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Iterative sliding window method for shorter number 
of operations in modular exponentiation and scalar 
multiplication
Adamu Muhammad Noma1, Abdullah Muhammed1*, Zuriati Ahmad Zukarnain1 and  
Muhammad Afendee Mohamed1,2

Abstract: Cryptography via public key cryptosystems (PKC) has been widely used for 
providing services such as confidentiality, authentication, integrity and non-repudiation. 
Other than security, computational efficiency is another major issue of concern. And for 
PKC, it is largely controlled by either modular exponentiation or scalar multiplication 
operations such that found in RSA and elliptic curve cryptosystem (ECC), respectively. 
One approach to address this operational problem is via concept of addition chain (AC), 
in which the exhaustive single operation involving large integer is reduced into a 
sequence of operations consisting of simple multiplications or additions. Existing 
techniques manipulate the representation of integer into binary and m-ary prior 
performing the series of operations. This paper proposes an iterative variant of sliding 
window method (SWM) form of m-ary family, for shorter sequence of multiplications 
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corresponding to the modular exponentiation. Thus, it is called an iterative SWM. 
Moreover, specific for ECC that imposes no extra resource for point negation, the paper 
proposes an iterative recoded SWM, operating on integers recoded using A modified 
non-adjacent form (NAF) for speeding up the scalar multiplication. The relative 
behaviour is also examined, of number of additions in scalar multiplications, with the 
integers hamming weight. The proposed iterative SWM methods reduce the number of 
operations by up to 6% than the standard SWM heuristic. They result to even shorter 
chains of operations than ones returned by many metaheuristic algorithms for the AC.

Subjects: Computer Science; Computing & IT Security; Algorithms & Complexity

Keywords: addition chain; modular exponentiation; scalar multiplication; sliding window 
method

1. Introduction
In public key cryptosystems (PKC) (Diffie & Hellman, 1976; El-Gamal, 1985; Koblitz, 1987; Rivest, Adi, 
& Adleman, 1978), computations involving modular exponentiation and scalar multiplication found 
in the respective RSA (Rivest et al., 1978) and ECC (Koblitz, 1987; Miller, 1986) are the most expensive 
operations that determine the efficiencies of the algorithm, and on which the security of the systems 
also depends. For the applications to be computationally secured the size of the key, which is the 
exponent or multiplier, respectively, should be of at least 1,024 bits in multiplicative structure such 
as Diffie–Hellman (Diffie and Hellman, 1976) and RSA and 163 bits in additive structure of ECC.

One of the means of optimizing these operations without compromising the security effectiveness is 
by reducing an exhaustive operation of modular exponentiation to repeated squaring and multiplica-
tion and likewise scalar multiplication to repeated doubling and addition via the concept of addition 
chain (AC). Since modular exponentiation is an additive function of the exponent similar to that of 
multiplier from scalar multiplication, both operations are adoptable to the idea of AC. In other words, 
possible shortening of an AC for the exponent/multiplier by reducing the number of doubling and ad-
dition corresponds to that of either one of the two operations: thus should be understood as minimiz-
ing the number of multiplications in modular exponentiation or of additions in scalar multiplication.

The problem of finding optimal AC for an arbitrary integer, also known as addition chain problem 
(ACP), exists for long (Dellac, 1894; Scolz, 1937). Numerous theoretical studies on the problem can be 
found in Balega (1976), Brauer (1939), Downey, Leong, and Sethi (1981), Mignotte and Tall (2011), 
Thurber (1993) and Yao (1976). From experimentation perspective, exhaustive approaches have been 
applied (Clift, 2010; Hatem, 2011), as well as heuristics (Bos & Coster, 1990; Gelgi & Onus, 2006; Koç, 
1995; Park, Park, & Cho, 1999; Thurber, 1999). Moreover, after Downey et al. (1981) proved that the 
generic case called addition sequence is an NP-complete problem, various metaheuristics have also 
been applied (Cruz-cortés, Rodríguez-Henríquez, & Coello, 2008; Domínguez-Isidro, Mezura-Montes, & 
Osorio-Hernández, 2015; Jose-Garcia, Romero-Monsivais, Hernandez-Morales, Rivera-Islas, & Torres-
Jimenez, 2011; León-Javier, Cruz-Cortés, Moreno-Armendáriz, & Orantes-Jiménez, 2009; Nedjah & de 
Macedo Mourelle, 2006; Osorio-Hernández, Mezura-Montes, Cruz-Cortés, & Rodríguez-Henríquez, 2009).

