EFFECTS OF NITROGEN FERTILIZATION LEVELS ON THE STRAW NUTRITIVE QUALITY OF MR 211 AND MR 219 RICE VARIETIES

HOLLENA ANAK NORI.

FP 2005 24
EFFECTS OF NITROGEN FERTILIZATION LEVELS ON THE STRAW NUTRITIVE QUALITY OF MR 211 AND MR 219 RICE VARIETIES

By

HOLLENA ANAK NORT

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirement for the Degree of Master of Science

July 2005
DEDICATION

Dedicated to my family and friends
for their understanding and inspiration
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

EFFECCTS OF NITROGEN FERTILIZATION LEVELS ON THE STRAW NUTRITIVE QUALITY OF MR 211 AND MR 219 RICE VARIETIES

By

HOLLENA NORI

July 2005

Chairman: Associate Professor Mohd Ridzwan Abdul Halim, PhD
Faculty: Agriculture

Rice straw has been used as ruminant feed in many Asean countries although it is regarded as poor quality feed due to its low protein concentration and digestibility. It has been reported that the nutritive quality of rice straw varies among different varieties and is affected by environmental condition that determines its growth pattern. In view of the reports on the environmental effect on straw quality, this study was designed to evaluate the nutritive quality of rice straw with increasing application of nitrogen fertilizer.

Samples of rice straw from two varieties, MR 211 and MR 219 which were grown under five levels of nitrogen fertilizer (0, 120, 160, 200 and 240 kg N/ha) were harvested and analyzed for chemical composition and digestibility. The results showed that the straw nutritive quality was improved with nitrogen application.
Increases in the level of nitrogen fertilization were found to increase the straw crude protein significantly. The maximum nitrogen level at 240 kg N/ha was found to produce crude protein of 8.45%, which is above the level required for ruminant feed. The straw cell wall (NDF) and fiber (ADF) fraction were found to decrease significantly with nitrogen application. The organic matter digestibility was slightly lowered with increasing nitrogen level. The concentration of hemicellulose, cellulose, lignin (ADL), silica, organic matter, ash and the dry matter digestibility were not affected by the nitrogen fertilization level. In the agronomic characteristics and yield components, the level of nitrogen was shown to increase the tiller numbers, stem height, maturity, number of spikelets per panicle, total spikelets per square meter, grain and straw yield and total yield.

There were significant varietal differences in the concentration of cell wall (NDF), hemicellulose, cellulose, lignin (ADL) and silica in rice straw, where MR 219 had higher cell wall (NDF), hemicellulose and cellulose concentration where as MR 211 had higher amount of lignin (ADL) and silica in the straw. In the agronomic characteristics, MR 219 had higher number of tillers per plant, total panicles per square meter, total spikelets per square meter, grain yield, total yield and grain: straw ratio where as MR 211 had shorter stem height, maturity period and higher leaf: stem ratio. Both varieties were shown to produce straw with improved nutritive quality. In comparison between the two varieties, MR 219 is superior to MR 211 in view of its higher grain yield and grain: straw ratio.
The grain and straw yield were positively correlated with the straw crude protein and digestibility and negatively correlated with the cell wall (NDF) and fiber (ADF) fraction.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KESAN KADAR PEMBAJAAN NITROGEN KE ATAS KUALITI PEMAKANAN PADA JERAMI PADI VARIETI MR 211 DAN MR 219

Oleh

HOLLENA NORI

Julai 2005

Pengerusi: Professor Madya Mohd Ridzwan Abdul Halim, PhD
Fakulti : Pertanian

Jerami padi telah digunakan sebagai makanan ruminan di kebanyakan negara Asean meskipun ia dianggap sebagai makanan berkualiti rendah disebabkan oleh kandungan protein serta kadar pencernaananya yang rendah. Terdapat laporan mengatakan bahawa kualiti pemakanan pada jerami padi adalah berbeza mengikut varieti dan dipengaruhi oleh faktor persekitaran yang mempengaruhi pertumbuhannya. Memandangkan terdapat laporan mengenai kesan persekitaran ke atas kualiti jerami, kajian ini dilakukan untuk menilai kualiti pemakanan pada jerami padi dengan penggunaan baja nitrogen yang tinggi.
Sampel jerami padi daripada dua varieti, MR 211 dan MR 219 yang ditanam di bawah lima kadar pembajaan nitrogen (0, 120, 160, 200 dan 240 kg N/ha) telah dituai dan dianalisis untuk kandungan kimia dan pencernaan. Keputusan menunjukkan bahawa kualiti pemakanan pada jerami telah bertambah baik dengan pembajaan nitrogen.

