UNIVERSITI PUTRA MALAYSIA

ISOLATION AND BIOLOGICAL ACTIVITY OF NATURALLY OCCURRING COMPOUNDS FROM MELICOPE LUNU ANKENDA (GAERTN) T-HARTLEY, MELICOPE BONWICKII(F-MUELL) T-HARYLEY AND TETRADIUM SAMBUCINUM (BL) HARTLEY

ISMIARNI KOMALA.

FS 2005 30
ISOLATION AND BIOLOGICAL ACTIVITY OF NATURALLY OCCURRING COMPOUNDS FROM MELICOPE LUNU ANKENDA (GAERTN) T-HARTLEY, MELICOPE BONWICKII (F-MUELL) T-HARTLEY AND TETRADIUM SAMBUCINUM (BL) HARTLEY

By

ISMIARNI KOMALA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for Degree of Master of Science

June 2005
Abstract of thesis presented to Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

ISOLATION AND BIOLOGICAL ACTIVITY OF NATURALLY OCCURRING COMPOUNDS FROM MELICOPE LUNU ANKENDA (GAERTN) T-HARTLEY, MELICOPE BONWICKII (F-MUELL) T-HARTLEY AND TETRADZUM SAMBUCINUM (BL) HARTLEY

By

ISMIARNI KOMALA

June 2005

Chairman : Professor Mawardi Rahmani, PhD
Faculty : Science

Detailed investigation on three Rutaceous plants have resulted in the isolation and structural elucidation of a number of compounds. The structures of these compounds were elucidated by using spectroscopic methods such as UV (ultraviolet), IR (infrared), MS (mass spectra), NMR (Nuclear Magnetic Resonance) and also by comparison with previous reports. The crude extracts and isolated compounds were evaluated for their antioxidant, cytotoxicity and antimicrobial activities using DPPH (1,1-diphenil-2-picrylhydrazyl), MTT ((3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and disc diffusion methods, respectively.

The phytochemical study on leaves of Melicope lunu-ankenda (Gaertn) T. Hartley afforded p-O-geranylcoumaric acid (153) sesamin (109), melisemine (154) and a new compound given tentative structure of 7,7”-digeranyloxy-2”,3”-epoxycinnamic anhydride (155). The melisemine (154) showed weak activity as a radical scavenger with an IC50 value of 75 µg/mL. Meanwhile the 7,7”-digeranyloxy-2”,3”-
epoxycinnamic anhydride (155) was found to be active against cervical cancer (Hela) cell line with an IC\(_{50}\) value of 34 \(\mu\)g/mL.

The investigations on leaves of *Melicope bonwickii* (F. Muell) T. Hartley have resulted in the isolation of three known furoquinoline alkaloid, 7-(2',3'-epoxypropoxy)-4-methoxyfuroquinoline (156), evellerine (157) and kokusaginine (11) together with a new 7-(2'-hydroxy-3'-chloropropoxy)-4-methoxyfuroquinoline (158) and a known amide compound aurantiamide acetate (159). Two compounds 7-(2',3'-epoxypropoxy)-4-methoxyfuroquinoline (156) and 7-(2'-hydroxy-3'-chloropropoxy)-4-methoxyfuroquinoline (158) were found to be toxic to cervical cancer (Hela) cell line with IC\(_{50}\) values of 6.0 and 11.4 \(\mu\)g/mL, respectively.

Detailed extraction and separation of bark and leaves of *Tetradium sambucinum* (Bl) Hartley have led to the isolation of decarine (160), rutaecarpine (122) 7-hydroxycoumarin (141) and aurantiamide acetate (159). Decarine (160) was active against the cervical cancer cell lines (Hela) with an IC\(_{50}\) value of 14.6 \(\mu\)g/mL, while rutaecarpine (122) showed weak a radical scavenger activity with an IC\(_{50}\) value of 75\(\mu\)g/mL.
Abstrak tesis yang dikemukakan kepada Senat Universti Putra Malaysia sebagai memenuhi keperluan ijazah Master Sains

