UNIVERSITI PUTRA MALAYSIA

PHOTODEGRADATION AND ADSORPTION OF FAST GREEN FCF IN TIO2-CHITIN SUSPENSION

FATIMAH JULIA ROMELI.

FS 2005 26
PHOTODEGRADATION AND ADSORPTION OF FAST GREEN FCF IN TiO₂-CHITIN SUSPENSION

By

FATIMAH JULIA ROMELI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

April 2005
To my husband, my daughter,
my parents, and my family,
With all my heart and love
For all that you are, what you do
and what you mean to me.
Thank you can’t ever quantify the sacrifices.
Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science

PHOTODEGRADATION AND ADSORPTION OF FAST GREEN FCF IN TiO₂-CHITIN SUSPENSION

By

FATIMAH JULIA ROMELI

April 2005

Chairman : Professor Zulkarnain Zainal, PhD
Faculty : Science

The potential of chitin as co-adsorbent in the photocatalytic degradation of Fast Green in titanium dioxide suspension was investigated. The physico-chemical characteristics of chitin were studied using Analysis of Surface Area and Porosity (ASAP), Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM).

The sorption study was first done and compared with titanium dioxide heterogeneous photocatalysis. The result of kinetics studies indicates that the sorption process was pH dependent and exothermic. The adsorption equilibrium was achieved after 60 minutes and the adsorption capacity increased as the dye concentration was increased. The kinetic data was tested for first and pseudo-second kinetic order models and was found to fit well to the latter, while the adsorption isotherm was found to agree well with the Langmuir equation assuming monolayer type adsorption.
The photocatalytic degradation and adsorption of Fast Green from aqueous solution has been investigated in suspensions containing commercial titanium dioxide (Degussa P-25), chitin and mixture of titanium dioxide-chitin. The removals of Fast Green using a mixture of titanium dioxide-chitin were found to follow first order kinetic. The presence of chitin in titanium dioxide suspension enhanced the removal by two times higher. Fast Green removal using mixture of titanium dioxide-chitin under UV irradiation was found to be more efficient rather than illumination using titanium dioxide or chitin alone.

The removal of Fast Green using chitin and a mixture of titanium dioxide-chitin were rapid for the first 30 minute and reached equilibrium after 1 hour. A synergy effect was observed with an increase in the apparent rate constant by 1.86 times. This was ascribed to an extended adsorption of Fast Green on chitin followed by a transfer to titanium dioxide where it is photocatalytically degraded.

pH has significant effect on the adsorption and photodegradation properties of chitin and titanium dioxide surface. However, the effect of temperature on adsorption and photodegradation process using titanium dioxide-chitin mixture was minimal. This combined photocatalytic-adsorption system appears promising as an efficient accelerated removal process of organic pollutants from water.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

FOTODEGRADASI DAN JERAPAN *FAST GREEN FCF* DI DALAM AMPAIAN TiO$_2$-KITIN

Oleh

FATIMAH JULIA ROMELI

April 2005

Pengerusi : Profesor Zulkarnain Zainal, PhD
Fakulti : Sains

Penyingkiran Fast Green menggunakan kitin dan campuran titanium dioksida-kitin berlaku sangat cepat dalam tempoh masa 30 minit yang pertama dan mencapai keseimbangan selepas 1 jam. Kesan tenaga dapat dilihat melalui peningkatan kadar tetap sehingga 1.86 kali. Ini dapat dijelaskan melalui jerapan tambahan oleh kitin diikuti oleh pemindahan kepada titanium dioksida di mana ia akan didegradasi oleh fotomangkin.

pH mempunyai kesan yang penting ke atas sifat-sifat jerapan dan fotodegradasi ke atas permukaan titanium dioksida dan kitin. Walau bagaimanapun, kesan suhu adalah sangat minima ke atas proses jerapan dan fotodegradasi menggunakan campuran titanium dioksida-kitin. Gabungan sistem jerapan-fotodegradasi ini, menjanjikan keberkesanan dalam proses penyingkiran pantas bahan pencemar organik dalam air.
ACKNOWLEDGMENTS

I would like to express my appreciation to my supervisor, Prof. Dr. Zulkarnain Zainal and co-supervisors, Prof. Dr. Mohd Zobir bin Hussein, Assoc. Prof. Dr. Mohamad Zaki Ab Rahman and Assoc. Prof. Dr. Asmah Hj Yahaya for their invaluable assistance, advice, guidance and patience throughout the duration of the project.