For the purpose of simplicity, a generic integer e is used in this paper to represent the exponent or 
multiplier of either of the operations.

Definition 1.1 Given an integer e, the sequence a
0
= 1, a

1
= 2, a

3
, … , ar = e, is said to be an AC for 

e if ∀i ≥ 1, ai = aj + ak, i > j ≥ k. The length of the chain is r.

In the studies of AC by mean of heuristic approach, e is normally represented into an equivalent 
binary form, from which some form of manipulation is applied in the quest to produce the shortest 
possible chain.
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Definition 1.2 The length of e (denoted as) n(e) is defined as the minimum number of bits to  
represent e in binary form e = (en−1 en−2 … e

0
)
2
. n used to indicate the length of an arbitrary n-bit e.

Definition 1.3 The hamming weight (shorten as weight) of e denoted as H(e) is defined as the num-
ber of non-zero bits in the binary representation of e.

Using the binary form as found in many heuristic techniques, the total number of operations is 
counted to the number of doublings (squarings) and additions (multiplication) involved. In fact, the 
number of squarings is fixed to the bit-length n(e), and thus improvement can only be done on the 
number of multiplications which is proportionate to weight H(e).

Binary method (Knuth, 1998) has been the basic procedure for computing modular exponentia-
tion as well as scalar multiplication. In the modular exponentiation, a sequence of squarings and 
optional multiplications are performed, depends upon the given digit value of the binary form for e 
that is 1 or 0, respectively. Similarly, a sequence of doublings and optional additions are performed 
in the scalar multiplication. For an n-bit e, represented in the binary form as e = en−1 en−2 … e0, the 
method for the exponentiation y = xe follows in Algorithm 1.

In Algorithm 1, n(e) − 1 number of squarings are performed in step 3, and a multiplication in step 
5 corresponding to every non-zero bit encounter, less the most significant bit (MSB): H(e) − 1. Thus, 
assuming multiplication and squaring are computationally equal, the number of multiplications  
(operations) Tbin is

Since there are n bits in e, each of which is equally likely to be 1 or 0, the asymptotic number of mul-
tiplications in Algorithm 1 is n + n∕2 = 3n∕2. The method is highly efficient in implementation due 
to its minimal book-keeping in the process (Knuth, 1998). However, it performs excessive number of 
multiplications than is necessary.

An m-ary (also known as or 2k-ary) method is an extension of the binary method. An n-bit e is pad-
ded (where necessary) with at most k − 1 trail of 0s to form a multiple of k. It is then partitioned into 
w = ⌈n∕k⌉ blocks of fixed k-bit words: mi , i = w − 1, … , 0, mw−1 being the most significant word 
(MSW). Thus, 0 ≤ mi = eik+k−1 eik+k−2 … eik =

∑k−1

j=0 2
jeik+j < 2

k, and e =
∑w−1

i=0 mi2
ik. Initially, the 

values x, x2, … , x2
k
−1, corresponding to all possible value for xmi, are pre-computed. The algorithm 

proceed by scanning the most significant k bits mw−1, raising the corresponding xmw−1 to the power of 2k 
as the partial result. This is followed by subsequent scanning of the remaining mi , i = w − 2, … , 0, 
each time multiplying the partial result by xmi and raising it to the power of 2k as: 
x
2m

w−1 , x
4m

w−1 , … , x
2
k
m
w−1 , x

2
k
m
w−1cdotx

m
w−2 , x

2(2
k
m
w−1

+m
w−2

)
, … , x

(2
n−k
m
w−1

+2
n−2k

m
w−2

+⋯+2
k
m
1
)
⋅ x

m
0 = x

e
. 

