UNIVERSITI PUTRA MALAYSIA

DEVELOPMENT OF CHEMICAL SENSOR BASED ON FATTY HYDROXAMIC ACID FOR THE DETERMINATION OF VANADIUM (V) AND IRON (III) IONS

AZIZUL BIN ISHA.

FS 2005 23
DEVELOPMENT OF CHEMICAL SENSOR BASED ON FATTY HYDROXAMIC ACID FOR THE DETERMINATION OF VANADIUM(V) AND IRON(III) IONS

By

AZIZUL BIN ISHA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

April 2005
To my beloved mom and dad, for their understanding and patience with this thesis
To my sister and brother in law; to my nephew, Nur Hanis Qistina; and to all the others.

azizul
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

DEVELOPMENT OF CHEMICAL SENSOR BASED ON FATTY HYDROXAMIC ACID FOR THE DETERMINATION OF VANADIUM(V) AND IRON(III) IONS

By

AZIZUL BIN ISHA

April 2005

Chairman: Nor Azah binti Yusof, PhD

Faculty: Science

Chemical sensor based on the use of uv-visible spectrophotometer and optical fibre reflectance spectrometer (OFRS) for the determination of Fe(III) and V(V) ions have been developed in this study. Fatty hydroxamic acid (FHA) was used as a reagent for both metals and shows good properties after characterization using manual batch method. FHA immobilized on poly(vinyl chloride) (PVC) and poly(methyl methacrylate) (PMMA) as sensing membranes were successfully applied for determination of V(V). However, both immobilization processes were not showing any measurable signal in determination of Fe(III).

PMMA membrane immobilized FHA was characterized using uv-visible spectrophotometer. The sensing membrane changed from colorless to dark purple in the presence of V(V) with response time of five minutes. The relative standard deviation (RSD) of the reproducibility were found to be 9.29% and 7.09% for V(V) at concentration of 50 ppm and 200 ppm, respectively.
Interference from foreign ions were studied at 1:1 mole ratio of V(V) to interfering ion. The interference faced by Fe(III) was the greatest when it was compared with other cations, whereas phosphate ion gave the highest anion interferences. The limit of detection of the PMMA membrane immobilized FHA was calculated to be 8.4 ppm.

PVC membrane immobilized FHA was characterized using optical fibre reflectance spectrometer. The sensing membrane changed its color from colorless to purple in the presence of V(V) and with response time of five minutes. The RSD of the reproducibility were found to be 3.91% and 3.85% for V(V) at concentration of 1 ppm and 20 ppm, respectively. Interference from foreign ions were studied at 1:1 mole ratio of V(V) to interfering ion. Fe(III) was found to interfere most compared to other cations, whereas citrate gave the highest anion interferences. The limit of detection of the PVC membrane immobilized FHA was calculated to be 0.1 ppm.

The results obtained from both instruments which have been developed in this study were compared with the well established method of inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The comparison results show an excellent agreement between the developed method and ICP-AES method. This indicates that the results obtained from both methods are comparable.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PEMBINAAN PENDERIA KIMIA BERASASKAN ASID LEMAK HIDROKSAMIK BAGI PENENTUAN ION VANADIUM(V) DAN FERUM(III)

Oleh

AZIZUL BIN ISHA

April 2005

Pengerusi: Nor Azah binti Yusof, PhD

Fakulti: Sains

Penderia kimia berasaskan penggunaan spektrofotometer ul-nampak dan spektrofotometer gentian optik pantulan (OFRS) bagi penentuan Fe(III) dan V(V) telah dibina dalam kajian ini. Asid lemak hidroksamik (FHA) telah digunakan sebagai reagen bagi kedua-dua jenis logam dan menunjukkan ciri-ciri yang baik dalam penciriannya menggunakan kaedah bayaan manual. FHA dipegunakan di dalam poli(vinil klorida) (PVC) dan poli(metil metakrilat) (PMMA) sebagai membran penderia telah berjaya di gunakan dalam penentuan V(V). Walau bagaimanapun, kedua-dua kaedah pemegunan tersebut tidak menunjukkan sebarang isyarat yang boleh diukur dalam penentuan Fe(III).