PEMENCILAN DAN AKTIVITI BIOLOGI SEBATIAN SEMULAJADI DARIPADA MELICOPE LUNU ANKENDA (GAERTN) T-HARLEY, MELICOPE BONWICKII (F. MUELL) T-HARTLEY DAN TETRADIUM SAMBUCINUM (BL) HARTLEY

Oleh

ISMIARNI KOMALA

Jun 2005

Pengerusi : Professor Mawardi Rahmani, PhD
Fakulti : Sains

Kajian terhadap tiga tumbuhan dalam famili Rutaceae telah menghasilkan pemencilan beberapa sebatian. Struktur dari sebatian-sebatian ini dikenal pasti dengan menggunakan kaedah spektroskopi seperti IR, UV, NMR, MS dan juga perbandingan dengan kajian-kajian lepas. Ekstrak mentah dan sebatian-sebatian yang telah dipencilkan dari tumbuhan ini diuji untuk aktiviti antioksidan, sitotoksik dan antimikrob dengan menggunakan kaedah DPPH (1,1-diphenil-2-picrylhydrazyl), MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) dan peresapan cakera.

Kajian fitokimia ke atas daun Melicope lunu-ankenda (Gaertn) T. Hartley telah menghasilkan dua sebatian yang telah dikenali sebagai p-O-geranylcoumaric acid (153) sesamin (109) melisemine (154) dan struktur sementara daripada 7,7"- digeranyloxy-2","3"-epoxycinnamic anhydride (155). Melisemine (154) telah menunjukkan aktiviti yang lemah sebagai antioksidan dengan nilai IC50 75 μg/mL.
Manakala sebatian 7,7\(^{-}\)-digeranyloxy-2\(^{-}\),3\(^{-}\)-epoxycinnamic anhydride (155) telah menunjukkan kesan aktiviti terhadap kanser rahim (Hela) dengan nilai IC\(_{50}\) 34 \(\mu\)g/mL.

Pengkajian terhadap daun *Melicope bonwickii* (F. Muell) T. Hartley telah menghasilkan 3 alkaloid furoquinoline yang telah dikenali: 7-(2',3'-epoxyprenyloxy)-4-methoxyfuroquinoline (156) evellerine (157) dan kokusagine (11) bersama dengan sebatian baru 7-(2-hydroxy-3'-chloroprenyloxy)-4-methoxyfuroquinoline (160) dan sebatian amide yang telah dikenali, aurantiamide acetate (159). Dua sebatian yang telah dipencilkan daripada daun *Melicope bonwickii* (F. Muell) T. Hartley yaitu 7-(2',3'-epoxyprenyloxy)-4-methoxyfuroquinoline (158) dan 7-(2-hydroxy-3'-chloroprenyloxy)-4-methoxyfuroquinoline (160) telah diuji aktivitinya dengan sel kanser rahim (Hela), hasilnya menunjukkan kedua-dua sebatian ini mempunyai kesan sitotoksik yang masing-masing mempunyai nilai IC\(_{50}\) 6.0 dan 11.4 \(\mu\)g/mL.

Pengestrakan dan pemisahan daripada kulit batang dan daun *Tetradium sambucinum* (BI) Hartley telah membawa kepada pemencilan sebatian-sebatian decarine (160), rutaecarpine (122) 7-hydroxycoumarin (141) dan aurantiamide acetate (159). Decarine menunjukkan aktiviti yang sederhana terhadap sel kanser rahim (Hela) yang mempunyai nilai IC\(_{50}\) 34 \(\mu\)g/mL, manakala rutaecarpine (122) menunjukkan aktiviti yang lemah sebagai antioksidan dengan nilai IC\(_{50}\) 75\(\mu\)g/mL.
ACKNOWLEDGEMENTS

All praises do to Allah, Lord of the universe. Only by his grace and mercy this thesis can be completed.

I wish to express my sincere thanks to my supervisor Prof. Dr. Mawardi Rahmani for his invaluable guidance, support and continuous encouragement throughout the course of this project.