I would like to take this opportunity to extend my deepest appreciation to all the staff in the Chemistry Department for their assistance and cooperation in one way or another that has contributed to the success of this study.

My sincere gratitude is also extended to Saravanan, Lee Kong Hui, Salina, Mazlina, Mazidah, Adilla and all laboratory members and friends for their helps throughout this project and providing appropriate assistance.

Finally, financial support from IRPA funding (09-02-04-0255-EA001) is gratefully acknowledged.
I certify that an Examination Committee met on 25th April 2005 to conduct the final examination of Fatimah Julia Romeli on her Master of Science thesis entitled “Photodegradation and Adsorption of Fast Green FCF in TiO₂-Chitin Suspension” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Irmawati Ramli, PhD
Lecturer
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Abdul Halim Abdullah, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Mohd Zaizi Desa, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Musa Ahmad, PhD
Associate Professor
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
(External Examiner)

GULAM RUSUL RAHMAT ALI, PhD
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: **20 JUN 2005**
This thesis is submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

ZULKARNAIN ZAINAL, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

MOHD ZOBIR HUSSEIN, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

MOHAMAD ZAKI AB RAHMAN, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

ASMAH HJ YAHAYA, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

AINI IDEIUS, PhD
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia
Date: 15 JUL 2005
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citation, which have been duly acknowledge. I also declare that this thesis has not been previously or concurrently submitted for any other degree at UPM or other institutions.

FATIMAH JULIA ROMELI

Date: 17 JUN 2005
TABLE OF CONTENTS

DEDICATION 2
ABSTRACT 3
ABSTRAK 5
ACKNOWLEDGMENTS 7
APPROVAL 8
DECLARATION 10
LIST OF TABLES 13
LIST OF FIGURES 14
LIST OF SYMBOLS AND ABBREVIATIONS 16

CHAPTER

I INTRODUCTION 18
 Semiconductor Photocatalysis 20
 Role of Oxygen 23
 Adsorption 25
 Chemical and Physical Adsorption 26
 Properties of Titanium Dioxide 28
 Structural Properties 28
 Optical Properties 33
 Electronic Properties 35
 Properties of Chitin 37
 Properties of Fast Green FCF 40
 Objectives 40

II LITERATURE REVIEW 42
 Semiconductor Photocatalysis 42
 Chitin as an Adsorbent 45
 Effect of using co-adsorbent in Photodegradation 47

III MATERIALS AND METHODOLOGY 50
 Titanium Dioxide (Degussa P 25) 50
 Chitin 50
 Analysis of Surface Area & Porosity (ASAP) 50
 Fourier Transform Infrared Spectroscopy (FTIR) 51
 Scanning Electron Microscopy (SEM) 51
 Preparation of Fast Green FCF solution 51
 Determination of Wavelength at Maximum Absorption (λ_{max}) 52
 and Construction of Standard Calibration Curve for Fast Green 52
Adsorption of Fast Green using Chitin 52
Effect of Initial Concentration 53
Effect of pH 53
Effect of Temperature 54
Adsorption Isotherm 54
Removal of Fast Green Using TiO₂-Chitin 54
Removal Kinetics in the presence of UV light 54
Effect of pH 55
Effect of Temperature 56

IV RESULTS AND DISCUSSION 57
Characterization of Chitin 57
Analysis of Surface Area & Porosity (ASAP) 57
Fourier Transform Infrared Spectroscopy (FTIR) 58
Surface Morphology 60
Adsorption of Fast Green Using Chitin 61
Effect of Initial Concentration 61
Sorption Kinetic 65
First Order Kinetics 65
Pseudo-second Order Kinetics 69
Effect of pH 72
Effect of Temperature 77
Adsorption Isotherm 82
Removal of Fast Green Using TiO₂-Chitin 85
Preliminary Test 85
Removal Kinetics in the presence of UV light 87
Effect of pH 93
Effect of Temperature 99

