EFFECT OF RADIATION ON DOSIMETRIC AND OPTICAL PROPERTIES OF DYED PVA/CH AND DYED PVB/CH BLENDS

AZLINA BINTI BABA.

FS 2005 24
EFFECT OF RADIATION ON DOSIMETRIC AND OPTICAL PROPERTIES OF DYED PVA/CH AND DYED PVB/CH BLENDS

By

AZLINA BINTI BAHAR

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

July 2005
DEDICATIONS

To my lovely husband, Abd. Aziz Sadri,
my father, Baha Yeop and my mother, Sitah Alang Aziz, and family
for their love, support and concern....
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirements for the degree of Master of Science

EFFECTS OF RADIATION ON DOSIMETRIC AND OPTICAL PROPERTIES OF DYED PVA/CH AND DYED PVB/CH BLENDS

By

AZLINA BINTI BAHAB

July 2005

Chairman : Asse. Prof. Dr. Zainal Abidin Talib
Faculty : Faculty of Science

Crystal violet doped polyvinyl alcohol blended with chloral hydrate (CV doped PVA/CH) and methyl green doped polyvinyl butyral blended with chloral hydrate (MeG doped PVB/CH) films were prepared by solvent casting method. The blends were irradiated with γ radiation at doses of up to 110 kGy. The dosimetric and optical characteristics of the irradiated and unirradiated polymer blends were studied using UV-Vis-NIR and Raman Spectrometer.

The CV doped PVA/CH blends change colour from violet to blue at high dose (40 to 60 kGy) before bleaching at higher doses due to the formation of acid by radiation induced dechlorination of CH. The absorption spectra was measured and analysis spectrometrically. The absorbance at the absorption band at 590 nm, the characteristic of
violet colour, decreases with increasing dose. The dose sensitivity D_0 increases where the values were 54.6, 81.9, 84.0 and 117.6 kGy for CH concentration at 2.0, 3.0, 4.0 and 5.0 g CH respectively. On the other hand, the absorbance at the absorption band at 620 nm, the characteristic of blue colour, also decreases with increasing dose. The dose sensitivity D_0 increases where the values were 81.9, 94.3, 100.0 and 109.1 kGy for CH concentration at 2.0, 3.0, 4.0 and 5.0 g CH respectively. The consumption of CH has been studied using Raman spectroscopy by observing the reduction of C-Cl bond peak intensity at 780 cm$^{-1}$. The Raman intensity decreases with increasing absorbed dose, which produces the dose sensitivity D_0 where the values were 35.3, 52.6, 98.0 and 114.9 kGy for CH concentration at 2.0, 3.0, 4.0 and 5.0 g CH respectively.

The influence of γ rays on CV doped PVA/CH and MeG doped PVB/CH blend films leads to bond scission and structural order/disorder changes, which reflected in the electronic transitions in the film and can be described by the empirical Urbach rule. The absorption edge, E_{opt} for CV doped PVA/CH decreases strongly with the increase of absorbed dose. However, it decreases slightly with the increase of CH concentration. The overall values decrease from 3.74 eV to 3.22 eV for doses up to 110 kGy and CH concentration from 2 g to 5 g. The optical activation energy, ΔE increases from 0.282 to 0.524 eV with the increase of CH concentration from 2 g to 5 g CH respectively at zero dose. The value does not change significantly with the change of dose from 20 kGy to 80 kGy and CH concentration from 2 g to 5 g CH. The values obtained are from 0.62 to 0.71 eV. At dose 100 kGy, ΔE is higher from 0.834 eV to 0.908 eV for CH concentration at 2 g to 5 g CH, except at 3 g the value was found to be 1.025 eV. The
optical energy band gap, E_g value for CV doped PVA/CH blend films decreases with increasing dose and CH concentration for direct and indirect allowed transitions. The values of the direct optical energy band gap, E_g are from 3.64 eV to 4.00 eV, while for indirect optical band gap are from 2.84 eV to 3.60 eV.