My gratitude also goes to the members of my supervisory committee, Assoc. Prof. Dr. Gwendoline Ee Cheng Lian and Assoc. Prof. Dr. Asmah Rahmat for their assistance in my research.

Thanks are also due to Prof. Dr. Dachriyanus, Apt, Andalas University, Indonesia, for suggestions in my research and for helping the plant collection from Indonesia, Drs. Rusdji Tamin, Andalas University Herbarium for identifying the plant material.

Financial support the Malaysian Government IRPA program is gratefully acknowledged

Special thanks are extended to other members of the academic and technical staff, students and friends who have helped me in every way possible.

Finally, my deepest thanks to my parents, sister and brother for their prayers, continuous moral support and unending encouragement.
I certify that an Examination Committee met on 20th June 2005 to conduct the final examination of Ismiarni Komala on her Master of Science thesis entitled “Isolation and Biological Activity of Naturally Occuring Compounds from Melicope lunu ankenda (Gaertn) T-Hartley, Melicope bonwickii (F-Muell) T-Hartley and Tetradium sambucinum (BL) Hartley” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Nordin Lajis, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Mohd. Aspollah Md. Sukari, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Khozirah Shaari, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Dato’ Laily Din PhD
Professor
Centre for Graduate Studies
Universiti Kebangsaan Malaysia
(External Examiner)

![Signature]

GULAM RUSUL RAHMAT ALI, PhD
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 21 JUL 2005
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of Supervisory Committee are as follow:

Mawardi Rahmani, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Gwendoline Ee Cheng Lian, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Asmah Rahmat, PhD
Associate Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Member)

![Signature]

AINI IDERIS, PhD
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 11 AUG 2005
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledgment. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

ISMIARNI KOMALA

Date 29/7/2005
TABLE OF CONTENTS

ABSTRACT ii
ABSTRAK iv
ACKNOWLEDGEMENTS vi
APPROVAL vii
DECLARATION ix
LIST OF TABLES xi
LIST OF FIGURES xii
LIST OF ABBREVIATIONS xiii

CHAPTER

I INTRODUCTION 1

II LITERATURE REVIEW 5
The genus Melicope 5
Distribution and General Information 5
Medicinal Uses 5
Melicope lunu-ankenda (Gaertn) T. Harley 6
Melicope bonwickii (F.Muell) T. Hartley 7
Tetradium sambucinum (Bl) Hartley 7
Chemical Constituent and Biological Activity 8
Bioassay 31
Antioxidant Activity Assay 31
Cytotoxic Activity Assay 33
Antimicrobial Activity assay 34

III MATERIALS AND METHODS 36
General Experimental Methods 36
Materials and Extraction 36
Instrument 36
Chromatography 38
Extraction and Isolation of Compounds from Leaves of Melicope lunu-ankenda (Gaertn) T.Harley 39
Extraction and Separation 39
Extraction and Isolation of Compound from Leaves of Melicope bonwickii (F.Muell) T.Hartley 44
Extraction and Separation 44
Extraction and Isolation of Compounds from Tetradium sambucinum (Bl) Hartley 50
Extraction and Separation of Barks 50
Extraction and Separation of Leaves 51
Bioassay 55
Antioxidant Activity Assay 55
Cytotoxic Activity Assay 56
Antimicrobial Activity Assay 57
RESULTS AND DISCUSSIONS

Characterization of the Isolated Compounds from Leaves of *Melicope lumu-ankenda* (Gaertn) T.Harley

- p-O-Geranylcoumaric acid (153)
- Sesamin (109)
- Melisemin (154)
- 7,7″-Digeranyloxy-2″,3″-epoxycinnamic anhydride (155)

Characterization of Isolated Compounds from Leaves of *Melicope bonwickii* (F.Muell) T.Hartley

- 7-(2″,3″-Epoxyprenyloxy)-4-methoxyfuroquinoline (156)
- Evellerine (157)
- 7-(2″-Hydroxy-3″-chloroprenyloxy)-4-methoxyfuroquinoline (158)
- Aurantiamide acetate (159)
- Kokusaginine (11)