Membran PMMA terpegun FHA telah dicirikan dengan menggunakan spektrofotometer ul-nampak. Membran penderia tersebut telah berubah warna daripada lutsinar kepada ungu gelap dengan kehadiran V(V) dengan masa tindak balas selama lima minit. Sisihan piawai relatif (RSD) bagi
kebolehulangan adalah 9.29% dan 7.09% bagi V(V) pada kepekatan 50 ppm dan 200 ppm, masing-masing.

Gangguan daripada ion luar telah dikaji pada nisbah mol 1:1 bagi V(V) terhadap ion pengganggu. Fe(III) telah menunjukkan gangguan yang paling tinggi berbanding kation lain, manakala fosfat menunjukkan kesan gangguan anion yang paling tinggi. Had pengesan bagi membran PMMA terpegun FHA yang telah dihitung adalah 8.4 ppm.

Membran PVC terpegun FHA telah dicirikan menggunakan OFRS. Membran penderia tersebut telah berubah warna daripada lutsinar kepada ungu gelap dengan kehadiran V(V) dengan masa tindak balas adalah selama lima minit. RSD bagi kebolehulangan adalah 3.91% dan 3.85% bagi V(V) pada kepekatan 1 ppm dan 20 ppm, masing-masing. Gangguan daripada ion luar telah dikaji pada nisbah mol 1:1 bagi V(V) terhadap ion gangguan. Fe(III) telah menunjukkan kesan gangguan yang paling tinggi berbanding kation lain, manakala sitrat menunjukkan gangguan anion paling tinggi. Had pengesan membran PVC terpegun FHA yang telah dihitung adalah 0.1 ppm.

Keputusan yang diperoleh daripada kedua-dua penderia yang dibina dalam kajian ini telah dibandingkan dengan kaedah yang telah diiktiraf iaitu spectroskopi plasma gandingan aruhan - pancaran atom (ICP-AES). Keputusan menunjukkan terdapat persetujuan yang sangat baik antara kaedah yang dibina
dan kaedah ICP-AES. Ini menunjukkan keputusan yang didapati daripada kedua-dua kaedah ini adalah sebanding.
ACKNOWLEDGEMENTS

Thanks to Allah the Almighty and the Merciful, who had given me strength and guidance along the way of life. I would like to thank all of the people that have assisted in the fulfillment of this work. I can only hope that I remember everyone who has some way; shape or form facilitated my achievement.

I owe my parents and family much gratitude for their love and support, which has made this possible. I would like to take this opportunity to express my deepest appreciation to my supervisor, Dr Nor Azah binti Yusof, Associate Professor Dr Musa bin Ahmad and Professor Dr Zulkarnain bin Zainal for their invaluable advice, guidance and constructive criticism. Their enthusiastic supports are always in my deepest memory.

The faculty and students in chemistry department (Dedy Suhendra and Kwa Pei Yeen) is by far the most brilliant, demanding and rewarding individuals I've ever had the pleasure of working with. I would like to give a huge thank you to my friends' abang Sanusi, Sufi, Anuar, Shaari, Sheikh, Thahira, kak Salina, Fiona, Teng Jin, Eddy, kak Mazu and Ace for all the moral support.

Finally, I would like to thank all lecturers and the laboratory staff in Universiti Putra Malaysia and Universiti Kebangsaan Malaysia for their help and assistance. The past and present students of the sensor group in UKM (UKMCHEBS) have been great and deserve a thank you as well. I would like to acknowledge the Ministry of Environmental and Science of Malaysia for funding this research through IRPA research grant IRPA 09-02-04-0818-EA001.
I certify that an Examination Committee met on 5th April 2005 to conduct the final examination of Azizul bin Isha on his Master of Science thesis entitled “Development of Chemical Sensor Based on Fatty Hydroxamic Acid for the Determination of Vanadium (V) and Iron (III) Ions” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Anuar Kassim, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Asmah Yahaya, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Tan Wee Tee, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Jumat Salimon, PhD
Associate Professor
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
(External Examiner)

GULAM RUSUL RAHMAT ALI, PhD
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 20 JUN 2005
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Nor Azah binti Yusof, PhD
Lecturer
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Musa bin Ahmad, PhD
Associate Professor
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
(Member)

Zulkarnain bin Zainal, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 15 JUL 2005
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

AZIZUL BIN ISHA

Date: 6/7/2005
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>ix</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATION</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER

