

UNIVERSITI PUTRA MALAYSIA

ELECTROCHEMICAL CHARACTERISATION AND APPLICATION OF SOLID ELECTRODES CHEMICALLY MODIFIED WITH C60-FULLERENE, TETRATHIAFULVALENE AND SILICON POLYOXOTUNGSTATE

GOH JOO KHENG.

FS 2005 9

ELECTROCHEMICAL CHARACTERISATION AND APPLICATION OF SOLID ELECTRODES CHEMICALLY MODIFIED WITH C₆₀-FULLERENE, TETRATHIAFULVALENE AND SILICON POLYOXOTUNGSTATE

By

GOH JOO KHENG

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

November 2005

Dedicated to my beloved parents, Shawn and Kelvin Choi

Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

ELECTROCHEMICAL CHARACTERISATION AND APPLICATION OF SOLID ELECTRODES CHEMICALLY MODIFIED WITH C₆₀-FULLERENE, TETRATHIAFULVALENE AND SILICON POLYOXOTUNGSTATE

By

GOH JOO KHENG

November 2005

Chairman : Associate Professor Tan Wee Tee, PhD

Faculty : Science

The modified glassy carbon electrodes by adhered microcrystals of fullerene (C_{60}), tetrathiafulvalene (TTF) and α -Keggin silicon polyoxotungstate, $[SiW_{12}O_{40}]^{4-}$ has been studied extensively in characterization and application of these modified electrode in mediating some selected compounds such as cysteine, methionine and nitrite ions in the presence of aqueous electrolytes.

The use of a glassy carbon electrode modified by adhered microcrystals of fullerene (C_{60}), mediates the oxidation of cysteine in the presence of aqueous potassium containing electrolytes. Under conditions of cyclic voltammetry, the potential for the oxidation of cysteine was lowered by approximately 100 mV and

current was enhanced significantly relative to the situation prevailing when a bare glassy carbon electrode was used. Additional mediation occurs when the potential range covered includes that of C_{60}/C_{60}^{n-} redox couples. The sensitivity under condition of cyclic voltammetry was significantly dependent on pH, temperature and C_{60} dosage. Excellent analytical and recovery data were obtained with vitamin pill, cassamino acid (hydrolyzed casein) and for a range of beverages.

The usefulness of a C_{60} -fullerene modified gold (Au) electrode was extended in mediating the oxidation of methionine in the presence of potassium ions electrolyte. During cyclic voltammetry, an oxidation peak of methionine appearing at +1000 mV vs. Ag/AgCl was observed. The oxidation current of methionine was enhanced by about 2 times using a modified gold electrode. The current enhancement was significantly dependent on pH, temperature and C_{60} dosage. The variation of scan rate study shows that the system undergoes diffusion-controlled process.

Then, diffusion coefficient and rate constant of methionine were determined using hydrodynamic method (rotating disk electrode) with values of $1.11 \times 10^{-5} \text{ cm}^2 \text{ s}^{-1}$ and 0.0026 cm s⁻¹ respectively for unmodified electrode while the values of diffusion coefficient and rate constant of methionine using C₆₀ modified Au electrode were 5.67 x 10⁻⁶ cm² s⁻¹ and 0.0021 cm s⁻¹ respectively. Excellent analytical and recovery data were obtained with root beer beverage.

Tetrathiafulvalene modified glassy carbon electrode has been characterized and been applied in the determination of L-cysteine at the potential of +800 mV vs. Ag/AgCl. It has shown to catalyze the oxidation peak of cysteine in the alkaline buffer solution under cyclic voltammetry conditions. The sensitivity of tetrathiafulvalene modified electrode was found to be dependent on pH and dosages of varying concentration of TTF in acetonitrile. Excellent analytical and recovery rates also has been obtained using vitamin pills and root beer syrup either with known amount of cysteine or added deliberately into the samples.

The voltammetric reduction of α form of Keggin silicon polyoxotungstate anions, α -[SiW₁₂O₄₀]⁴⁻ has been carried out under acidic conditions. The cyclic voltammograms obtained from the solution voltammetry of the Keggin polyoxotungstate anions, α -[SiW₁₂O₄₀]⁴⁻ showed cyclic voltammogram of a two reversible, one-electron process and a reversible two-electron process in the potential range of +200 mV to -1000 mV (vs. Ag/AgCl). However, only the first reduction process was undertaken in this study.