Peningkatan penggunaan baja nitrogen didapati telah meningkatkan kandungan protein kasar di dalam jerami. Penggunaan baja nitrogen pada kadar maksimum 240 kg N/ha didapati menghasilkan protein kasar sebanyak 8.45%, iaitu memenuhi keperluan untuk makanan ruminan. Kandungan sel dinding (NDF) dan serat (ADF) didapati menurun serta kadar pencernaan bahan organik menurun sedikit dengan penggunaan baja nitrogen. Kandungan hemiselulosa, selulosa, lignin (ADL), silika, bahan organik, abu dan kadar pencernaan bahan kering didapati tidak dipengaruhi oleh kadar pembajaan nitrogen. Dalam ciri agronomi serta komponen hasil, kadar pembajaan nitrogen telah meningkatkan bilangan daun, ketinggian batang, umur matang, bilangan biji setangkai, jumlah biji semeter persegi, hasil padi dan jerami serta hasil keseluruhan.

Terdapat perbezaan yang signifikan di antara varieti di dalam kandungan sel dinding (NDF), hemiselulosa, selulosa, lignin (ADL) dan silika, di mana MR 219 mempunyai kandungan sel dinding (NDF), hemiselulosa dan selulosa yang lebih tinggi manakala MR 211 mempunyai kandungan lignin (ADL) dan silika yang lebih tinggi. Dalam ciri-ciri agronomi, MR 219 mempunyai bilangan daun sepokok, jumlah tangkai semeter persegi, jumlah biji semeter persegi, hasil padi, hasil keseluruhan dan nisbah padi: jerami yang lebih tinggi manakala MR 211 mempunyai batang lebih pendek, umur matang yang
singkat serta nisbah daun: batang yang lebih tinggi. Kedua-dua varieti didapat
menghasilkan jerami dengan kualiti pemakanan yang lebih baik. Dalam perbandingan di
antara kedua-dua varieti, MR 219 adalah lebih baik berbanding MR 211 kerana
mempunyai hasil padi dan nisbah padi: jerami yang lebih tinggi.

Hasil padi dan jerami didapat berkorelasi secara positif dengan kandungan protein kasar
dan kadar pencernaan jerami serta berkorelasi secara negatif dengan kandungan sel
dinding (NDF) dan serat (ADF).
ACKNOWLEDGEMENTS

I would like to express my appreciation and gratitude to my supervisor Associate Professor Dr Mohd Ridzwan Abd. Halim for his guidance and suggestion throughout the period of this study. My appreciation and gratitude is also extended to my co-supervisor Associate Professor Dr Mohd Fauzi Ramlan for his suggestion.

Special thanks are extended to Mr Mainul Hasan, Ms Rafeah Wahi and Ms Devika Saddul for their help in setting the experiments.

I am also grateful to the staffs of Nutrition Laboratory (Department of Crop Science), Nutrition Laboratory (Department of Animal Science) and Soil Science Laboratory (Department of Soil Science) for their assistance and co-operation.

Finally, I would like to thank my family and friends who involved directly and indirectly throughout the completion of this thesis.
I certify that an Examination Committee met on 6th July 2005 to conduct the final examination of Hollena Anak Nori on her Master of Science thesis entitled “Effects of Nitrogen Fertilization Levels on the Straw Nutritive Quality of MR 211 and MR 219 Rice Varieties” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Zakaria Abd. Wahab, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Hamid Sulaiman, PhD
Lecturer
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Aminuddin Hussin, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Andrew Alek Tuen, PhD
Associate Professor
Institute of Biodiversity and Environmental Conservation
Universiti Utara Malaysia
(External Examiner)

GULAM/RUSMI RAHMAT ALI, PhD
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 22 AUG 2005
This thesis is submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the supervisory Committee are as follows:

Mohd Ridzwan Abd. Halim, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Mohd Fauzi Ramlan, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 08 SEP 2005
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