The MeG doped PVB/CH blends show no colour change but starts to bleach at lower γ-ray doses of 25 kGy. The absorbance at the absorption band at 425 nm, the characteristic of yellow colour, decreases with increasing dose. The dose sensitivity D_0 increases where the values were 13.5, 16.7, 18.7 and 23.0 kGy for CH concentration at 2.0, 3.0, 4.0 and 5.0 g CH respectively. On the other hand, the absorbance at the absorption band at 650 nm, the characteristic of green colour, also decreases with increasing dose. The dose sensitivity D_0 increases where the values were 14.5, 16.4, 19.5 and 20.9 kGy for CH concentration at 2.0, 3.0, 4.0 and 5.0 g CH respectively. Analysis from Raman spectra show that the intensity of C-Cl bond at 780 cm$^{-1}$ decreases with increasing absorbed dose. The dose sensitivity D_0 increases where the values were 8.2, 9.5, 15.5 and 20.5 kGy for CH concentration at 2.0, 3.0, 4.0 and 5.0 g CH respectively.

The absorption edge, E_{opt} for MeG doped PVB/CH decreases strongly with the increase of absorbed dose. Nevertheless, it decreases slightly with the increase of CH concentration. The overall values decrease from 3.68 eV to 3.25 eV for doses up to 25 kGy and CH concentration from 2 g to 5 g CH. The optical activation energy, ΔE increases with increasing of doses and CH concentration. The value does not change significantly at zero dose where the value obtained from 0.1010 to 0.1404 eV for 2 g to 5
g CH respectively. The overall values increase from 0.1010 eV to 0.7355 eV for doses up to 25 kGy and CH concentration from 2 g to 5 g CH. The optical energy band gap, E_g value for MeG doped PVB/CH blend films decreases with increasing dose and CH concentration for direct and indirect allowed transitions. The values of the direct optical energy band gap, E_g are from 3.79 eV to 3.57 eV, while for indirect optical band gap are from 3.62 eV to 2.90 eV.

In conclusion, was shown radiation effects by γ-rays on CV doped PVA/CH and MeG doped PVB/CH blend films, which affected the dosimetric and optical properties, could be evaluated with suitable reproducibility by measuring the optically stimulated.
Abstrak tesis yang dikemukakan kepada senat Universiti Putra Malaysia sebagai memenuhi keperluan Ijazah Master Sains

KESAN RADIASI TERHADAP CIRI-CIRI PENGUKUR DOS DAN OPTIK BAGI FILEM CAMPURAN PVA/CH DAN PVB/CH YANG BERWARNA

Oleh

AZLINA BINTI BAHA

July 2005

Pengerusi : Prof. Madya Dr. Zainal Abidin Talib
Fakulti : Fakulti Sains

Cristal ungu yang didopkan bersama campuran polivinil alcohol dengan kloral hidrat (CV dop PVA/CH) dan metil hijau yang didopkan bersama campuran polivinil butiral dengan kloral hidrat (MeG dop PVB/CH) disediakan dengan menggunakan teknik acuan. Filem tersebut diradiasikan dengan sinar γ sehingga 110 kGy. Ciri-ciri pengukur dos dan optik bagi campuran CV dop PVA/CH and MeG dop PVB/CH dianalisis menggunakan alat UV-Vis-NIR dan Raman Spektrometer.

Campuran CV dop PVA/CH bertukar warna dari warna ungu ke warna biru pada purata dose dari 40 hingga 60 kGy sebelum meluntur warna pada dos yang lebih tinggi hasil dari pembentukan asid kesan dari radiasi yang menyebabkan pengklorinasi CH. Spektrum serapan telah diukur dan dianalisis. Penyerapan pada puncak 590 nm,
mencirikan warna ungu menurun dengan peningkatan dos. Sensitiviti dos, D_0 meningkat di mana nilainya adalah 54.6, 81.9, 84.0 and 117.6 kGy bagi kandungan CH 2.0, 3.0, 4.0 dan 5.0 g masing-masing. Selain itu, penyerapan pada puncak 620 nm yang mencirikan warna biru juga menurun dengan peningkatan dos. Sensitivity dos, D_0 menurun di mana nilainya adalah 81.9, 94.3, 100.0 and 109.1 kGy bagi kandungan CH pada 2.0, 3.0, 4.0 dan 5.0 g masing-masing. Kepenggunaan CH telah dikaji menggunakan Raman spectrometer dengan memerhati penurunan keamatan ikatan C-Cl pada 780 cm$^{-1}$. Keamatan ikatan C-Cl menurun dengan peningkatan dos, di mana sensitiviti dos, D_0 adalah 35.3, 52.6, 98.0 and 114.9 kGy bagi kandungan CH masing-masing pada 2.0, 3.0, 4.0 dan 5.0 g.