I INTRODUCTION

Heavy Metals

Vanadium: The Existence in Nature and Toxicity
Iron: The Existence in Nature and Toxicity
Optical Chemical sensor
Objectives of this Research

II LITERATURE REVIEW

Analytical Methods Determination of V(V) and Fe(III)
Review of Chemical Reagents
Fatty Hydroxamic Acid (FHA)
Immobilization Techniques
Supporting Materials
Poly(Methyl Methacrylate) (PMMA)
Poly(Vinyl Chloride) (PVC)

III METHODOLOGY

Chemical Reagents
Instrumentations
Solution Preparation
Reagent
Metals
Spectrophotometric Determination of V(V) Ion by
Using Fatty Hydroxamic Acid
Spectral Study
The Effect of Amount of FHA
Kinetic Study
The Dynamic Range of Analyte Solution
Reproducibility
Interference Study 44
Validation Study 44
Spectrophotometric Determination of Fe(III) Ion by 45
Using Fatty Hydroxamic Acid
Spectral Study 45
The Effect of Amount of FHA 45
Kinetic Study 45
The Dynamic Range of Analyte Solution 46
Reproducibility 46
Interference Study 47
Validation Study 47
Development of Chemical Ion Sensor based on 48
Fatty Hydroxamic Acid Immobilized in Poly(Methyl
Methacrylate) (PMMA)
Preparation of PMMA Membrane as the Supporting 48
Material
Characterization of the FHA Immobilized in PMMA 48
Membrane
Development of Chemical Ion Sensor based on 52
Fatty Hydroxamic Acid Immobilized in Poly(Vinyl
Chloride) (PVC)
Preparation of PVC Membrane as the Supporting 52
Material
Characterization of the FHA Immobilized in PVC 52
Membrane

IV RESULTS AND DISCUSSION 56
Spectrophotometric Determination of V(V) Ion by 56
Using Fatty Hydroxamic Acid
Spectral Study 56
The Effect of Amount of FHA 57
Kinetic Study 58
The Dynamic Range of the Analyte Concentration 59
Reproducibility 61
Interference Study 62
Validation Study 64
Spectrophotometric Determination of Fe(III) Ion by 65
Using Fatty Hydroxamic Acid
Spectral Study 65
The Effect of Amount of FHA 66
Kinetic Study 67
The Dynamic Range of the Analyte Concentration 68
Reproducibility 70
Interference Study 71
Validation Study 72

xiii
Development of Chemical Ion Sensor based on Fatty Hydroxamic Acid Immobilized in Poly(Methyl Methacrylate) (PMMA)
 Spectral Study 73
 Effect of Amount of FHA Used for Immobilization 75
 Kinetic Study 76
 The Dynamic Range of Analyte Concentration 77
 Reproducibility 79
 Interference Study 80
 Photostability Study 82
 Validation Study 83

Development of Chemical Ion Sensor based on Fatty Hydroxamic Acid Immobilized in Poly(Vinyl Chloride) (PVC)
 Reflectance Study 84
 Effect of Amount of FHA Used for Immobilization 86
 Kinetic Study 87
 The Dynamic Range of Analyte Concentration 88
 Reproducibility 90
 Interference Study 91
 Photostability Study 92
 Validation Study 93