HOLLENA ANAK NORI

Date: 15 AUGUST 2005
TABLE OF CONTENTS

DEDICATION ii
ABSTRACT iii
ABSTRAK vi
ACKNOWLEDGEMENTS ix
APPROVAL x
DECLARATION xii
LIST OF TABLES xvi
LIST OF FIGURES xviii
LIST OF ABBREVIATIONS xxi

CHAPTER

1 INTRODUCTION 1

2 LITERATURE REVIEW 5
 2.1 The Issue of Rice Straw Burning 5
 2.2 Chemical Composition and Digestibility of Rice Straw 6
 2.3 Problems in Using Rice Straw as Ruminant Feed 9
 2.4 Varietal Differences in the Chemical Composition and Digestibility 11
 of Rice Straw
 2.5 Impact of Nitrogen Fertilizer Application on the Chemical 15
 Composition and Digestibility of Rice Straw
 2.6 Other Factors Affecting the Chemical Composition and Digestibility 18
 of Rice Straw
 2.6.1 Season 19
 2.6.2 Location 21
 2.6.3 Weather 23
 2.6.4 Maturity 23
 2.6.5 Botanical Fraction 23
 2.6.6 Cultivation Practice 25
 2.6.7 Soil Condition 25
 2.6.8 Harvesting Time 26
 2.6.9 Cutting Height 26
 2.6.10 Storage 28
 2.6.11 Baling Time 29
 2.7 Direct Seeding Rice Cultivation 30
 2.8 The Functions of Nitrogen in Higher Plant 32
 2.9 Nitrogen Fertilizer and Soil Fertility 33
 2.10 Impact of Nitrogen Nutrition on Rice Growth and Yield 35
 2.11 Characteristics of a High Yielding Rice Variety 41
 2.12 Rice Variety MR 211 43
 2.13 Rice Variety MR 219 44

xiii
3 MATERIALS AND METHODS

3.1 Experiment Location

3.2 Treatments

3.3 Establishment of Rice

3.4 Fertilizer Application

3.5 Pest Control

3.6 Soil Sampling

3.7 Soil Chemical Analysis
 3.7.1 Soil pH
 3.7.2 Cation Exchange Capacity (CEC)
 3.7.3 Exchangeable Cations (Na, K, Ca, Mg)
 3.7.3.1 Determination of Na and K cation
 3.7.3.2 Determination of Ca and Mg cation
 3.7.4 Organic Matter
 3.7.5 Total Nitrogen
 3.7.6 Available Phosphorus

3.8 Vegetative Development Parameter
 3.8.1 Plant height
 3.8.2 Number of tillers per plant
 3.8.3 Relative chlorophyll content

3.9 Reproductive Development Parameter
 3.9.1 Stem height
 3.9.2 Days to flowering
 3.9.3 Number of panicles per square meter
 3.9.4 Panicle length
 3.9.5 Number of spikelets per panicle

3.10 Ripening Development Parameter
 3.10.1 Days to grain maturity

3.11 Harvest and Sample Preparation

3.12 Yield Components
 3.12.1 Grain yield
 3.12.2 Straw yield
 3.12.3 Total biomass yield and grain to straw ratio

3.13 Leaf to Stem Ratio

3.14 Chemical Analysis
 3.14.1 Crude protein
 3.14.2 Neutral detergent fiber (NDF)
 3.14.3 Acid detergent fiber (ADF)
 3.14.4 Acid detergent lignin (ADL)
 3.14.5 Ash and organic matter
 3.14.6 Silica
 3.14.7 Hemicellulose and cellulose

3.15 in vitro True Digestibility and in vitro Gas Production

3.16 Statistical Analysis

xv
4 RESULTS

4.1 Chemical Composition
4.1.1 Crude Protein
4.1.2 Neutral Detergent Fiber (NDF)
4.1.3 Acid Detergent Fiber (ADF)
4.1.4 Acid Detergent Lignin (ADL)
4.1.5 Hemicellulose
4.1.6 Cellulose
4.1.7 Ash
4.1.8 Silica
4.1.9 Organic Matter
4.1.10 In Vitro True Dry Matter Digestibility (IVTDMD)
4.1.11 In Vitro True Organic Matter Digestibility (IVTOMD)
4.1.12 In Vitro Gas Production