V CONCLUSION 105

REFERENCES 108
APPENDIX 113
BIODATA OF THE AUTHOR 126
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Crystallographic properties of anatase, rutile and brookite (Wold, 1993)</td>
</tr>
<tr>
<td>2</td>
<td>Properties of Fast Green</td>
</tr>
<tr>
<td>3</td>
<td>List of works on the application of chitin to remove ions in aqueous solution</td>
</tr>
<tr>
<td>4</td>
<td>Percentage for total removal and uptake of Fast Green by chitin at different initial concentration</td>
</tr>
<tr>
<td>5</td>
<td>Apparent rate constant, k_{app}, half life, $t_{1/2}$ and correlation factor, R^2 value for sorption of Fast Green by chitin at different initial dye concentration</td>
</tr>
<tr>
<td>6</td>
<td>Relationship between initial Fast Green concentration and sorption capacity and initial sorption rate</td>
</tr>
<tr>
<td>7</td>
<td>Percentage for total removal and uptake of Fast Green by chitin at different pH</td>
</tr>
<tr>
<td>8</td>
<td>Relationship between sorption capacity, q_e and initial sorption rate, k of Fast Green adsorption onto chitin at different pH</td>
</tr>
<tr>
<td>9</td>
<td>Percentage for total removal and uptake of Fast Green by chitin at different temperatures</td>
</tr>
<tr>
<td>10</td>
<td>Relationship between sorption capacity, q_e and initial sorption rate, k of Fast Green adsorption onto chitin at different temperatures</td>
</tr>
<tr>
<td>11</td>
<td>Percentage for total removal by different mixtures of catalyst/adsorbent in dark</td>
</tr>
<tr>
<td>12</td>
<td>Percentage for total removal of Fast Green by different mixtures of catalyst/adsorbent under UV irradiation</td>
</tr>
<tr>
<td>13</td>
<td>Apparent rate constant, k_{app}, and half life, $t_{1/2}$ for removal of Fast Green under UV irradiation</td>
</tr>
<tr>
<td>14</td>
<td>Percentage for total removal of Fast Green by different catalyst/adsorbent at different pH</td>
</tr>
<tr>
<td>15</td>
<td>Percentage for total removal of Fast Green by different catalyst/adsorbent at different temperatures</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Charge recombination (Mills and Hunte, 1997)</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>Structure of anatase TiO₂; (titanium dark spheres, oxygen light) (Rabek, 1995)</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>Structure of rutile TiO₂; (titanium dark spheres, oxygen light) (Rabek, 1995)</td>
<td>31</td>
</tr>
<tr>
<td>4</td>
<td>Formation of surface hydroxyls (OH) on the anatase TiO₂ surface</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>Band structure of (a) indirect band gap (b) direct band gap</td>
<td>35</td>
</tr>
<tr>
<td>6</td>
<td>Energy diagram for a dark and irradiated semiconductor</td>
<td>36</td>
</tr>
<tr>
<td>7</td>
<td>Structure of chitin</td>
<td>38</td>
</tr>
<tr>
<td>8</td>
<td>Adsorption isotherm of N₂ (g) on chitin</td>
<td>57</td>
</tr>
<tr>
<td>9</td>
<td>FTIR spectrum of chitin</td>
<td>59</td>
</tr>
<tr>
<td>10</td>
<td>Surface morphology of chitin</td>
<td>60</td>
</tr>
<tr>
<td>11</td>
<td>Effect of initial concentration on Fast Green sorption by chitin (0.50g)</td>
<td>63</td>
</tr>
<tr>
<td>12</td>
<td>Percentage removal and uptake of Fast Green by chitin at different initial concentration</td>
<td>64</td>
</tr>
<tr>
<td>13</td>
<td>Graph ln C/C₀ versus time, t/min for sorption of Fast Green onto chitin at different initial concentration</td>
<td>68</td>
</tr>
<tr>
<td>14</td>
<td>Pseudo second order kinetics of Fast Green sorption onto chitin</td>
<td>70</td>
</tr>
<tr>
<td>15</td>
<td>Effect of pH on Fast Green sorption by chitin for C₀= 50 ppm and chitin= 0.50 g</td>
<td>74</td>
</tr>
<tr>
<td>16</td>
<td>Plot of t/qₜ (min g/mg) versus time, t/min for sorption of Fast Green onto chitin at different pH. In the insert, plot of t/qₜ (min g/mg) versus time, t/min for sorption of Fast Green onto chitin at pH 1, 3 and 5</td>
<td>75</td>
</tr>
<tr>
<td>17</td>
<td>Sorption capacity qₑ and initial sorption rate, k of Fast Green adsorption onto chitin at different pH</td>
<td>76</td>
</tr>
<tr>
<td>18</td>
<td>Effect of temperatures on Fast Green sorption onto chitin for C₀= 100 ppm and chitin= 0.50 g</td>
<td>79</td>
</tr>
<tr>