That is beginning from xmw−1, k-times squaring are performed followed by multiplying the partial re-
sult by the next xmi , i = w − 2, … , 0 until the last xm0 is multiplied by. The m-ary method has an 
average number of multiplications given by Koç (1995).

(1)T bin(e) = n(e) + H(e) − 2
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Depending on the k parameter, the method performs less number of multiplications than binary 
method. However, the pre-computations cost increases exponentially with an increase in the k size.

Note that when mi = 0 (xmi = 1) the multiplication step is not necessary. Consequently, adaptive 
window methods are the enhancements of the m-ary that form partitions mi of arbitrary length of 
0s. In the constant-length non-zero window (CLNW) version, in the partitioning process, the leading 
zeros in a given k-bit non-zero window (NW) partition mi ≠ 0 are carved out and concatenated with 
subsequent zeros encounter to form a zero window (ZW) mi = 0 partition. The ZW takes any arbi-
trary length until a non-zero bit is again encountered. Thus, only NWs are restricted to bit-lengths 
n(mi) ≤ k, and for which list significant bit (LSB) = MSB = 1. As a result, the pre-computation stage 
involves computing only x2 = x ⋅ x and odd values x3 = x ⋅ x2, x5 = x3 ⋅ x2, … , x2

k
−1

= x2
k
−3

⋅ x2 
at the cost of 2k−1 multiplications. Whereas, in the variable-length non-zero window (VLNW) version 
(Koç, 1995), the number of ZWs is further maximized by switching NW to ZW partition construction 
upon encounter of predetermined 0 < q ≤ k − 2 consecutive zeros. Transition to the ZW-partition 
begins with the q zeros. Note, setting q = k − 1 defaults to CLNW. Both methods are also known as 
SWM (refer to Koç, 1995; Park et al., 1999, for details).

Given an n-bit e, partitioned into mi windows of variable lengths such that n(mi ≠ 0) ≤ k, the 
number of multiplications in y = xe is determined as follows. Beginning from the MSB, let there be 
p ≤ w number of NWs in the partition. On deferring until after the partitioning is completed and the 
largest NW max0≤i<w(mi) (henceforth denoted as max (mi)) is known, the pre-computation cost 
reduces to (max (mi) + 1)∕2 multiplications. Beginning from MSW mw−1, the exponentiation in-
volves n(e) − n(mw−1) squaring, and p − 1 multiplications corresponding to remaining NWs. The 
generic procedure is presented as Algorithm 2.

Thus, the number of multiplications is given as follows:

On the average, n(mi ≠ 0) are maximized, while their proportionate decimal values (determined by 
the weight) minimized with increase in the q value towards k; the reverse is the case for relatively 
smaller value. On the other hand, empirical result from sets of 16 to 2,048-bit es tested shows that 
delaying the pre-computation reduces the exponentiation cost by an average of three 

(2)Tm(n, k) = (2k − 2) + (⌈n∕k⌉ − 1)k + (⌈n∕k⌉ − 1)(1 − 2k)

(3)T(e) = (max (mi) + 1)∕2 + n(e) − n(mw−1) + p − 1
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multiplications. Thus, given e, varying k and q while determining the corresponding p, max (mi) and 
n(max (mi)) values, until those k and q that minimize Equation (3) are found, amounts to finding the 
optimal parameters for computing y = xe using SWM: that is it translates to finding the correspond-
ing shortest number of multiplications in the computation. Note that only partitioning is required to 
determine the optimal parameters. This is the idea of the Iterative SWM.