The use of Keggin silicon polyoxotungstate anion, α -[SiW₁₂O₄₀]⁴⁻ was successfully applied to the synthesis of ruthenium bipyridine silicon polyoxotungstate, [Ru(bipy)₃]₂[α -SiW₁₂O₄₀] via reduction of α -[TBA]₄[SiW₁₂O₄₀] solvent cast onto the glassy electrode in sulphuric acid. The reduction of nitrite has shown to be catalyzed by [Ru(bipy)₃]₂[α -SiW₁₂O₄₀] modified electrode at lower pH of aqueous sulphuric acid media. Bulk electrolysis technique was employed to

reduce α -[SiW₁₂O₄₀]⁴⁻ to form a blue solution of α -[SiW₁₂O₄₀]⁵⁻. The reduction of α -[SiW₁₂O₄₀]⁴⁻ to α -[SiW₁₂O₄₀]⁵⁻ was measured spectrophotometrically and there was no stable complex formation between α -[SiW₁₂O₄₀]⁵⁻ and reduction product of NO₂⁻ species in the acidic solution. Therefore, the mechanism involving the catalytic effect on α -[SiW₁₂O₄₀]⁴⁻ in the presence of nitrite suggested that nitrous acid, HNO₂ has been reduced to a product that possibly containing NO. Beta, β form of Keggin [SiW₁₂O₄₀]⁴⁻ was found to be less active as compared to the α -[SiW₁₂O₄₀]⁴⁻.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

ELEKTROKIMIA PENCIRIAN DAN APLIKASI ELEKTROD PEPEJAL MODIFIKASI KIMIA DENGAN C₆₀-FULLERENE, TETRATHIAFULVALENE DAN SILIKON POLYOXOTUNGSTAT

Oleh

GOH JOO KHENG

November 2005

Pengerusi : Profesor Madya Tan Wee Tee, PhD

Fakulti : Sains

Modifikasi elektrod karbon kaca melalui pelekatan mikrokristal fullerene (C₆₀), tetrathiafulvalene (TTF) dan α -Keggin silikon polyoxotungstat, α -[SiW₁₂O₄₀]⁴⁻ telah di kaji dengan terperinci dalam pencirian and aplikasi elektrod-elektrod ini sebagai perantaraan sebatian terpilih, contohnya, sistina, metionina dan ion nitrit dalam elektrolit akues.

Penggunaan modifikasi elektrod karbon kaca melalui pelekatan mikrokristal fullerene C₆₀ telah meningkatkan pengoksidaan sistina dalam kehadiran elektrolit akues yang mengandungi ion kalium. Dalam keadaan voltametri siklik, potensi bagi pengoksidaan sistina telah direndahkan kira-kira 100 mV dan arus ditingkatkan relatif kepada situasi di mana elektrod karbon kaca tanpa modifikasi digunakan. Pertambahan mediasi telah berlaku apabila skala potensi meliputi

proses redoks C_{60}/C_{60}^{n} . Sensitivi di bawah keadaan siklik voltametri adalah bergantung kepada pH, suhu, dan dosej C_{60} . Data analisis dan perolehan semula yang baik diperolehi menggunakan pil vitamin, asid cassamino (casein yang dihidrolisis) dan juga beberapa jenis minuman.

 C_{60} -fullerene terlekat pada elektrod emas juga digunakan bagi mediasi pengoksidaan metionina dengan kehadiran ion kalium dalam elektrolit akues. Puncak oksidasi methionine diperhatikan muncul pada potensi +1000 mV (vs. Ag/AgCl) semasa siklik voltametri. Arus pengoksidaan methionine telah ditingkatkan sebanyak 2 kali dengan penggunaan modifikasi elektrod emas. Peningkatan arus ini adalah bergantung kepada pH, suhu, dan dosej C₆₀. Kadar imbasan yang berbeza menunjukkan sistem ini melalui proses terkawal resapan.

Justeru itu, pemalar penyerapan and pemalar kadar methionine telah diperolehi menggunakan cara hidrodinamik (elektrod cakera putar) dengan nilai masingmasing 1.11 x 10^{-5} cm² s⁻¹ dan 0.0026 cm s⁻¹ untuk elektrod tanpa modifikasi. Manakala, pemalar penyerapan and pemalar kadar metionina untuk C₆₀ modifikasi elektrod emas adalah masing-masing 5.67 x 10^{-6} cm² s⁻¹ and 0.0021 cm s⁻¹. Data analisis dan perolehan semula yang baik didapati menggunakan minuman root bir.