4.2 Agronomic Characteristics
4.2.1 Plant Height
4.2.2 Number of Tillers
4.2.3 Days to Flowering
4.2.4 Stem Height at Panicle Emergence
4.2.5 Relative Chlorophyll Content
4.2.6 Number of Spikelets per Panicle
4.2.7 Filled Spikelets Percentage
4.2.8 Panicle Height
4.2.9 Number of Panicles per Square Meter
4.2.10 Number of Spikelets per Square Meter
4.2.11 Days to Grain Maturity
4.2.12 Leaf to Stem Ratio
4.2.13 Leaf Proportion
4.2.14 Grain Yield
4.2.15 Straw Yield
4.2.16 Total Biomass Yield above Ground
4.2.17 Grain to Straw Ratio

4.3 Correlation Analysis
4.4 Soil Chemical Properties

5 DISCUSSION

5.1 Chemical Composition
5.2 Agronomic Characteristics
5.3 Correlation between the Agronomic Characteristics and Straw Nutritive Value

6 CONCLUSION

REFERENCES
APPENDICES
BIODATA OF THE AUTHOR
LIST OF TABLES

Table 2.1 Agronomic characteristics of four rice straw varieties and the proportion of their botanical fractions in whole straw 12

Table 2.2 Chemical composition (% DM) and in vitro DM digestibility (% IVD) of botanical fractions of four rice straw varieties 13

Table 2.3 Effects of variety, level of nitrogen fertilization and season on the crude protein concentration of rice straw (values are % of DM) 16

Table 2.4 Influence of season on the chemical composition and IVD (% in dry matter) of whole straw of two rice varieties 20

Table 2.5 Influences of location on the relative proportion of botanical fractions (%) of two rice straw varieties 21

Table 2.6 Influence of location on the chemical composition and IVD (% in dry matter) of whole straw of two rice varieties 22

Table 2.7 Chemical composition and IVD (% in dry matter) of botanical fractions of two varieties of rice straw 24

Table 2.8 Chemical composition and in vitro dry matter digestibility of wheat straw by soil type 26

Table 2.9 The effects of storage on chemical composition of rice straw due to sunlight and rain 28

Table 2.10 Effect of nitrogen addition on dry matter production and nitrogen uptake by rice 40

Table 3.1 Levels of nitrogen (urea fertilizer) application 46

Table 3.2 Pesticides used to control pest infestation 48

Table 4.1 In vitro gas production (mL/200 mg dry matter) of rice straw under five levels of nitrogen fertilization 88

Table 4.2 Correlation between agronomic characteristics and straw nutritive value 115