This paper proposes finite iterative partitioning strategy to determine optimal SWM parameters 
for any given e, to achieve shortest chain of multiplications in computing modular exponentiation 
using the SWM. Additionally, the paper proposes an iterative version of the SWM on recoded e utiliz-
ing a modified NAF (Eğecioğlu & Koç, 1994): in which the increase in the NAF-length is controlled 
while achieving the same minimum weight. NAF is employed to reduce the cost of additions in scalar 
multiplication-based ECC. Furthermore the paper examined, utilizing empirical data, the relative in-
crement in the number of additions in scalar multiplications with respect to H(e) in recoded es.

The rest of this paper is organized as follows: Section 2 detailed and analysed the proposed 
Iterative SWM algorithm; an experiment is then set up and carried out on the algorithm, and the 
result discussed at the end of the section; proposed recoded version of the iterative SWM is detailed 
and empirically examined in Section 3. Section 4 concludes the paper.

2. Iterative sliding window method (ISWM)
The proposed ISWM utilizes left-to-right version of the VLNW algorithm (Park et al., 1999). But in this 
case the partition size k is varied from an initial k0 to a predetermined maximum value kmax. Similarly, 
the allowable consecutive zeros in a partition q is varied from q0 > 0 to qmax ≤ k − 1. At q = k − 1 
the algorithm is in CLNW mode (Koç, 1995). On every combination of (k, q) parameter values, the 
algorithm partitions e and determines the number of multiplications T(e) according to Equation (3). 
It keeps track of the parameter values with the shortest T(e), and finally evaluates and returns the 
corresponding SWM. The ISWM is presented as Algorithm 3.

  

2.1. Algorithm analysis
Given n-bit e and q ≤ k − 1, in Algorithm 3, the external loop executes at most kmax times, in each of 
which the internal loop executes at most k times. Since 1 ≥ k ≥ kmax, the algorithm is bounded by 
kmax(kmax−1)

2
<

k2max

2
 number of, mainly, partitioning due to steps 1 and 3. Empirical studies (as detailed 

shortly) shows that optimal k is bounded by O( lg(n)). Thus, the algorithm is bounded by O( lg(n)2) 
partitionings. A complete SWM is executed once in step 11. The partitioning in step 1 is performed in 
a single pass, depending on the size of k. At worst k = 1 and ith-bit≠ (i + 1)th-bit, i = n − 1, … , 0: 
whereby the n-bit e is partitioned into w = n number of mi, thus it is bounded by O(n).



Page 6 of 13

Noma et al., Cogent Engineering (2017), 4: 1304499
http://dx.doi.org/10.1080/23311916.2017.1304499

In fact, for common n ≤ 2048 utilized in PKC, all optimal k value is bounded by 1 ≤ k < 8  
(Koç, 1995; Park et al., 1999): Thus, at most 7×6

2
= 21 partitions are needed in the process.

The memory resource required in running the algorithm is the same as that of the standard left-
to-right SWM: as since partitioning is part of the SWM. Estimated as memory units required for the 
pre-computed and final exponent, it is at worst 2k−1 + O(1) units.

A preliminary experiment is conducted on the ISWM to estimate the bounds for the k and q, with 
view to optimizing the number of partitioning. Figure 1 shows the number of multiplications (T) as 
function of the k, q, corresponding to various sets of n.

As can be observed in Figure 1(a) and (b), and based on the empirical data collected during the 
experiment, the optimal T are (by 99.9%) within the (k, q) parameters ranges as tabulated in 
Table 1.

2.2. Experimental set-up and result discussions

2.2.1. Experiment setup
Koç (1995) reported theoretical optimal parameters for the standard right-to-left SWM. The same is 
reviewed by Park et al. (1999). The left-to-right method is more effective in terms of shorter number 
of multiplications (Park et al., 1999). However, there was no exclusive report on its optimal param-
eters. Therefore, an empirical analysis is carried out on the method to determine the corresponding 
values, for classes of integers mostly utilized in PKCs. The result is presented in Table 2.

