplankton, zooplankton and benthos are the most important food source in semi intensive culture pond. They are rich in protein, vitamins, minerals and other essential growth elements compared to artificial feed. However, monitoring of natural communities on the affect of shrimp growth has shown the complexity in the earthen pond. Besides, it is difficult to figure out the individual parameter which is responsible for shrimp growth. Probably no single parameter is responsible (Rubright et al., 1981). Generally, application of fertilizer in the culture pond may increase the pond productivity through the increase of phytoplankton abundance which promotes the