V CONCLUSION 95
 Recommendation for Further Studies 97

BIBLIOGRAPHY 98
APPENDICES 109
BIODATA OF THE AUTHOR 127
LIST OF TABLES

Table	Page
2.1 Review of some methods for V(V) determination | 17
2.2 Review of some methods for Fe(III) determination | 19
2.3 Review of some spectrophotometric reagents for the determination of V(V) | 22
2.4 Review of some spectrophotometric reagents for the determination of Fe(III) | 25
3.1 Chemical used in this study | 39
3.2 Instrumentations used in the study | 41
4.1 The degree of interference on complex formation of V(V)-FHA at 1:1 mole ratio of foreign ions:V(V) | 63
4.2 The validation data of V(V) concentration by the developed method and ICP-AES | 64
4.3 The degree of interference on complex formation of Fe(III)-FHA at 1:1 mole ratio of foreign ions:Fe(III) | 71
4.4 The validation data of Fe(III) concentration by the developed method and ICP-AES | 72
4.5 The degree of interference on complex formation of V(V)-FHA at 1:1 mole ratio of foreign ions:V(V) | 81
4.6 The validation data of V(V) concentration by developed method and ICP-AES | 83
4.7 The degree of interference on complex formation of V(V)-FHA at 1:1 mole ratio of foreign ions:V(V) | 92
4.8 The validation data of V(V) concentration by the developed method and ICP-AES | 94
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figures</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Planar waveguide through optical fibre</td>
<td>8</td>
</tr>
<tr>
<td>1.2 Basic principal of optical fibre chemical sensor</td>
<td>10</td>
</tr>
<tr>
<td>2.1 Tautomerics form of hydroxamic acid</td>
<td>28</td>
</tr>
<tr>
<td>2.2 Proton dissociation of hydroxamic acid in aqueous solution</td>
<td>28</td>
</tr>
<tr>
<td>2.3 Hydroxamic metal ion complex</td>
<td>29</td>
</tr>
<tr>
<td>2.4 Structure of Fe(III)-FHA complex</td>
<td>29</td>
</tr>
<tr>
<td>2.5 Structure of V(V)-FHA complex</td>
<td>30</td>
</tr>
<tr>
<td>2.6 Structure of Fe(III)-hydroxamic acid resonance</td>
<td>30</td>
</tr>
<tr>
<td>2.7 Structure of Fe(III)-poly(hydroxamic acid)</td>
<td>31</td>
</tr>
<tr>
<td>2.8 Structure of oxo-chloro-bis-N-phenylbenzohydroxamato-vanadium complex</td>
<td>31</td>
</tr>
<tr>
<td>2.9 Preparation reaction for FHA</td>
<td>32</td>
</tr>
<tr>
<td>2.10 PMMA chemical structure</td>
<td>36</td>
</tr>
<tr>
<td>2.11 PVC chemical structure</td>
<td>37</td>
</tr>
<tr>
<td>3.1 PMMA membrane inside the cuvette</td>
<td>49</td>
</tr>
<tr>
<td>4.1 The color of V(V) solution in HCl (A), FHA reagent in methanol (B) and V(V)-FHA complex (C)</td>
<td>56</td>
</tr>
<tr>
<td>4.2 Absorbance spectra of 2.0×10^3 ppm FHA before (A) and after (B) reaction with 150 ppm V(V)</td>
<td>57</td>
</tr>
<tr>
<td>4.3 Effect of FHA concentration on V(V)-FHA complex formation</td>
<td>58</td>
</tr>
<tr>
<td>4.4 The kinetic study of V(V)-FHA complex at different concentrations of V(V), i.e. 40 ppm (A), 100 ppm (B) and 200 ppm (C)</td>
<td>59</td>
</tr>
<tr>
<td>4.5 The response curve of 2.0×10^3 ppm FHA towards different concentrations of V(V)</td>
<td>60</td>
</tr>
</tbody>
</table>
4.6 The linear dynamic range in V(V) determination, where the concentration of FHA was 2.0×10^3 ppm

4.7 The reproducibility of V(V) determination at concentration of 40 ppm (A) and 260 ppm (B) with 2.0×10^3 ppm FHA

4.8 Absorbance spectra of 4.0×10^3 ppm FHA before (A) and after (B) reaction with 150 ppm Fe(III)

4.9 The color of Fe(III) solution in HCl (A), FHA reagent in methanol (B) and Fe(III)-FHA complex (C)

4.10 The effect of FHA concentration on the absorbance of the Fe(III)-FHA complex

4.11 The kinetic study of Fe(III)-FHA complex at different concentrations of Fe(III), i.e. 100 ppm (A), 200 ppm (B) and 300 ppm (C)

4.12 The response curve of 4.0×10^3 ppm FHA towards different concentration of Fe(III)

4.13 The linear dynamic range in Fe(III) determination

4.14 The reproducibility of Fe(III) at concentration of 100 ppm (A) and 500 ppm (B) determination with FHA

4.15 Absorbance spectra of PMMA immobilized FHA before (A) and after (B) reaction with 200 ppm V(V)

4.16 Absorbance spectra of PMMA immobilized FHA before (A) and after (B) reaction with 200 ppm Fe(III)

4.17 The effect of the initial FHA amount used on the absorbance of immobilized V(V)-FHA complex

4.18 Steady state response of V(V) concentration at 10 ppm (A), 100 ppm (B) and 200 ppm (C) when reacted with immobilized FHA