<td>No.</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Plot of (t/q_t) (min g/mg) versus time, (t/\text{min}) for sorption of Fast Green onto chitin at different temperatures for (C_o = 100) ppm and chitin = 0.50 g</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Sorption capacity, (q_s) and initial sorption rate, (k) of Fast Green adsorption onto chitin at different temperatures</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Langmuir isotherm for Fast Green sorption onto chitin</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Adsorption of Fast Green in dark for (C_o = 100) ppm, (\text{TiO}_2 = 0.24) g, (\text{TiO}_2\text{-chitin} = 0.80) g and chitin = 0.56 g</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Removal of Fast Green under UV irradiation for (C_o = 100) ppm, (\text{TiO}_2 = 0.24) g, (\text{TiO}_2\text{-chitin} = 0.8) g and chitin = 0.56 g</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>First kinetic order of Fast Green removal under UV irradiation</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Effect of pH on Fast Green removal in (\text{TiO}_2) suspension for (C_o = 100) ppm and (\text{TiO}_2 = 0.24) g</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Effect of pH on Fast Green removal in mixture of (\text{TiO}_2\text{-chitin}) for (C_o = 100) ppm and (\text{TiO}_2\text{-chitin} = 0.8) g</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Effect of pH on Fast Green removal in chitin suspension for (C_o = 100) ppm and chitin = 0.56 g</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Effect of pH on (k_{app}) during Fast Green removal under UV irradiation</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Effect of temperatures on Fast Green removal in (\text{TiO}_2) suspension for (C_o = 100) ppm and (\text{TiO}_2 = 0.24) g</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Effect of temperatures on Fast Green removal in mixture (\text{TiO}_2\text{-chitin}) for (C_o = 100) ppm and (\text{TiO}_2\text{-chitin} = 0.8) g</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Effect of temperatures on Fast Green removal in chitin suspension for (C_o = 100) ppm and chitin = 0.56 g</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Effect of temperatures on (k_{app}) during Fast Green removal under UV irradiation</td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>AC</td>
<td>activated carbon</td>
<td></td>
</tr>
<tr>
<td>AR14</td>
<td>Acid Red 14</td>
<td></td>
</tr>
<tr>
<td>ASAP</td>
<td>Analysis of Surface Area and Porosity</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>constant related to the energy of sorption</td>
<td></td>
</tr>
<tr>
<td>BET</td>
<td>Brunauer-Emmet-Teller</td>
<td></td>
</tr>
<tr>
<td>cb</td>
<td>conduction band</td>
<td></td>
</tr>
<tr>
<td>Ce</td>
<td>equilibrium concentration of dye</td>
<td></td>
</tr>
<tr>
<td>C₀</td>
<td>initial concentration of dye in solution</td>
<td></td>
</tr>
<tr>
<td>Cₜ</td>
<td>dye concentration in solution at time t</td>
<td></td>
</tr>
<tr>
<td>Dₑ</td>
<td>diffusion coefficient of the charged carrier</td>
<td></td>
</tr>
<tr>
<td>e⁻</td>
<td>electron</td>
<td></td>
</tr>
<tr>
<td>Eₐ</td>
<td>activation energy</td>
<td></td>
</tr>
<tr>
<td>Eₜ</td>
<td>energygap</td>
<td></td>
</tr>
<tr>
<td>FG</td>
<td>Fast Green FCF</td>
<td></td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier Transform Infrared Spectroscopy</td>
<td></td>
</tr>
<tr>
<td>h⁺</td>
<td>positive holes</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>penetration distance of the light</td>
<td></td>
</tr>
<tr>
<td>k</td>
<td>initial sorption rate</td>
<td></td>
</tr>
<tr>
<td>kₚₚ</td>
<td>apparent rate constant</td>
<td></td>
</tr>
<tr>
<td>Nₜ</td>
<td>maximum sorption of the system</td>
<td></td>
</tr>
<tr>
<td>Nₑ</td>
<td>amount of dye sorbed by sorbent at equilibrium</td>
<td></td>
</tr>
<tr>
<td>Nₒ</td>
<td>sorption capacity</td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>q_e</td>
<td>amount of Fast Green sorbed on the surface of the sorbent at equilibrium</td>
<td></td>
</tr>
<tr>
<td>q_t</td>
<td>amount of Fast Green sorbed on the surface of time, t</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>radius of the particle</td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>correlation coefficient</td>
<td></td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscope</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>time</td>
<td></td>
</tr>
<tr>
<td>$t_{1/2}$</td>
<td>half life</td>
<td></td>
</tr>
<tr>
<td>UV</td>
<td>ultra violet</td>
<td></td>
</tr>
<tr>
<td>v_b</td>
<td>valence band</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>reciprocal absorption length</td>
<td></td>
</tr>
<tr>
<td>λ</td>
<td>wavelength</td>
<td></td>
</tr>
<tr>
<td>λ_g</td>
<td>threshold wavelength</td>
<td></td>
</tr>
<tr>
<td>λ_{max}</td>
<td>maximum wavelength</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