In the subsequent experiment, the number of multiplications T and it relative behaviour with vary-
ing weight H(e) are investigated. Thus, random sample integers are generated, to ensure adequate 
representation for the e range covered, with the details as follows:

(1)  The integers are classified into 8 classes according to bit-lengths as 
n = 16, 32, 64, 128, 256, 512, 1,024, 2,048;

(2)  Each class is divided into 16 sub-classes: 1 to 16, such that class i:i = 1, … , 16 has an aver-
age H(e) = n

32
(2i − 1) randomly distributed in 

[
n

16
(i − 1) + 1, n

16
i
]
;

(3)  1,000 sample, for each of the sub-class, is generated. And the corresponding numbers of mul-
tiplications are concurrently evaluated, applying binary method, SWM and our proposed 
ISWM, according to parameters in Tables 1 and 2, respectively; and

(4)  The results expressed as the average of the accumulated number of multiplications for the 
16,000 (1,000 × 16) sample, generated from the sub-classes, as par each class, as the repre-
sentative average for the class.

2.2.2. Result discussions for ISWM
To examine the effectiveness of the ISWM in shortening the number of multiplications, an experi-
ment was conducted using the detailed set-up and the classes of integers in Section . The results are 
compared with ACs (corresponding to number of multiplications) due to SWM-metaheuristic hybrid 
methods in Cruz-cortés et al. (2008) and Domínguez-Isidro et al. (2015). This is presented in Table 3.

In all the entries in Table 3, ISWM performs better than the standard SWM. It reduces the length 
of multiplications on the average by at least 2 (n = 16), and up to 12 (n = 2,048). This reduction is 
very significant considering that it is on the average basis. On the other hand, AIS-SWM and ACEP-
SWM perform better than both SWM and ISWM for 128-bit integers. However, as the integer size in-
creases, the proposed ISWM outperforms both methods: indicating superior advantage of the SWM 
in handling large-sized integers such as the ones used in PKCs. Based on percentage deviation of 
ISWM from the standard SWM, the former gains 1% shorter number of multiplications than the 
latter.
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It is interesting to note that SWM effectiveness in computing modular exponentiation with shorter 
number of multiplications is being underestimated at the expense of its implementation efficiency. 
In fact with proper choice of windows parameters, even the standard SWM is generally better than 
other reported heuristic/metaheuristics, for large integers (512–2,048 bits). When approached as 
proposed, ISWM is comparably better than the reported results in every respect. Therefore, this 

Table 1. k, q parameters ranges for optimal ISWM
n k q Partitions
16–31 2–4 1–3 6

32–255 2–5 1–4 10

256–1,023 2–6 1–4 14

1,024–2,048 2–7 1–6 21

Figure 1. ISWM respond with 
k, q settings. (a) 16–256 bit e 
and (b) 512–2048 bit e.

(a)

(b)
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paper concludes that SWM is still the most effective method for computing modular exponentiation, 
while it is second to binary method in terms of efficiency.

3. Iterative recoded SWM (IRSWM)
ECC involves repeated point additions of the form P + P +⋯ + P for some finite e times: referred to 
as scalar multiplication, and denoted as eP. The scalar multiplication is structurally similar to modu-
lar exponentiation, with the exception that squaring and multiplication are replaced by doubling and 
addition, respectively. The respective operations are accordingly interchanged in this section. The 
ECC has the advantage of achieving equivalent level of security with shorter key size than other 
standard PKCs such as RSA. For example, 233-bit key ECC provides security level equivalent to 2,048-
bit key RSA (Dahshan, Kamal, & Rohiem, 2015; Win, Mister, Preneel, & Wiener, 1998). Additionally, 
the cost of inversion is negligible: for a point P(x, y), P(x, y)−1 = −P(x, y) = (x, −y). Therefore, in-
troducing inversion in the computation process is proprietary to ECC with no extra cost.