Characterization of Isolated Compounds from Barks of *Tetradium sambucinum* (Bl) Hartley

- Decarine (160)

Characterization of Isolated Compounds from Leaves of *Tetradium sambucinum* (Bl) Hartley

- Rutaecarpine (122)
- 7-Hydroxycoumarin (141)
- Aurantiamide acetate (159)

Bioassay

- Antioxidant Activity Assay
- Cytotoxic Activity Assay
- Antimicrobial Activity Assay

CONCLUSIONS

REFERENCES

BIODATA OF THE AUTHOR
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. NMR spectral data of p-O-geranylcoumaric acid (153)</td>
<td>65</td>
</tr>
<tr>
<td>2. NMR spectral data of sesamin (109)</td>
<td>78</td>
</tr>
<tr>
<td>3. NMR spectral data of melisemine (154)</td>
<td>90</td>
</tr>
<tr>
<td>4. NMR spectral data of 7,7''-digeranyloxy-2',3'-epoxycinnamic anhydride (155)</td>
<td>102</td>
</tr>
<tr>
<td>5. NMR spectral data 7-(2',3'-epoxyprenyloxy)-4-methoxyfuroquinoline (156)</td>
<td>118</td>
</tr>
<tr>
<td>6. NMR spectral data of evellerine (157)</td>
<td>131</td>
</tr>
<tr>
<td>7. NMR spectral data of 7-(2-hydroxy-3-chloroprenyloxy)-4-methoxyfuroquinoline (158)</td>
<td>145</td>
</tr>
<tr>
<td>8. NMR spectral data of aurantiamide acetate (159)</td>
<td>161</td>
</tr>
<tr>
<td>9. NMR spectral data of kokusaginine (11)</td>
<td>173</td>
</tr>
<tr>
<td>10. NMR spectral data of decarine (160)</td>
<td>182</td>
</tr>
<tr>
<td>11. NMR spectral data of rutaecarpine (122)</td>
<td>197</td>
</tr>
<tr>
<td>12. NMR spectral data of 7-hydroxycoumarin (141)</td>
<td>211</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>1.</td>
<td>Metabolism of MTT to a formazan by viable cells</td>
</tr>
<tr>
<td>2.</td>
<td>UV spectrum of (p-O)-Geranylcoumaric acid</td>
</tr>
<tr>
<td>3.</td>
<td>IR spectrum of (p-O)-Geranylcoumaric acid</td>
</tr>
<tr>
<td>4.</td>
<td>Selected HMBC correlations of (p-O)-Geranylcoumaric acid</td>
</tr>
<tr>
<td>5.</td>
<td>Mass fragmentation patterns of (p-O)-Geranylcoumaric acid</td>
</tr>
<tr>
<td>6.</td>
<td>Mass spectrum of (p-O)-Geranylcoumaric acid</td>
</tr>
<tr>
<td>7.</td>
<td>(^1)H-NMR spectrum of (p-O)-Geranylcoumaric acid</td>
</tr>
<tr>
<td>8.</td>
<td>(^{13})C-NMR spectrum of (p-O)-Geranylcoumaric acid</td>
</tr>
<tr>
<td>9.</td>
<td>DEPT spectrum of (p-O)-Geranylcoumaric acid</td>
</tr>
<tr>