Table 4.3 Correlation between yield and yield components 116

Table 4.4 Correlation between straw chemical composition and digestibility 117
4.5 Soil chemical properties
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The effects of nitrogen fertilization rate on the protein concentration</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>of eight rice straw varieties in California</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>The effects of nitrogen fertilization rate on the protein concentration (%</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>of DM) of Akita straw variety</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>The effects of nitrogen fertilization rate on the ADF concentration (% of</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>DM) in rice straw</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>Straw yield as affected by cutting height</td>
<td>27</td>
</tr>
<tr>
<td>2.5</td>
<td>The effects of straw baling time on the straw digestibility (ADF content)</td>
<td>29</td>
</tr>
<tr>
<td>3.1</td>
<td>Experimental unit</td>
<td>47</td>
</tr>
<tr>
<td>3.2</td>
<td>Plant height measurements</td>
<td>52</td>
</tr>
<tr>
<td>3.3</td>
<td>Chlorophyll measurement</td>
<td>53</td>
</tr>
<tr>
<td>3.4</td>
<td>Stem length measurements</td>
<td>54</td>
</tr>
<tr>
<td>3.5</td>
<td>Recording number of panicles per square meter using quadrat</td>
<td>55</td>
</tr>
<tr>
<td>3.6</td>
<td>Panicle length measurements</td>
<td>55</td>
</tr>
<tr>
<td>3.7</td>
<td>NDF using Fibercap System</td>
<td>60</td>
</tr>
<tr>
<td>3.8</td>
<td>Incubated syringes in water bath</td>
<td>64</td>
</tr>
<tr>
<td>4.1</td>
<td>Effects of nitrogen fertilization on the crude protein</td>
<td>68</td>
</tr>
<tr>
<td>4.2</td>
<td>Effects of nitrogen fertilization level on the neutral detergent fiber (NDF)</td>
<td>71</td>
</tr>
<tr>
<td>4.3</td>
<td>Varietal differences in the Neutral Detergent Fiber (NDF)</td>
<td>73</td>
</tr>
<tr>
<td>4.4</td>
<td>Interaction between the nitrogen level and variety in the leaf NDF</td>
<td>73</td>
</tr>
<tr>
<td>4.5</td>
<td>Effects of nitrogen fertilization level on the acid detergent fiber (ADF)</td>
<td>75</td>
</tr>
<tr>
<td>4.6</td>
<td>Varietal differences in the acid detergent lignin (ADL)</td>
<td>77</td>
</tr>
</tbody>
</table>
4.7 Interaction between the nitrogen level and variety in the stem ADL
4.8 Varietal differences in the hemicellulose
4.9 Interaction between the nitrogen level and variety in the leaf hemicellulose
4.10 Interaction between the nitrogen level and variety in the whole straw hemicellulose
4.11 Varietal differences in the cellulose
4.12 Varietal differences in the silica
4.13 Effects of nitrogen fertilization level on the in vitro true dry matter digestibility (IVTDMD)
4.14 Effects of nitrogen fertilization level on the in vitro true organic matter digestibility (IVTOMD)
4.15 Effects of nitrogen fertilization level on the plant height
4.16 Effects of nitrogen fertilization level on the number of tillers per plant
4.17 Varietal differences in the number of tillers per plant
4.18 Effects of nitrogen fertilization level on the stem height
4.19 Varietal differences in the stem height
4.20 Effects of nitrogen fertilization on the relative chlorophyll content
4.21 Effects of nitrogen fertilization on the number of spikelets per panicle
4.22 Effects of nitrogen fertilization on the filled spikelets percentage
4.23 Effects of nitrogen fertilization level on the panicle height
4.24 Effects of varieties on the number of panicles per square meter
4.25 Effects of nitrogen fertilization level on the number of spikelets per square meter
4.26 Varietal differences in the number of spikelets per square meter
4.27 Effects of nitrogen fertilization level on the days to grain maturity
4.28 Varietal differences in the days to grain maturity

4.29 Effects of nitrogen fertilization level on the leaf to stem ratio

4.30 Varietal differences in the leaf to stem ratio

4.31 Effects of nitrogen fertilization level on the leaf proportion

4.32 Varietal differences in the leaf proportion

4.33 Effects of nitrogen fertilization level on the grain yield

4.34 Varietal differences in the grain yield

4.35 Effects of nitrogen fertilization level on the straw yield

4.36 Interaction between the nitrogen level and variety in the straw yield

4.37 Effects of nitrogen fertilization level on the total biomass yield above ground

4.38 Varietal differences in the total biomass yield above ground

4.39 Interaction between the nitrogen level and variety in the total biomass yield

4.40 Effects of nitrogen fertilization on the grain to straw ratio

4.41 Varietal differences in the grain to straw ratio
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADF</td>
<td>Acid Detergent Fiber</td>
</tr>
<tr>
<td>ADL</td>
<td>Acid Detergent Lignin</td>
</tr>
<tr>
<td>ADS</td>
<td>Acid Detergent Solution</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>AOAC</td>
<td>Association of Official Analytical Chemists</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine Triphosphate</td>
</tr>
<tr>
<td>CaCl$_2$.2H$_2$O</td>
<td>Calcium Chloride</td>
</tr>
<tr>
<td>CEC</td>
<td>Cation Exchange Capacity</td>
</tr>
<tr>
<td>CH$_4$</td>
<td>Methane</td>
</tr>
<tr>
<td>C/N</td>
<td>Carbon to Nitrogen Ratio</td>
</tr>
<tr>
<td>CoCl$_2$.6H$_2$O</td>
<td>Cobalt Chloride</td>
</tr>
<tr>
<td>CO(NH$_2$)$_2$</td>
<td>Urea</td>
</tr>
<tr>
<td>CP</td>
<td>Crude Protein</td>
</tr>
<tr>
<td>CRD</td>
<td>Completely Randomized Design</td>
</tr>
<tr>
<td>CTAB</td>
<td>Cetyl trimethylammonium bromide</td>
</tr>
<tr>
<td>C.V.</td>
<td>Coefficient of Variance</td>
</tr>
<tr>
<td>DAS</td>
<td>Days After Sowing</td>
</tr>
<tr>
<td>D.F.</td>
<td>Degrees of Freedom</td>
</tr>
<tr>
<td>DM</td>
<td>Dry Matter</td>
</tr>
<tr>
<td>DMI</td>
<td>Dry Matter Intake</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
</tbody>
</table>
EDTA & Disodium Ethylenediaminetetraacetate
et al. & and friends
FeCl$_2$.6H$_2$O & Iron Chloride
HCl & Hydrochloric Acid
H$_3$PO$_4$ & Phosphoric Acid
H$_2$SO$_4$ & Sulphuric Acid
IVD & In Vitro Digestibility
IVDMD & In Vitro Dry Matter Digestibility
IVOMD & In Vitro Organic Matter Digestibility
IVTDMD & In Vitro True Dry Matter Digestibility
IVTOMD & In Vitro True Organic Matter Digestibility
K$_2$Cr$_2$O$_7$ & Potassium Dichromate
KH$_2$PO$_4$ & Potassium Dihydrogen Phosphate
K$_2$O & Dipotassium Oxide
K$_2$SO$_4$ & Potassium Sulphate
LAI & Leaf Area index
L.S.D. & Least Significant Difference
MARDI & Malaysian Agriculture Research and Development Institute
MgSO$_4$.7H$_2$O & Magnesium Sulphate
MnCl$_2$.4H$_2$O & Manganese Chloride
MOP & Muriate of Potash
N & Normality
NaHCO$_3$ & Sodium Hydrogen Carbonate