Modifikasi elektrod dengan tetrathiafulavalene telah dicirikan dan juga diaplikasikan dalam penentuan kehadiran sistina pada potensi +800 mV vs. Ag/AgCl. Ia menunjukkan katalisis puncak pengoksidaan sestina dalam penimbal alkali elektrolit di bawah keadaan siklik voltametri. Sensitiviti tetrathiafulvalene modifit elektrod didapati bergantung kepada pH, dosej TTF/ACN, dan kepekatan TTF/ACN. Data analisis dan perolehan semula yang baik telah dicapai dengan penggunaan pil vitamin and root bir sirup samada dengan kepekatan sistina yang diketahui ataupun yang ditambahkan kepada sampel.

Voltametri bagi penurunan bentuk Keggin silikon polyoxotungstat anion, α - $[SiW_{12}O_{40}]^{4-}$ telah diperolehi di bawah keadaan berasid. Siklik voltamogram yang diperolehi daripada larutan voltametri Keggin polyoxomethalate anion, α - $[SiW_{12}O_{40}]^{4-}$ menunjukkan dua proses berbalik satu elektron dan satu proses berbalik dua elektron pada potensi antara +200 mV to -1000 mV (vs. Ag/AgCl). Walau bagaimanapun, hanya puncak penurunan yang pertama di ambil kira dalam projek ini.

Penggunaan jenis Keggin silikon polyoxotungstat anion, α -[SiW₁₂O₄₀]⁴⁻ telah berjaya diaplikasikan kepada sintesis [Ru(bipy)₃]₂[α -SiW₁₂O₄₀] melalui penurunan dalam asid sulfurik α -[TBA]₄[SiW₁₂O₄₀] yang dilekat atas elektrod karbon kaca menggunakan cara pengewapan pelarut. Penurunan nitrit, NO₂⁻ telah dikatalis oleh penurunan ruthenium bipyridine silikon polyoxotungstat, [Ru(bipy)₃]₂[α -SiW₁₂O₄₀] modifikasi elektrod pada pH rendah asid sulfuric.

Teknik elektrolisis pukal telah digunakan untuk menurunkan α -[SiW₁₂O₄₀]⁴⁻ kepada larutan biru, α -[SiW₁₂O₄₀]⁵⁻. Penurunan α -[SiW₁₂O₄₀]⁴⁻ to α -[SiW₁₂O₄₀]⁵ telah dianalisis dengan spectrofotormeter dan didapati tiada komplek yang stabil terbentuk antara α -[SiW₁₂O₄₀]⁵⁻ dan produk penurunan NO₂⁻ spesis dalam larutan α -[SiW₁₂O₄₀]⁴⁻. Dengan demikian, mekanisma melibatkan kesan katalisis α -[SiW₁₂O₄₀]⁴⁻ dalam kehadiran NO₂⁻ telah dicadangkan bahawa asid nitrous, HNO₂ telah diturunkan ke suatu produk yang mengandungi nitric oxida, NO. Bentuk beta, β Keggin [SiW₁₂O₄₀]⁴⁻ telah didapati kurang eletrokatalitik aktif dalam kehadiran nitrit berbanding dengan α -[SiW₁₂O₄₀]⁴⁻.

ACKNOWLEDGEMENTS

I wish to express my most sincere thanks and deepest appreciation to my supervisor, Associate Professor Dr. Tan Wee Tee for his continuous guidance, constant encouragement, invaluable advices and valuable comments throughout the course of this project. I wish to extend my sincere thanks to my supervisory committee members Professor Dr. Zulkarnain Zainal and Professor Dr. Anuar Kassim for their support, advices and guidance.

I would like to convey many thanks and deepest gratitude to Professor Alan M. Bond and Dr. Jie Zhang for their constant support, valuable advices, comments and guidance throughout my research attachment in School of Chemistry, Clayton Campus, Monash University, Australia for three months commencing October 2004. Also thanks to the staff of School of Chemistry, Clayton Campus, Monash University, Mr. Victor De Guzman and Mrs. Sally Duck for their help spectrophotommetry measurements.

I wish to express many thanks and appreciation to my colleagues, Ei Bee, Lai Peng and Zidan for their support and encouragement throughout the research project. Besides, I would also like to acknowledge the financial support provided by the IRPA programme.

Finally, I wish to convey my deepest appreciation and gratefulness to my parents, brother, and friends for their constant moral support, encouragement and assistance during the course of my research. Many thanks and appreciations are extended to Kelvin Choi for his continuous encouragement and invaluable help that have contributed towards the success of this project.