Kesan sinar γ terhadap campuran CV dop PVA/CH dan MeG dop PVB/CH memutuskan ikatan dan berlaku perubahan struktur bahan, yang mana memberi kesan terhadap peralihan elektronik di dalam sampel seperti yang dinyatakan oleh hukum Urbach. Nilai E_{opt} bagi CV dop PVA/CH didapati jelas berkurang dengan peningkatan dos tetapi tidak jelas dipengaruhi oleh kandungan CH. Keseluruhan nilainya adalah dari 3.74 eV hingga 3.22 eV pada kandungan CH masing-masing dari 2.0 hingga 5.0 g setelah diradiasikan sehingga 100 kGy. ΔE meningkat dari 0.282 hingga 0.524 eV bagi kandungan CH dari 2.0 hingga 5.0 g pada 0 kGy. Nilai ΔE tidak jelas berubah dari dos 20 kGy hingga 80 kGy masing-masing pada 2.0 dan 5.0 g CH. Nilai yang diperolehi adalah dari 0.62 to 0.71 eV. Pada dos 100 kGy, ΔE lebih jelas meningkat dari 0.834 eV to 0.908 eV masing-masing pada kandungan 2.0 dan 5.0 g CH, kecuali pada 3.0 g CH di mana nilainya adalah 1.025 eV. Nilai E_g oleh campuran CV dop PVA/CH menurun dengan
peningkatan dos dan kandungan CH bagi $m=1/2$ dan $m=2$. Nilai E_g bagi $m=1/2$ adalah dari 3.64 eV to 4.00 eV, sementara itu bagi $m=2$ pula adalah dari 2.86 eV hingga 3.60 eV.

Bagi campuran MeG dop PVB/CH telah menunjukkan tiada berlaku perubahan warna, tetapi mula meluntur pada purata dos kurang dari 25 kGy. Penyerapan pada puncak 425 nm, mencirikan warna kuning menurun dengan peningkatan dos. Sensitiviti dos, D_0 meningkat di mana nilainya adalah 13.5, 16.7, 18.7 and 23.0 kGy bagi konsentrasi CH 2.0, 3.0, 4.0 dan 5.0 g masing-masing. Pada masa yang sama, penyerapan pada puncak 625 nm yang mencirikan warna hijau juga menurun dengan peningkatan dos. Sensitivity dos, D_0 menurun di mana nilainya adalah 14.5, 16.4, 19.5 and 20.9 kGy bagi konsentrasi CH pada 2.0, 3.0, 4.0 dan 5.0 g masing-masing. Analisis dari Raman spectrometer menunjukkan keamatan ikatan C-Cl menurun dengan peningkatan dos. Sensitiviti dos, D_0 di mana nilainya adalah 8.2, 9.5, 15.5 and 20.5 kGy bagi kandungan CH masing-masing pada 2.0, 3.0, 4.0 dan 5.0 g.

Nilai E_{opt} for campuran MeG dop PVB/CH jelas menurun dengan peningkatan dos tetapi tidak jelas kelihatan menurun dengan peningkatan kandungan CH. Nilai keseluruhannya menurun dari 3.68 eV hingga 3.25 eV sehingga dos 25 kGy dan pada kandungan CH dari 2.0 g hingga 5.0 g. Nilai ΔE didapati meningkat dengan pertambahan dos dan juga kandungan CH. Nilainya tidak jelas berubah pada dos 0 kGy iaitu dari 0.1010 hingga 0.1404 eV pada masing-masing 2g dan 5g. Nilai keseluruhannya meningkat dari 0.1010 eV hingga 0.7355 eV pada dos sehingga 25 kGy dan pada kandungan CH dari 2 g hingga 5 g. Nilai E_g bagi campuran MeG dop PVB/CH
menurun dengan peningkatan dos dan kandungan CH bagi \(m=1/2 \) dan \(m=2 \). Nilai \(E_g \) pada \(m=1/2 \) adalah 3.79 eV to 3.57 eV, sementara itu nilai \(E_g \) pada \(m=2 \) adalah dari 3.62 eV hingga 2.90 eV.