xxii
<table>
<thead>
<tr>
<th>Chemical Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na₂HPO₄</td>
<td>Disodium Hydrogen Phosphate</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium Hydroxide</td>
</tr>
<tr>
<td>Na₂S.7H₂O</td>
<td>Sodium Sulphite</td>
</tr>
<tr>
<td>Na₂S₂O₃</td>
<td>Sodium Thiosulphate</td>
</tr>
<tr>
<td>NDF</td>
<td>Neutral Detergent Fiber</td>
</tr>
<tr>
<td>NDS</td>
<td>Neutral Detergent Solution</td>
</tr>
<tr>
<td>NH₃</td>
<td>Ammonia</td>
</tr>
<tr>
<td>NH₄⁺</td>
<td>Ammonium ion</td>
</tr>
<tr>
<td>NH₄F</td>
<td>Ammonium Flouride</td>
</tr>
<tr>
<td>(NH₄)HCO₃</td>
<td>Ammonium Hydrogen Carbonate</td>
</tr>
<tr>
<td>NH₄OAc</td>
<td>Ammonium Acetate</td>
</tr>
<tr>
<td>NO₂</td>
<td>Nitrogen dioxide</td>
</tr>
<tr>
<td>PE</td>
<td>Polyethylene</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>Diphosphate Pentaoxide</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic Acid</td>
</tr>
<tr>
<td>SAS</td>
<td>Statistical Analysis Software</td>
</tr>
<tr>
<td>S.D.</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>S.E.</td>
<td>Standard Error</td>
</tr>
<tr>
<td>sp.</td>
<td>Species</td>
</tr>
<tr>
<td>SPAD</td>
<td>Specific Photosynthesis Analyzer Detector</td>
</tr>
<tr>
<td>TSP</td>
<td>Triple Super Phosphate</td>
</tr>
</tbody>
</table>
Rice is the staple food for Malaysians. As population increases, there is need to increase the rice grain production to enhance food security. The target of the Ministry of Agriculture and Agro-based Industry Malaysia is to increase the rice grain yield from current average yield of 4.5 t/ha to 10 t/ha (MOA, 2004a). Among the steps that have been taken to achieve this target is the application of high levels of nitrogen fertilizer. Farmers are currently applying more than the recommended rate of 170 kg N/ha as they believe that higher nitrogen levels are essential in maximizing grain yields (Alias and Manaf, 1993).

In Malaysia, the rice breeding research has been focusing on improving the agronomic characteristics such as grain yield and quality. Research has generally concentrated on the importance of nitrogen in increasing the grain yield and the effects of nitrogen on the straw yield and quality have not been investigated.

The 684 000 hectares of rice fields in Malaysia produced 1.3 million tonnes of rice straw annually (MOA, 2004b). The burning of rice straw and stubble in Malaysian rice field still remain as cultural and current practice of its disposal. Since large amount of straw produced is disposed by burning which is not only wasting resources but also causing