Water is the most abundant natural resource on earth. It is also the living environment for a large proportion of the earth's animals and plants. Essential to most human activities, it can mean life or death, bounty or poverty, war or peace. Water is commonly taken for granted as nature's gift. Not only because of wasteful usage, but industry and people pollute and poison available water supplies at a frightening rate. Water problems are centuries old. Water pollution occurs when substances are added to the water causing a detrimental alteration to its physical, chemical, biological or anesthetic characteristic. Pollutants are either foreign substances or natural substances discharged in excessive amounts.

Various treatment strategies are applied for the removal of toxic organic pollutants from water. The conventional method for water treatment which included chemical precipitation, chemical oxidation or reaction, ion exchange, electrochemical treatment, nanofiltration, ozonation, combustion, among others, are efficient but has inherent limitations in applicability, effectiveness and cost. Heterogeneous photocatalysis using TiO$_2$ as photocatalyst recently emerged as an efficient purifying method. Several attempts have been made to increase its photoefficiency either by noble metal deposition (Breuer and Wilke, 1999) or by ion doping (Herrmann et al., 1984), but such modification did not enhance the photocatalytic activity and were rather detrimental.
Conceptually, combination of more than one processes such as photodegradation and adsorption, would provide a viable solution to this problem. Sorption is one of the several techniques that have been successfully employed for effective dye removal. Therefore, another way to increase the photocatalytic efficiency of TiO₂ consists of adding a co-adsorbent such as silica, alumina, zeolite, clay or activated carbon (Tanguay et al., 1989, Ilisz, et al., 2004 and Takeda et al, 1998).

However, due to the high cost involved and considering the great amount of contaminated water, research has recently directed towards alternative co-adsorbents, namely low cost adsorbent, including the utilization of waste materials. Furthermore, fly ash, clay and sawdust are inexpensive but poor sorbents, while some other materials fail for other reasons, for instance, activated alumina is effective in removing heavy metals, but it readily soluble under extreme pH condition (Sağ and Aktay, 2002).

Therefore, the idea of using natural waste material from the seafood industry, such as shrimp shells rises in this context. Shrimp shells contain a natural biopolymer, chitin, which has been studied as adsorbent for textile dyestuff (Loureiro et al., 2000). Chitin is considered as low cost adsorbents because it can be extracted in large quantities from crab and shrimp shells, saving the cost involved in land filling the tons of crab and shrimp shells piling up along coastlines or from the broth of industrial fungal processes (Zhou et al., 1999).

During the past twenty years, great efforts have been made to apply chitin in chemical engineering and biomedical applications, including water treatment, metal
accumulation and recovery, as well as functional membranes, and the control of necessary metal elements in the human body.

A series of works on the effects of adding co-adsorbents, mainly activated carbon (Faria and Gomez da Silva, 2003, Matos et al., 1998, Ilisz et al., 2002, Herrmann et al., 1999), in aqueous suspended mixtures with TiO$_2$ for photocatalytic degradation has attract the attention to study the effect of other adsorbent such as chitin. Different adsorbent induces different effects suggesting that the properties of the co-adsorbent may play a significant role upon the photoefficiency of the associated TiO$_2$.

SEMICONDUCTOR PHOTOCATALYSIS

Photocatalysis can be defined as the acceleration of a photoreaction by the presence of a catalyst (Mills and Hunte, 1997). Photocatalysis over a semiconductor oxide such as TiO$_2$ is initiated by the absorption of a photon with energy equal to or greater than the band gap of the semiconductor producing electron-hole (e^-/h^+) pairs. The band gap energy for TiO$_2$ is 3.2 eV (Nogueira and Wilson, 1993).

Absorption of light with $\lambda < 380$ nm by TiO$_2$ excites electrons on the valence band (vb) to the conduction band (cb) with the generation of a positive hole in the valence band. The valence band hole is strongly oxidizing and the conduction band electron is strongly reducing. Most of the electron and hole recombine but those reaching the surface of the pigment particles can react to produce free-radical species.
The formation of electron-hole pairs can be represented via:

\[
\text{TiO}_2 \xrightarrow{\text{hv, } \lambda < 380 \text{ nm}} e^-_{cb} + h^+_{vb} \tag{1}
\]

A fraction of electron-hole pair produced may also recombine to produce heat or light.

\[
e^-_{cb} + h^+_{vb} \xrightarrow{} \text{TiO}_2 + \text{heat} \tag{2}
\]

Other fraction of electron-hole pairs that do not recombined may migrate to the surface of the semiconductor, where they can undergo reduction and oxidation reactions.