Didapati bahawa filem blend CV dop PVA/CH dan MeG dop PVB/CH yang diradiasikan dengan sinar \(\gamma \) memberikan kesan terhadap ciri-ciri pengukur dos dan optik.
Acknowledgements

In the name of Allah, the most Gracious and the most Merciful.

Praise be to Allah the Almighty, for thee (alone) we worship and thee (alone) we ask for help. And praise be upon Muhammad S.A.W who his guidance has led us to the path whom God has favoured.

I am extremely grateful to my supervisor, Associate Professor Dr. Elias Saion for most of all believing in me. For all patience, guidance, advice, ideas, critics, encouragement and continuous discussion, my deepest gratitude goes to you. I also express my gratitude to my co-supervisor, Associate Professor Dr. Mohd. Zaki Abdul Rahman, Dr. Jumiah Hassan and Mr Taiman Kadni for their comment, suggestions and guidance throughout the research work.

I am extremely grateful to my collates; Susilawati, Aris Doyan, Ajis Lepit, Azian Othman, Nuraihan Harun, Norazimah Mohd. Yusof, Iskandar Shahrim Mustafa, Mohd. Hamzah Harun, Mohd. Asri Teridi and Mr. Yousoff. Thanks a lot for your kind help and understanding regarding this work.

May Allah Bless You
I certify that an Examination Committee met on 4th May 2005 to conduct the final examination of Azlina binti Baha on her Master of Science thesis entitled "Effects of Radiation on Dosimetric and Optical Properties of Dyed PVA-CH and Dyed PVB-CH Composites" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Zainal Abidin Talib, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Noorhana Yahya, PhD
Lecturer
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Zainal Abidin Sulaiman, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Md. Soot Ahmad, PhD
Associate Professor
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
(External Examiner)

GULAM RUSUL RAHMAT ALI, PhD
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 20 JUN 2005
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master. The members of the Supervisory Committee are as follows:

Elias Saion, Ph.D.
Associate Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Chairman)

Mohd Zaki Abdul Rahman, Ph.D.
Associate Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

Jumiah Hasan, Ph.D.
Dr.
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

Taiman Kadni, MSc.
Malaysian Insitute for Nuclear Technologies
Kajang, Bangi
(Member)

\[Signature\]

AINI IDERIS, Ph.D.
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: **15 JUL 2005**
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

AZLINA BINTI BAHAA

Date: 17 JUNE 2005
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATIONS</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>xi</td>
</tr>
<tr>
<td>APPROVAL SHEET</td>
<td>xii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xxiv</td>
</tr>
<tr>
<td>LIST OF SYMBOLS AND ABBREVIATIONS/NOTATIONS</td>
<td>xxv</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

- General Introduction
- Radiation Dosimetry
- Dyed Polymer Dosimeter
- Problem Statement
- Objectives of the Study
- Outline of the Thesis

2 LITERATURE REVIEW

- Introduction
- Physical and Chemical Effects Irradiated Materials
- Radiation Processing
 - Medical Device Sterilization
 - Food Irradiation
 - Modification of Polymer
- Radiation Dosimetry
- Polymer Blended with Organic Compounds
 - Polyvinyl alcohol (PVA) Dyed Film
 - Polyvinyl butyral (PVB) Dyed Film

3 THEORY

- Interaction of Ionizing Radiation with Matter
- Nature Radiation
 - Electromagnetic Radiation
 - The Electromagnetic Spectrum
- Interaction of Photon
 - Photoelectric Effect
 - Pair Production
 - Compton Effect
- Effect of Ionizing Radiation in Molecules and Polymer
 - Principle of Molecular Structure
Basic Concept of Radiation Chemistry
- Radiation Effects on Polymer Systems
- Structural Factors Affecting Light Stability of Dyed Polymers
- Raman Spectroscopy
- UV/Visible Spectroscopy
- Fundamental of Molecular Absorption Spectroscopy (UV/Visible)
- Electronic Transitions in Molecules
- The Beer-Lambert-Bouguer Law
- Activation Energy
- Energy Band Gap