The effect of the inversion in reducing the number of additions in eP can be demonstrated with 
n-bit es of the form e = 2n − 1. They exhibit longest number of additions 2(n − 1) on applying binary 
method to evaluate the corresponding (2n − 1)P. But by admitting inversion, the same method re-
duces the additions to n + 1: consisting of n doublings and an inversion and addition, as 
1P, 2P, 22P, 23P, … , 2nP, 2nP − 1P. In general, any k consecutive non-zero bits in binary form of 
e, 1 × 2n−1 +⋯ + 0 × 2n−i + 1 × 2n−i−1 + 1 × 2n−i−2 +⋯ + 1 × 2n−i−k +⋯ (1…011…1…),  
can be recoded into k + 1-bits as 
1 × 2n−1 +⋯ + 1×2n−i + 0 × 2n−i−1 + 0 × 2n−i−2 +⋯ − 1 × 2n−i−k +⋯ (1…10…−1…). 
Therefore, signed recoding is introduced to reduce the number of additions that follows doubling 
due to the integer weight H(e). In this regard, balanced ternary (−1, 0, 1) recoding (Knuth, 1998) is 
re-introduced to minimize the weight. Henceforth, −1 is denoted as 1̄ and recoded form for e as ē.

Table 3. Average T by various methods

Note: “−” indicates non-available result for the given algorithm.
aBinary method. 
bSWM based on Park et al. (1999). 
cCruz-cortés et al. (2008). 
dDomínguez-Isidro et al. (2015). 

n Bin
a

SWM
b AIS-SWM

c

ACEP-SWM
d ISWM

16 23 22 – – 20

32 47 41 – – 39

64 94 80 – – 78

128 191 156 152 154 154

256 383 308 304 304 303

512 767 602 604 604 599

1,024 1,535 1,186 1,196 1,190 1,180

2,048 3,070 2,344 – – 2,332

Table 2. Optimal parameters for SWM
n k q
16, 32, 64 3 2

128, 256 4 3

512 5 4

1,024 6 5

2,048 7 6
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Various recoding methods exist, with NAF being canonical having the minimal non-zero bits den-
sity of n/3 (Eğecioğlu & Koç, 1994; Morain & Olivos, 1990; Reitwiesner, 1960). A kNAF is a recoded 
equivalent of m-ary, capable of reducing the density asymptotically to n∕(k + 1) (Okeya, Schmidt-
Samoa, Spahn, & Takagi, 2004). Similarly, Laih and Kuo (1997) proposed an m-ary version of modi-
fied signed digit (MSD), having the same non-zero bits density as the kNAF. Another method similar 
to kNAF, but with the advantage of performing the conversion from the MSB, is mutual opposite form 
(MOF) (Okeya et al., 2004). The approach eliminates the need for two parses during the conversion, 
and an additional n-bit memory required in the process is reduced to 1 (or k-bit for kMOF). Basically, 
for an n-bit e 

where all the operations in Equation (4) are bitwise.

Balasubramaniam and Karthikeyan (2007) introduced complementary recoding (CR): 1 + bitwise 
complement of e is bitwise-subtracted from 2n(e)+1 such that

Note that, Equation (5) is equivalent to 2n(e)+2 − e. However, CR is only effective in reducing the H(e) 
for an n-bit e, when H(e) > n∕2: This is because and its (n + 1)-bit CR-recoded ē are related as

Therefore, CR rather increases the non-zero bit density if H(e) ≤ n(e)

2
. For example, consider 

e = 2406610 = 1011110000000102 where H(24066) = 6. CR(24066) = 101̄00001̄1̄1̄1̄1̄1̄1̄1̄02, 
H(CR(24066)) = 10. However, NAF(24066) = 101̄0001̄000000010, H(NAF(24066)) = 3.