4.19 The response curve of the PMMA immobilized FHA towards different concentration of V(V)

4.20 The calibration plot of the PMMA immobilized FHA towards different concentration of V(V)
4.21 The reproducibility study of the PMMA membrane immobilized reagent in determination of V(V) ion at concentration of 50 ppm (A) and 200 ppm (B)

4.22 Photostability study of the PMMA membrane immobilized FHA when exposed to a light source over a period of 11 hours

4.23 Reflectance spectra of PVC immobilized FHA before (A) and after (B) reacted with V(V) at concentration of 10 ppm

4.24 Reflectance spectra of PVC immobilized FHA before (A) and after (B) reacted with Fe(III) at concentration of 10 ppm

4.25 The effect of the initial FHA amount used on the absorbance of immobilized V(V)-FHA complex

4.26 Plot of intensity (a.u.) versus time (min) at V(V) concentration of 1 ppm (A), 10 ppm (B) and 20 ppm (C)

4.27 The response curve of the PVC membrane immobilized FHA towards different concentration of V(V)

4.28 The response curve of the PVC membrane immobilized FHA towards different concentration of V(V)

4.29 The reproducibility study of the PVC membrane immobilized FHA at V(V) concentration of 1 ppm (A) and 20 ppm (B)

4.30 The photostability of the PVC membrane immobilized FHA when exposed to a light source over a period of six hours
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>absorbance</td>
</tr>
<tr>
<td>FHA</td>
<td>fatty hydroxamic acid</td>
</tr>
<tr>
<td>ICP-AES</td>
<td>inductively coupled plasma-atomic emission spectroscopy</td>
</tr>
<tr>
<td>PMMA</td>
<td>poly(methyl methacrylate)</td>
</tr>
<tr>
<td>PVC</td>
<td>poly(vinyl chloride)</td>
</tr>
<tr>
<td>RSD</td>
<td>relative standard deviation</td>
</tr>
<tr>
<td>UV-visible</td>
<td>ultra violet-visible</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

Heavy Metals

Metals are defined chemically as elements which conduct electricity, have a metallic luster, are malleable and ductile, form cations and have basic oxides (Atkins and Jones, 1997). Metals have been used widely for thousands of years. Most of the metals has influenced on the quality of life seriously and also caused environmental problem.

Heavy metal is defined as a group name for metals and semimetals (metalloid) that have been associated with contamination and potential toxicity or ecotoxicity. However, there is no precise definition of heavy metals term in the relevant literature, which reflects inconsistency use even by authoritative body such as IUPAC (Duffus, 2002).

Before 1936, the term of heavy metals was described as “guns or shot of large size” or great ability (Ogilvie, 1884; Williams, 1930). Later, the definition of heavy metals terms is based upon the density of elemental form of the metal (Bjerrum, 1936; Grant and Grant, 1987; Parker, 1989; Lozet and Mathiew, 1991; Morris, 1992; Streit, 1994; Thornton, 1995; Falbe and Regitz, 1996). However, it has been realized that density is not of great of significance in relation to the reactivity of a metal (Duffus, 2002).
Another definition is based on atomic weight or mass, but the mass criterion is still confusing (Bennet, 1986; Lewis, 1993; Rand et al., 1995). Soon, the definition is referred on atomic number which provides a good agreement by several authors (Lyman, 1995; Burrel, 1974).

Other term of the definition is based on other chemical properties such as density for radiation screening, density of crystals and reaction with dithizone. This definition shows that, the term of heavy metals is based vaguely on toxicity (Hodgson et al., 1988).

McIntyre and Mills (1975) described that, toxicology is the scientific discipline which studies toxic or poisonous substances which cause alteration or disturbances in the function of the organism leading to harmful effects of which the most serious is, the death of the organism in question. Toxicity is the property or properties of a material that produces a harmful effect upon a biological system, whereas toxicant is a material that produces this biological effect (Landis and Yu, 1995).