<td>10.</td>
<td>COSY spectrum of (p-O)-Geranylcoumaric acid</td>
</tr>
<tr>
<td>11.</td>
<td>HSQC spectrum of (p-O)-Geranylcoumaric acid</td>
</tr>
<tr>
<td>12.</td>
<td>HMBC spectrum of (p-O)-Geranylcoumaric acid</td>
</tr>
<tr>
<td>13.</td>
<td>UV spectrum of sesamin</td>
</tr>
<tr>
<td>14.</td>
<td>IR spectrum of sesamin</td>
</tr>
<tr>
<td>15.</td>
<td>Selected HMBC correlations of sesamin</td>
</tr>
<tr>
<td>16.</td>
<td>Mass fragmentation patterns of sesamin</td>
</tr>
<tr>
<td>17.</td>
<td>Mass spectrum of sesamin</td>
</tr>
<tr>
<td>18.</td>
<td>(^1)H-NMR spectrum of sesamin</td>
</tr>
<tr>
<td>19.</td>
<td>(^{13})C-NMR spectrum of sesamin</td>
</tr>
<tr>
<td>20.</td>
<td>COSY spectrum of sesamin</td>
</tr>
<tr>
<td>21.</td>
<td>HSQC spectrum of sesamin</td>
</tr>
<tr>
<td>22.</td>
<td>HMBC spectrum of sesamin</td>
</tr>
</tbody>
</table>
23. UV spectrum of melisemine (154)
24. IR spectrum of melisemine (154)
25. Selected HMBC correlations of melisemine (154)
26. Mass fragmentation patterns of melisemine (154)
27. Mass spectrum of melisemine (154)
28. ¹H-NMR spectrum of melisemine (154)
29. ¹³C-NMR spectrum of melisemine (154)
30. COSY spectrum of melisemine (154)
31. HSQC spectrum of melisemine (154)
32. HMBC spectrum of melisemine (154)
33. UV spectrum of 7,7'"-digeranyloxy-2',3'-epoxycinnamic anhydride (155)
34. IR spectrum of 7,7"'-digeranyloxy-2',3'-epoxycinnamic anhydride (155)
35. Selected HMBC correlations of 7,7"'-digeranyloxy-2',3'-epoxycinnamic anhydride (155)
36. EIMS spectrum of 7,7"'-digeranyloxy-2',3'-epoxycinnamic anhydride (155)
37. FABMS spectrum of 7,7"'-digeranyloxy-2',3'-epoxycinnamic anhydride (155)
38. HRFABMS spectrum of 7,7"'-digeranyloxy-2',3'-epoxycinnamic anhydride (155)
39. ¹H-NMR spectrum of 7,7"'-digeranyloxy-2',3'-epoxycinnamic anhydride (155)
40. ¹³C-NMR spectrum of 7,7"'-digeranyloxy-2',3'-epoxycinnamic anhydride (155)
41. DEPT spectrum of 7,7"'-digeranyloxy-2',3'-epoxycinnamic anhydride (155)
42. COSY spectrum of 7,7"'-digeranyloxy-2',3'-epoxycinnamic anhydride (155)
43. HSQC spectrum of 7,7"'-digeranyloxy-2',3'-epoxycinnamic anhydride (155)
44. HMBC spectrum of 7,7"'-digeranyloxy-2',3'-epoxycinnamic anhydride (155)
45. UV spectrum of 7-(2',3'-epoxypropoxy)-4-methoxyfuroquinoline (156)