NAF optimally reduces H(e), but at tines leads to additional bit to n(e) that could possibly be avoided 
(Saffar & Said, 2015). Integers with binary form e = 1011 … have NAF-recoded form as 
ē = 101̄0(1̄|0) … having n(ē) = n(e) + 1. But an equal non-zero bits density can be realized with-
out the additional 1 bit increase, by suppressing the NAF conversion at the second MSB. For example, 
consider e = 9310 = 1011101012 having n(93) = 9 and H(93) = 6. NAF(93) = 101̄001̄0101, 
that is n(NAF(93)) = 10 and H(NAF(93)) = 5. On suppressing the conversion at the second MSB, 
9310 is recoded as 11001̄0101 with length and weight equal 9 and 5, respectively. As for suitable 
recoding for SWM heuristic, it is still an open problem (Win et al., 1998). Therefore, this paper pro-
poses a modified NAF (mNAF) as a means of avoiding the additional bit increase where possible. The 
procedure is presented in Algorithm 4.

Table 4 presents average number of additions due to binary method, NAF and mNAF for sets of 
10, 16, 32, … , 512-bit integers.

(4)MOF(e) = (e≪ 2)⊖ e

(5)CR(e) = 2n(e) ⊖ ē⊖ 1.

H(ē) = n(e) + 1 − H(e)
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As can be observed in Table 4, the NAF and mNAF recoding significantly reduce the number of ad-
ditions, especially as the integer sizes become larger. On the other hand, the proposed mNAF exhib-
its shorter additions than the original NAF: this is due to its better performance in containing length 
n(ē) while equally reducing the weight H(ē) as the NAF.

Iterative recoded SWM (IRSWM) is similar to ISWM (Algorithm 3). Except that e is initially recoded 
using Algorithm 4; Squaring and multiplications in SWM are replaced with doublings and additions 
(or subtraction), thus called recoded SWM (RSWM); and, max (mi) is replaced with the largest abso-
lute value max (|mi|). The procedure is presented in Algorithm 5.

The experimental set-up in Section 2.2.1 is utilized to test the IRSWM. However, considering that 
the current scalars utilized in ECC are less than 512 bits, the experiment covers 512 bits only. 
Likewise, little variations where observed in the optimal window parameters for the SWM, when ap-
plied on recoded integers. Accordingly, the new values are presented in Table 5.

Furthermore, preliminary experiment shows that CLNW (q = k − 1) on the recoded integers re-
sults in shorter number of additions than VLNW. Thus, q is fixed, making Algorithm 5 even faster, as 
the number of iterations is always less than kmax.

Table 5. Optimal parameters for RSWM
n k q
16 3 1

32, 64, 128 3 2

256, 512 5 4

Table 4. Effects of integer recoding on number of additions
n Binary NAF mNAF
10 13.50 (5.5) 13.11 (4.11) 12.61 (4.11)

16 22.50 (8.5) 21.11 (6.11) 20.61 (6.11)

32 46.50 (16.50) 39.56 (8.56) 38.87 (8.56)

64 94.50 (32.50) 79.20 (16.20) 78.51 (16.20)

128 190.50 (64.50) 158.48 (31.48) 157.78 (31.48)

256 382.55 (128.55) 317.11 (62.11) 316.42 (62.11)

512 766.53 (256.53) 634.10 (123.10) 633.40 (123.10)

Note: Values in brackets show the average H(ē) for the respective n-bit e sets.
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Additionally, it is observed that level of the weight reduction due to the NAF and various other 
recoding methods (with the exception of CR) are subject to both the non-zero bits density and their 
distribution pattern: Two n-bit integers having the same weight exhibit different recoded density, 
depending on their respective pattern of the 1-bits distribution before recoding. The reduction is 
highly efficient when the initial 1 bits are clustered. For example, NAF for e = 11110011101111000 
is 10001̄010001̄0001̄000, having H(ē) = 5. On the other hand, NAF-recoding 
e = 11011011101101100 with the same weight results to 1001̄001̄0001̄001̄01̄00, having 
H(ē) = 6. As such empirical results for recoded sets of integers are highly subject to the non-zero 
bits distribution pattern of the set utilized. And, the resulting number of additions may not tally with 
theoretically expected ones, for example, asymptotic number of additions due to NAF(n) = 4n∕3, 
for an n-bit integer. In fact, tests on integers generated by various random generators yield different 
results, all of which having shorter number of additions than expected theoretical one. Therefore, 
the results presented in this section are only subjects to the set of random integer sets utilized.