Beside mercury, lead and cadmium, iron and vanadium has been reported as toxic elements that exist in our environment. The sensitive determination of these metal ions is of particular significance in environmental analysis. One of the more promising methods for determination of vanadium is spectrophotometric based chemical sensor, which is presented in this study.

Vanadium is a common element in lithosphere. It is important for living organism. Its role in physiological systems includes insulin like effect, inhibitory effect on some enzymes and cholesterol synthesis, catalytic effect in oxidation of various amines (Waldron, 1980).

Vanadium is a grayish-silver metal in group V of the periodic table. It is malleable and ductile. Vanadium can exist in oxidation states of +2, +3, +4 and +5, those in the +5 and +4 states being the most stable (Clark, 1968).

Vanadium is found in soil and rocks as minerals such as patronite (V₂S₅ + nS), carnotite (K₂O.2UO₃.V₂O₅.3H₂O), roscoelite (2K₂O.2Al₂O₃.(Mg, Fe)O.3V₂O₅.10SiO₂.4H₂O), desclcoizite (4(Pb, Zn).V₂O₅.H₂O), cupro-desclcoizite (4(Cu, Pb).O.(V, As)₂).5.H₂O and vanadinite (Pb₅(VO₄)₃Cl (Vinogradov, 1959; Waldron, 1980). Crude oil also contains vanadium, which is present as an organometallic complex. The vanadium concentration in crude oils varies greatly, depending on their origin. During the burning of fuel oils, the vanadium is left behind as vanadium pentoxide in the solid residue, soot, boiler scale and fly ash (Merian et al., 1991).

Vanadium is widely used in metallurgical and chemical industries. A major commercial use of vanadium has been in steel production. Ferrovanadium is one of the most common forms in which vanadium is added during steel-
making to give tough, strong and heat resistant. Beside that, it is also a major alloying element in high-strength titanium alloys (Waldron, 1980).

Another important use of vanadium is as a catalyst in the production of chemicals. Vanadium pentoxide is the principal catalyst used in oxidation of sulphur dioxide to sulphur trioxide in the production of sulfuric acid. Vanadium oxychloride, tetrachloride and triacetylacetonate are used as polymerization catalysts for soluble copolymer of ethylene and propylene. In dye manufacture and dyeing, vanadium compounds are used as mordants. Ammonium metavanadate has been used as a catalyst in the dyeing of leather and fur (Merian et al., 1991).

In the recent years, the growth of metallurgical and chemical industries had caused health and environmental problems. Vanadium at ppb level is necessary to normal cell growth but is toxic for living organism at ppm level. Gavasov et al. (2000) has reported that, the tolerable level of vanadium in drinking water in Bulgaria is 100 ppb.

Human exposure to vanadium has severe effects on the cell growth, the cardiac muscle, the diuretic kidney function (Gavasov et al., 2000) and the symptoms such as nervous depression, coughing, vomiting, anemia and increased risk of lung cancer, that are sometimes fatal (Ahmed and Banoo, 1999). The neurotoxicity of vanadium can cause somnolence, convulsions, respiratory failure and gastrointestinal irritation with diarrhea (Faulkner-Hudson, 1964).
Acute poisoning of vanadium causes nervous disturbance, paralysis of hind legs, breathing difficulties, convulsion, hemorrhagic enteritis and finally death. Inhalation of toxic doses causes nasal bleeding and acute bronchitis. The symptoms of toxicity from inhalation include severe conjunctivitis with a purulent eye discharge, rhinitis, soreness of the pharynx, bronchitis and a green-coated tongue (Venugopal and Luckey, 1978). Barceloux (1999) reported that, the toxicity of vanadium compounds increases as the valence increases.

Vanadium can enter the aquatic system through leaching of parent rocks and soil and the transport of water (Hilton and Bettger, 1988). Burning of fossil fuels such as crude petroleum, fuel, oils, some coals and lignite had released vanadium into the environment (Ahmed and Banoo, 1999).

Iron is the most abundant element in the core of the earth and one of the most abundant in the earth’s crust. It plays an essential role in photosynthesis (Merian et al., 1991) and is limiting growth nutrient for phytoplanktons in some parts of the open oceans (Strickland et al., 1965; Hudson and Morel, 1989). Beside that, in the biosphere it acts as an active center of a wide range of proteins such as oxidases, reductases and dehydrases (Cotton and Wilkinson, 1972).