46. IR spectrum of 7-(2',3'-epoxypropoxy)-4-methoxyfuroquinoline (156)

47. HMBC correlations of 7-(2',3'-epoxypropoxy)-4-methoxyfuroquinoline (156)

48. Mass fragmentation patterns of 7-(2',3'-epoxypropoxy)-4-methoxyfuroquinoline (156)

49. Mass spectrum of 7-(2',3'-epoxypropoxy)-4-methoxyfuroquinoline (156)

50a. 1H-NMR spectrum of 7-(2',3'-epoxypropoxy)-4-methoxyfuroquinoline (156)

50b. Expanded 1H-NMR spectrum of 7-(2',3'-epoxypropoxy)-4-methoxyfuroquinoline (156)

50c. Expanded 1H-NMR spectrum of 7-(2',3'-epoxypropoxy)-4-methoxyfuroquinoline (156)

51. 13C-NMR spectrum of 7-(2',3'-epoxypropoxy)-4-methoxyfuroquinoline (156)

52. COSY spectrum of 7-(2',3'-epoxypropoxy)-4-methoxyfuroquinoline (156)

53. HMBC spectrum of 7-(2',3'-epoxypropoxy)-4-methoxyfuroquinoline (156)

54. UV spectrum of evellerine (157)

55. IR spectrum evellerine (157)

56. Selected HMBC correlations spectrum of evellerine (157)

57. Mass fragmentation patterns of evellerine (157)

58. Mass spectrum of evellerine (157)

59a. 1H-NMR spectrum evellerine (157)

59b. Expanded 1H-NMR spectrum of evellerine (157)

59c. Expanded 1H-NMR spectrum of evellerine (157)

60. 13C-NMR spectrum of evellerine (157)

61. COSY spectrum of evellerine (157)

62. HMBC spectrum of evellerine (157)
63. UV spectrum 7-(2'-hydroxy-3'-chloroprenyloxy)-4-methoxyfuroquinoline (157)

64. IR spectrum 7-(2'-hydroxy-3'-chloroprenyloxy)-4-methoxyfuroquinoline (157)

65. Selected HMBC correlations of 7-(2'-hydroxy-3'-chloroprenyloxy)-4-methoxyfuroquinoline (158) 143

66. Mass fragmentation patterns of 7-(2'-hydroxy-3'-chloroprenyloxy)-4-methoxyfuroquinoline (158) 144

67. Mass spectrum 7-(2'-hydroxy-3'-chloroprenyloxy)-4-methoxyfuroquinoline (157) 146

68a. ¹H-NMR spectrum 7-(2'-hydroxy-3'-chloroprenyloxy)-4-methoxyfuroquinoline (157) 147

68b. Expanded ¹H-NMR spectrum of 7-(2'-hydroxy-3'-chloroprenyloxy)-4-methoxyfuroquinoline (158) 148

68c. Expanded ¹H-NMR spectrum of 7-(2'-hydroxy-3'-chloroprenyloxy)-4-methoxyfuroquinoline 149

69. ¹³C-NMR spectrum of 7-(2'-hydroxy-3'-chloroprenyloxy)-4-methoxyfuroquinoline (158) 150