4 METHODOLOGY
Introduction
Preparation of Stock Solution of Indicator
- Crystal Violet
- Methyl Green

Film Preparation
- CV Doped PVA/CH Blends
- MeG Doped PVB/CH Blends

Irradiation Procedure

Apparatus and Spectra Measurements
- UV/Visible Spectrometer
- Raman Spectrometer

5 RADIATION EFFECT ON OPTICAL ABSORPTION PROPERTIES
- Dosimetric Characteristic of CV Dyed PVA-CH Blend
- UV/Visible Absorption Spectra
- Dosimetric Dose Property of Absorption Spectra
- Raman Scattering Spectra
- Dosimetric Dose Response of Raman Spectra

- Optical Characteristic of CV Dyed PVA-CH Blend
- Absorption Edge, E_{opt}
- Optical Activation Energy, ΔE
- Optical Band Gap Energy, E_g

- Dosimetric Characteristic of MeG Dyed PVB-CH Blend
- UV/Visible Absorption Spectra
- Dosimetric Dose Property of Absorption Spectra
- Raman Scattering Spectra
- Dosimetric Dose Response of Raman Spectra
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table Number</th>
<th>Table Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Advantage and disadvantage of integrating dosimetry</td>
<td>7</td>
</tr>
<tr>
<td>3.1</td>
<td>Photon Interactions</td>
<td>30</td>
</tr>
<tr>
<td>3.2</td>
<td>An absorption of a simple chromophores</td>
<td>45</td>
</tr>
<tr>
<td>5.1</td>
<td>Absorbed dose require to change colour from violet to blue of CV doped PVA/CH blends containing different concentrations of CH at different doses</td>
<td>66</td>
</tr>
<tr>
<td>5.2</td>
<td>D_O of the dose response curves at 590 nm and 620 nm bands for CV doped PVA/CH blends at different CH concentrations</td>
<td>71</td>
</tr>
<tr>
<td>5.3</td>
<td>D_O of the Raman dose response curves of band at range 800 cm$^{-1}$ for CV doped PVA/CH blends at different CH concentrations</td>
<td>77</td>
</tr>
<tr>
<td>5.4</td>
<td>Absorption edge position (eV) at different doses and CH concentration of CV doped PVA/CH blends</td>
<td>82</td>
</tr>
<tr>
<td>5.5</td>
<td>Effect gamma irradiation on the optical activation energy of CV doped PVA/CH blends</td>
<td>88</td>
</tr>
<tr>
<td>5.6</td>
<td>Variation of the direct energy band gaps of CV doped PVA/CH blends at different doses and CH concentration</td>
<td>94</td>
</tr>
<tr>
<td>5.7</td>
<td>Variation of the indirect energy band gaps of CV doped PVA/CH blends at different doses and CH concentration</td>
<td>97</td>
</tr>
<tr>
<td>5.8</td>
<td>D_O of the dose response curves at 425 nm and 650 nm bands for MeG doped PVB/CH blends with different CH concentration</td>
<td>107</td>
</tr>
<tr>
<td>5.9</td>
<td>D_O of the Raman dose response curves of band at range 800 cm$^{-1}$ for MeG doped PVB/CH blends</td>
<td>113</td>
</tr>
<tr>
<td>5.10</td>
<td>E_{opt} (eV) at different doses and CH concentration of MeG doped PVB/CH blends</td>
<td>118</td>
</tr>
<tr>
<td>5.11</td>
<td>Effect gamma irradiation on the ΔE of MeG doped PVB/CH blends</td>
<td>123</td>
</tr>
</tbody>
</table>
5.12 Variation of the direct energy band gaps of MeG doped PVB/CH blends at different doses and CH concentration 129