Consequently, following irradiation, the TiO\textsubscript{2} particle can act as either an electron donor or acceptor for molecules in the surrounding media. However, the photoinduced charge separation in bare TiO\textsubscript{2} particles has a very short lifetime because of charge recombination. Therefore, it is important to prevent hole-electron recombination before a designated chemical reaction occurs on the TiO\textsubscript{2} surface. This charge recombination is demonstrated in Figure 1, where major processes occurring on a photogenerated semiconductor particle include:

i) Electron-hole recombination at the surface (reaction a).

ii) Electron-hole recombination in the bulk of the semiconductor (reaction b).

iii) At the surface of the particle, photo generated electrons reduce an electron acceptor a (reaction c).

iv) Photogenerated holes oxidize an electron donor D (reaction d).
Figure 1: Charge recombination (Mills and Hunte, 1997)

However, Gerisher and Heller, (1990) assumed that hole can escape from the recombination. The average transit time to the surface for the electronic charge carriers generated by light absorption is

\[\tau_D \approx \frac{R^2}{\pi^2 D_c} \]

(3)

Where R is the radius of the particle and \(D_c \) is the diffusion coefficient of the charged carrier. The combination of the reaction (c) and (d) represents the general redox reduction:

\[\text{Semiconductor} \xrightarrow{\text{Light} \geq E_g} A^- + D^+ \]

(4)
Photodegradation reaction on the surface of semiconductor may proceed via:

1) production of electron-hole pairs, photogenerated by exciting the semiconductor with light of energy greater than band gap energy.

2) separation of electrons and holes by traps available on the semiconductor surface, with a rate greater than the recombination rate.

3) redox processes induced by the separated electrons and holes with adsorbates present on the surface.

4) desorption of the product and reconstruction of the surface.

ROLE OF OXYGEN

Gerisher and Heller, (1990) analyzed the role of oxygen in photooxidation of organic molecules on semiconductor particles. Photoexcitation of semiconductors results in the formation of electron-hole pairs. Since hole transfer to adsorbed organic molecules or to water is very fast, two-electron transfer to O$_2$ may become the rate limiting factor. In n-type semiconductors, the more reactive species are the holes, which carry the major part of energy of the light quantum. The holes may either react by recombination with electrons (thus lowering the quantum efficiency), or they may react with organic molecules, RH$_2$,

$$h^+ + RH_2 \rightarrow \cdot RH + H^+ (aq) \quad (5)$$

as well as with surface-adsorbed OH$^-$ anions, forming hydroxyl radicals,

$$h^+ + O H^- (ads) \rightarrow \cdot OH \quad (6)$$
Electrons usually react more slowly than hole. The known variability in the photocatalytic efficiency of TiO$_2$ prepared by various methods may be due to differences in the distribution of surface traps, on which electrons are immobilized.

Since holes at the particle interface usually react faster than electrons, the particles under illumination contain an excess of electrons. Removal of these excess electrons is necessary to complete the oxidation reaction, by preventing the recombination of electrons with holes. The most easily available and economic electron acceptor is molecular oxygen. Thus, in the presence of air or oxygen, the predominant reaction of electrons with O$_2$ is:

\[\text{e}^- + \text{O}_2 \rightarrow \text{O}_2^- \]

Oxygen diffusion was shown not to be the rate-limiting factor in the case of illumination of n-TiO$_2$ particles in water under sunlight. For TiO$_2$ particles larger than 1 mm, the rate of electron transfer to adsorbed O$_2$ may be the limiting factor, resulting in losses of quantum efficiency. The catalytic effect of noble metal catalyst on TiO$_2$ particles could possibly be due to their facilitating nature of electron transfer from the particles to molecular oxygen. The rate-controlling process in oxygen reduction on illuminated semiconductor particles has been proposed by Gerisher and Heller (1990) to be electrons trapped near the surface of the particles, which may transfer to surface-adsorbed oxygen molecules. Therefore, highly efficient photoxidation of organic molecules requires fast O$_2$ reduction, which may be achieved by incorporating catalytic sites on the TiO$_2$ surface.