70. COSY spectrum of 7-(2'-hydroxy-3'-chloroprenyloxy)-4-methoxyfuroquinoline (158) 151

71. DEPT spectrum of 7-(2'-hydroxy-3'-chloroprenyloxy)-4-methoxyfuroquinoline (158) 152

72. HSQC spectrum of 7-(2'-hydroxy-3'-chloroprenyloxy)-4-methoxyfuroquinoline (158) 153

73. HMBC spectrum of 7-(2'-hydroxy-3'-chloroprenyloxy)-4-methoxyfuroquinoline (158) 154

74. UV spectrum of aurantiamide acetate (159) 155

75. IR spectrum of aurantiamide acetate (159) 156

76. Selected HMBC correlations of aurantiamide acetate (159) 158

77. Mass Fragmentation patterns of aurantiamide acetate (159) 160

78. Mass spectrum of aurantiamide acetate (159) 162

79a. ¹H-NMR spectrum of aurantiamide acetate (159) 163
79b. Expanded 1H-NMR spectrum of aurantiamide acetate (159) 164
80a. 13C-NMR spectrum of aurantiamide acetate (159) 165
80b. Expanded 13C-NMR spectrum of aurantiamide acetate (159) 166
81. COSY spectrum of aurantiamide acetate (159) 167
82. HSQC spectrum of aurantiamide acetate (159) 168
83. HMBC spectrum of aurantiamide acetate (159) 169
84. UV spectrum of kokusaginine (11) 171
85. IR spectrum of kokusaginine (11) 171
86. Mass fragmentation patterns of kokusaginine (11) 172
87. Mass spectrum of kokusaginine (11) 174
88a. 1H-NMR spectrum of kokusaginine (11) 175
88b. Expanded 1H-NMR spectrum of kokusaginine (11) 176
89. UV spectrum of decarine (160) 178
90. IR spectrum of decarine (160) 178
91. Selected HMBC correlations of decarine (160) 180
92. Mass fragmentation patterns of decarine (160) 181
93. Mass spectrum of decarine (160) 183
94. 1H-NMR spectrum of decarine (160) 184
95. 13C-NMR spectrum of decarine (160) 185
96. COSY spectrum of decarine (160) 186
97. DEPT spectrum of decarine (160) 187
98. HSQC spectrum of decarine (160) 188
99. HMBC spectrum of decarine (160) 189
100. UV spectrum of rutaecarpine (122) 191
101. IR spectrum of rutaecarpine (122) 191
102. Selected HMBC correlations of rutaecarpine (122) 194
103a. Mass fragmentation patterns of rutaecarpine (122) 195
103b. Mass fragmentation patterns of rutaecarpine (122) 196
104. Mass spectrum of rutaecarpine (122) 198
105. 1H-NMR spectrum of rutaecarpine (122) 199
106a. 13C-NMR spectrum of rutaecarpine (122) 200
106b. Expanded 13C-NMR spectrum of rutaecarpine (122) 201
107. COSY spectrum of rutaecarpine (122) 202
108. DEPT spectrum of rutaecarpine (122) 203
109. HSQC spectrum of rutaecarpine (122) 204
110a. HMBC spectrum of rutaecarpine (122) 205
110b. Expanded HMBC spectrum of rutaecarpine (122) 206
110c. Expanded HMBC spectrum of rutaecarpine (122) 207
111. UV spectrum of 7-hydroxycoumarin (141) 209
112. IR spectrum of 7-hydroxycoumarin (141) 209
113. Mass fragmentation patterns of 7-hydroxycoumarin (141) 210
114. Mass spectrum of 7-hydroxycoumarin (141) 212
115. 1H-NMR spectrum of 7-hydroxycoumarin (141) 213
116. 13C-NMR spectrum of 7-hydroxycoumarin (141) 214
117. COSY spectrum of 7-hydroxycoumarin (141) 215
118. Radical scavenging activity of Melicope luma-ankenda (Gaertn) T.Hartley leaves 219
119. Radical scavenging activity of barks of Tetradium sambucinum (Bl) Hartley 219
120. Radical scavenging activity of leaves of Tetradium sambucinum (Bl) Hartley 220

xviii
121. Radical scavenging activity of barks of isolated compounds
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>alpha</td>
</tr>
<tr>
<td>β</td>
<td>betha</td>
</tr>
<tr>
<td>δ</td>
<td>delta (chemical shift in ppm)</td>
</tr>
<tr>
<td>γ</td>
<td>gamma</td>
</tr>
<tr>
<td>λ<sub>max</sub></td>
<td>maximum wavelength in nm</td>
</tr>
<tr>
<td>μg</td>
<td>microgram</td>
</tr>
<tr>
<td>μl</td>
<td>microliter</td>
</tr>
<tr>
<td>Ar</td>
<td>aromatic</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine tri phosphate</td>
</tr>
<tr>
<td>br</td>
<td>broad</td>
</tr>
<tr>
<td>13C</td>
<td>carbon-13</td>
</tr>
<tr>
<td>°C</td>
<td>degree celcius</td>
</tr>
<tr>
<td>CFU</td>
<td>colony forming unit</td>
</tr>
<tr>
<td>CHCl₃</td>
<td>chloroform</td>
</tr>
<tr>
<td>CDCl₃</td>
<td>deuterated chloroform</td>
</tr>
<tr>
<td>cm⁻¹</td>
<td>per centimeter</td>
</tr>
<tr>
<td>COSY</td>
<td>Correlated Spectroscopy</td>
</tr>
<tr>
<td>d</td>
<td>doublet</td>
</tr>
<tr>
<td>dd</td>
<td>doublet of doublets</td>
</tr>
<tr>
<td>ddd</td>
<td>doublet of doublets of doublets</td>
</tr>
<tr>
<td>DPPH</td>
<td>1,1-diphenil-2-picrylhydrazyl</td>
</tr>
<tr>
<td>DEPT</td>
<td>Distortionless Enhancement by Polarization Transfer</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxides</td>
</tr>
</tbody>
</table>