5.13 Variation of the indirect energy band gaps of MeG doped PVB/CH blends at different doses and CH concentration 132
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Typical traceability chain for high dose dosimetry (Arne et. al., 2000)</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>Film colour change upon irradiation of gamma ray (Ebraheem et. al., 2002)</td>
<td>22</td>
</tr>
<tr>
<td>2.3</td>
<td>Film bleaching colour upon irradiation of gamma ray (Abdel-Fattah et. al., 1999)</td>
<td>23</td>
</tr>
<tr>
<td>3.1</td>
<td>The electromagnetic spectrum</td>
<td>29</td>
</tr>
<tr>
<td>3.2</td>
<td>Represents Rayleigh, Stokes and Anti-Stokes scattering of molecular vibration</td>
<td>40</td>
</tr>
<tr>
<td>3.3</td>
<td>A schematic of sample compound absorb light</td>
<td>42</td>
</tr>
<tr>
<td>3.4</td>
<td>Rotational and vibrational electronic levels</td>
<td>43</td>
</tr>
<tr>
<td>3.5</td>
<td>An example of the absorption spectrum</td>
<td>44</td>
</tr>
<tr>
<td>3.6</td>
<td>Possible electronic transitions of (\pi, \sigma) and (n) electrons</td>
<td>45</td>
</tr>
<tr>
<td>3.7</td>
<td>Pictorially using a band diagram</td>
<td>50</td>
</tr>
<tr>
<td>4.1</td>
<td>Accessory equipment of J.L. Shepherd (^{60})Co chamber</td>
<td>56</td>
</tr>
<tr>
<td>4.2</td>
<td>Schematic of a single beam UV/Visible spectrometer</td>
<td>58</td>
</tr>
<tr>
<td>4.3</td>
<td>\textit{in-vivo} fibre-optic Raman sampling configuration</td>
<td>60</td>
</tr>
<tr>
<td>5.1</td>
<td>The absorption spectra of unirradiated and irradiated CV doped PVA/CH blends at different doses for (a) 2 g, (b) 3 g, (c) 4 g, and (d) 5 g CH</td>
<td>64</td>
</tr>
<tr>
<td>5.2</td>
<td>(a) Basic form of crystal violet dye and (b) Strong acidic form of crystal violet dye</td>
<td>67</td>
</tr>
<tr>
<td>5.3</td>
<td>The dose response curves of the CV doped PVA/CH blends for 590 nm band at different CH concentrations irradiated at different doses</td>
<td>70</td>
</tr>
</tbody>
</table>
The dose response curves of the CV doped PVNCH blends for 620 nm band at different CH concentrations irradiated at different doses.

The dose sensitivity, D_0 of the CV doped PVNCH blends (bands 590 nm and 620 nm) at different CH concentrations exposed at different doses. The error bars shown are for 3% corrections.

The Raman spectra of CV doped PVA/CH blend with (a) 2 g, (b) 3, (c) 4 and (d) 5 g CH unirradiated and irradiated at different absorbed doses.

The dose response curves of the CV doped PVA/CH blends 780 cm$^{-1}$ band at different CH concentrations irradiated at different doses.

The dose sensitivity, D_0 of the CV doped PVA/CH blends peaking at 780 cm$^{-1}$ band at different CH concentrations irradiated at different doses.

$\alpha (\nu)$ as a function of ν of CV doped PVA/CH blends at different doses for (a) 2 g, (b) 3 g, (c) 4 g and (d) 5 g CH.

E_{opt} (eV) as a function of dose (kGy) for CV doped PVA/CH blend films.

E_{opt} (eV) as a function of CH concentration (g) for CV doped PVA/CH blend films.

$\ln \alpha$ as a function of ν of CV doped PVA/CH blends at different doses for 2 g, (b) 3 g, (c) 4 g and (d) 5 g CH.

ΔE (eV) as a function of dose (kGy) ν(eV) for CV doped PVA/CH blend films.

ΔE (eV) as a function of CH concentration (g) for CV doped PVA/CH blend films.

Direct allowed transition $(\alpha \nu)^2$ as a function of ν of CV doped PVA/CH blends at different doses for (a) 2 g, (b) 3 g, (c) 4 g and (d) 5 g CH.

Indirect allowed transition $(\alpha \nu)^{1/2}$ as a function of ν at different doses of CV doped PVA/CH blends at different doses for (a) 2g, (b) 3g, (c) 4g and (d) 5g CH.