3.1. Variation in number of additions with non-zero bits density
The relative behaviour is examined, of the corresponding number of additions with respect to the 
non-zero bit density. The test is carried out on NAF, IRSWM and the standard SWM applied on re-
coded integers, RSWM. A random set of 256-bit integers is utilized. The effect of bit-length is normal-
ized by dividing the number of additions by n. The result is presented in Figure 2. It also shows 
relative reduction in the bit-density by the methods examined.

Note that from Figure 2, initially the number of additions in both NAF and IRSWM increases pro-
portionately with the H(e). Fortunately, peak values are reached shortly after the weight reached 
n / 2. After which the length continue to decreases. RSWM also exhibits similar trend, except that the 
peak value is reached when H(e) ≈ n∕3. As for the relative efficiency in containing the density, 
IRSWM performed best among the three methods. In general, the trend shows that integers with 
about 1/3–2/3 non-zero bits density exhibit relatively larger number of additions even after recoded; 
the reverse is the case when the density is very sparse and as well when highly concentric.

3.2. Result discussions for IRSWM
In this section, the experimental results from IRSWM are compared with that of RSWM as well as 
recoded binary method. The proposed mNAF is utilized in the recoding. The result is presented in 
Table 6.

Figure 2. Variation in Number 
of Additions with H(e) for 256-
bit e.
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The result in Table 6 shows significant improvement on the number of additions returned by 
IRSWM over that of RSWM. It shows that iteratively searching for the optimal partitioning parameter 
values reduces the length, on average, by at least 2 (n = 16) and up to 8 (n = 512). As can be ob-
served from both the Table 6 and Figure 2, IRSWM also significantly optimizes the length than the 
other methods examined when the integers bits densities are about half of the bit-length: which is 
the worst case scenario in terms of the number of additions. Overall estimate using percentage de-
viation shows that IRSWM improves on RSWM and SWM by 4 and 6%, respectively.

On general note: applying the IRSWM results in the shortest number of additions in ECC scalar 
multiplications. It is also expected that, for ECC applications in which the scalar can be chosen, the 
result presented may serve as a tool for much wiser and narrower selection for scalars whose num-
ber of additions is a lot lesser.

4. Conclusion and future works
This paper proposes iterative (recoded) SWM to achieve an even shorter number of operations in 
both modular exponentiation and scalar multiplication that are found in PKC. A modification to 
classic NAF algorithm is proposed, to contain the increase in integers bit-length after recoding. The 
relative responds is also explored, of the length of additions in computing scalar multiplications, 
with respect to hamming weight of the scalar. Empirical results show that the Iterative SWM opti-
mize the number of operations by at least 1% over the SWM, and up to 6% when applied on recoded 
integer. With respect to relationship between the scalar multiplication and the hamming weight, 
recoded form of integers with original hamming weights below and above one-third of their corre-
sponding length are more optimal for scalar multiplications than their counterparts. The paper 
concluded that iteratively finding the optimal window parameters while applying SWM effectively 
reduces the number of operation in the modular exponentiation and scalar multiplication. An even 
better performance is realized than the computationally much complex metaheuristic approaches 
at present.

Even as the proposed iterative SWM shortens the number of operations, there is still room for 
further optimization. It is expected that introducing simple but effective metaheuristic can further 
reduce operations towards (nearest) optimal.

Table 6. Number of additions by various methods on recoded e
n mNAF RSWM IRSWM
16 21 23 20

32 39 41 38

64 78 78 75

128 158 152 147

256 316 305 292

512 633 586 578
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