xx
EIMS Electron Impact Mass Spectroscopy
ELISA Enzym-Linked Immunosorbent Assay
FCS Fetal Calf Serum
g gram
GCMS Gas Chromatography-Mass Spectroscopy
h hour
'H proton
HMBC Heteronuclear Multiple Bond Connectivity by 2D Multiple Quantum
HSQC Heteronuclear Single Quantum Coherence
Hz hertz
IC₅₀ Inhibition Concentration at 50 percent
IR Infra red
J coupling constant value
KBr Kalium bromida
Kg kilogram
M⁺ molecular ion
m multiplet
mg milligram
mL milliliter
mm millimeter
MeOH methanol
MHz MegaHertz
m.p. melting point
MTT Microculture tetrazolium

3-[(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
m/z mass per charge
Na Natrium
NA Natrium agar
nm nanometer
NMR Nuclear Magnetic Resonance
o ortho
OD Optical density
p para
PBS Phosphate Buffered Saline
Pet.ether Petroleum ether
ppm part per million
RPMI Roswell Park Memorial Institute
s singlet
t triplet
TLC Thin Layer Chromatography
TMS Tetramethilsilane
UV ultra violet
WHO World Health Organization.
CHAPTER I

INTRODUCTION

The use of natural products with therapeutic properties is as ancient as human civilization and for a long time, mineral, plant and animal products were the main sources of drug. Even today, plants are the almost exclusive source of drug for the majority of the world’s populations.

About 25% of drugs prescribed worldwide come from plants and 121 such active compounds are currently being used. Of the 252 drugs considered as basic and essential by the World Health Organization (WHO), 11% are exclusively of plant origin and a significant number are synthetic drugs obtained from natural precursors (Rates, 2001). This is particularly true as shown in cancer and infectious diseases, where over 60% and 75% of the drugs were known to be of natural origin, respectively (Newman et al., 2003).

After centuries of empirical use of herbal preparation, the isolation of active principles such as morphine, strychnine, quinine etc. in the early 19th century marked a new era in the use of medicinal plants, and the beginning of modern medicinal plant research. Plant metabolites were mainly investigated from a phytochemical and chemotaxonomic viewpoint during this period. Over the last decade, however, interest in drugs of plant origin has been growing steadily. Consumption of medicinal plants has almost doubled in Western Europe during that period (Hamburger and Hostettman, 1991).
It is currently estimated that there are at least 250,000-500,000 different plants species, up to 30 millions species of insects, 1.2 millions species of fungi and similar number of algae and prokaryotes in existence throughout the world (Pimm et al., 1995). All of the species coexist in ecosystem and interact with each other in several ways in which chemistry plays a major role, for example in defense, symbiosis and pollination. In basic term, these organisms all share a similar biochemical process necessary for living cell, but in addition to that they also produce a wide variety of the so called secondary metabolites that are involved in interactions between organisms. Considering the number of organisms, and the almost infinite number of interactions possible, it is not surprising that an enormously wide variety of secondary metabolites have evolved within organism (Vepoorde, 1998).

The potential of higher plants as sources for new drugs is still largely unexplored. Among the estimated 250,000-500,000 plants species, only a small percentage has been investigated phytochemically and the fraction submitted to biological or pharmacological screening is even smaller (Rates, 2001). Plants contain hundreds or thousands of metabolites. It is clear that plants provide an enormous potential for the discovery of new bioactive compounds.

Melicope species is one of the genus in Rutaceae family. *Melicope* have similar characteristic with *Tetradium* Lour and *Euodia* and recently Hartley reestablished the genus *Tetradium* Lour that was formerly placed under *Euodia* J.R. & G. Forst by Engler (Engler, 1931). Hartley further indicated that many other species formerly placed in *Euodia* were to be transferred to *Melicope* J.R & G. Forst. (Hartley, 1981)