Variation of the direct optical band gaps energy of CV doped PVA/CH blends at different doses and CH concentration.
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.18</td>
<td>Variation of the indirect optical band gaps energy of CV doped PVA/CH blends at different doses and CH concentration</td>
</tr>
<tr>
<td>5.19</td>
<td>The absorption spectra of unirradiated and irradiated MeG/PVB-CH blends at different doses for (a) 2 g, (b) 3 g, (c) 4 g and (d) 5 g CH</td>
</tr>
<tr>
<td>5.20</td>
<td>Molecule structure of methyl green dye</td>
</tr>
<tr>
<td>5.21</td>
<td>The dose response curves of the MeG doped PVB/CH blends for 425 nm band at different CH concentrations at different doses</td>
</tr>
<tr>
<td>5.22</td>
<td>The dose response curves of the MeG doped PVB/CH blends for 650 nm band at different CH concentrations at different doses</td>
</tr>
<tr>
<td>5.23</td>
<td>The dose sensitivity, D_0 of the MeG doped PVB/CH blends (bands 425 nm and 650 nm) at different CH concentration exposed at different doses</td>
</tr>
<tr>
<td>5.24</td>
<td>The Raman spectra of MeG doped PVB/CH blends with (a) 2 g, (b) 3 g, (c) 4 g and (d) 5 g CH unirradiated and irradiated at different absorbed doses</td>
</tr>
<tr>
<td>5.25</td>
<td>The dose response curves of MeG doped PVB/CH blends with different CH concentration peaking at 780 cm$^{-1}$ band exposed at different doses</td>
</tr>
<tr>
<td>5.26</td>
<td>The dose sensitivity, D_0 of MeG doped PVB/CH blends peaking at 780 cm$^{-1}$ band at different CH concentration exposed at different doses</td>
</tr>
<tr>
<td>5.27</td>
<td>$\alpha (v)$ as a function of $h\nu$ of MeG doped PVB/CH blends at different doses for (a) 2 g, (b) 3 g, (c) 4 g and (d) 5 g CH</td>
</tr>
<tr>
<td>5.28</td>
<td>E_{opt} (eV) as a function of dose (kGy) of MeG doped PVB/CH blends</td>
</tr>
<tr>
<td>5.29</td>
<td>E_{opt} (eV) as a function of CH concentration (g) of MeG doped PVB/CH blends</td>
</tr>
<tr>
<td>5.30</td>
<td>$\ln \alpha$ as a function of $h\nu$ of MeG doped PVB/CH blends at different doses for (a) 2 g, (b) 3 g, (c) 4 g and (d) 5 g CH</td>
</tr>
<tr>
<td>5.31</td>
<td>ΔE (eV) as a function of dose (kGy) of MeG doped PVB/CH blends</td>
</tr>
<tr>
<td>5.32</td>
<td>ΔE (eV) as a function of CH concentration of MeG doped PVB/CH blend</td>
</tr>
</tbody>
</table>
5.33 Direct allowed transition \((\alpha \nu)^2\) as a function of \(\nu\) at different doses of MeG doped PVB/CH blends at different doses for (a) 2 g, (b) 3 g, (c) 4 g and (d) 5 g CH

5.34 Variation of the indirect energy band gaps of MeG doped PVB/CH blends at different doses and CH concentration

5.35 Optical band gap energy \((m=1/2)\) as a function of dose (kGy) for MeG doped PVB/CH blends with different CH concentration at different doses

5.36 Optical band gap energy \((m=2)\) as a function of dose (kGy) for MeG doped PVB/CH blends with different CH concentration at different doses
LIST OF PLATES

<table>
<thead>
<tr>
<th>Plates</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Crystal violet dye solution</td>
<td>52</td>
</tr>
<tr>
<td>4.2 Methyl green dye solution</td>
<td>52</td>
</tr>
<tr>
<td>4.3 CV doped PVA/CH blend films</td>
<td>54</td>
</tr>
<tr>
<td>4.4 MeG doped PVB/CH blend films</td>
<td>55</td>
</tr>
<tr>
<td>4.5 J.L. Shepherd 60Co chamber at MINT Bangi</td>
<td>57</td>
</tr>
<tr>
<td>4.6 Shimadzu 3101 UV-Vis-NIR Spectrometer</td>
<td>59</td>
</tr>
<tr>
<td>4.7 Raman spectrometer (RSI 2001, Raman System, INC) equipped with 532 nm solid-state diode green laser</td>
<td>61</td>
</tr>
</tbody>
</table>