TABLE OF CONTENTS

	Page
DEDICATION	ii
ABSTRACT	iii
ABSTRAK	vii
ACKNOWLEDGEMENTS	xi
APPROVAL	xiii
DECLARATION	XV
LIST OF TABLES	xxii
LIST OF FIGURES	xxiv
LIST OF ABBREVIATION OF TERMS	XXXV

CHAPTER

1	INTR	RODUCTION		
	1.1	Chemically Modified Electrode	1	
	1.2	Electroanalysis	2	
	1.3	Solid State Electrochemistry	4	
	1.4	Fundamental of Voltammetry Techniques	7	
		1.4.1 Linear Sweep Voltammetry	7	
		1.4.2 Cyclic Voltammetry	9	
	1.5	Fundamental of Chronoamperometry	13	
	1.6	Fundamental of Chronocoulometry	15	
	1.7	Buckminsterfullerene, C ₆₀	16	
	1.8	Tetrathiafulvalene	19	
	1.9	Silicon Polyoxometalate	21	
	1.10	L-cysteine	23	
	1.11	Methionine	25	
	1.12	Objectives	27	
2	LITE	LITERATURE REVIEWS		
	2.1	Solid Phase Voltammetry	28	
	2.2	Reviews on Buckminsterfullerene, C ₆₀	38	
	2.3	Reviews on Tetrathiafulvalene, TTF	51	
	2.4	Reviews on Polyoxometalates	56	
	2.5	Reviews on Cysteine and Methionine	59	
3	МЕТ	HODOLOGY		
	3.1	Materials and Reagents	71	
	3.2	Instrumentation and Apparatus	72	

	3.2.1	BAS 100W and CV 50W Voltammetric	
		Analyzer	72
	3.2.2	Working Electrode (WE)	72
	3.2.3	Counter Electrode (CE)	73
	3.2.4	Reference Electrode (RE)	74
	3.2.5	Voltammetric Cell	75
	3.2.6	Ultra Violet Visible, UV-Vis and Liquid	
		Chromatography Mass Spectrophotometer,	
		LCMS	76
3.3	Proced	lures for Preparation of Chemically Modified	
	Electro	odes	77
	3.3.1	Mechanically Attachment (MA)	77
	3.3.2	Solvent Casting (SC)	78
		3.3.2.1 Preparation of Fullerene-C ₆₀	
		Modified Electrode via	
		Solvent Casting	78
		3.3.2.2 Preparation of TTF Modified	
		Electrode via Solvent Casting	79
		3.3.2.3 Preparation of Ruthenium Bipyridine	
		Silicon Polyoxotungstate, [Ru(bipy) ₃] ₂	
		$[\alpha$ -SiW ₁₂ O ₄₀] Modified Electrode	79
	3.3.3	General Procedures for Electrochemical	
		Measurement	80
3.4	Procee	dures for Data Collections on Characterization	
	of Ful	lerene-C ₆₀ Modified Electrode	81
	3.4.1	Cyclic Voltammograms of C ₆₀ Adhered to	
		Electrode Surface via Mechanical Attachment	
		and Solvent Casting	81
	3.4.2	Effect of the Nature of Anions and Cations in	
		the Electrolytes	81
	3.4.3	Effect of Varying Scan Rate	82
	3.4.4	Chronocoulometry of C ₆₀	82
	3.4.5	Scan Reversal Studies of C ₆₀	83
3.5	Proce	dures for Data Collection on Characterization	
	of C ₆₀	-Modified Electrode on Cysteine: Scanning	
	Poten	tial Range I: C ₆₀ Electroinactive	83
	3.5.1	Enhancement Study on Cysteine	83
3.6	Proce	dures for Data Collections on Application of	
	C_{60} -M	lodified Electrode on Cysteine: Scanning	
	Poten	tial Range II: C ₆₀ Electroactive	84
	3.6.1	Enhancement Study on Cysteine	84
	3.6.2	Effect of Potential Cycling	85
	3.6.3	Effect of Varying C_{60} Dosages	85
	3.6.4	Calibration Graph	85

	3.6.5	Cysteine Determination / Recovery	
		Experiment	86
3.7	Procee	dures for Data Collections on Application of	
	C ₆₀ -M	odified Gold Electrode on Methionine:	
	Scann	ing Potential Range: C ₆₀ Electroinactive	87
	3.7.1	Enhancement Study on Methionine	87
	3.7.2	Effect of Varying pH	88
	3.7.3	Effect of Varying Temperature	88
	3.7.4	Effect of Varying C_{60} Dosage	88
	3.7.5	Effect of Varying Scan Rate	89
	3.7.6	Hydrodynamic Voltammetry using Rotating	
		Disk Electrode (RDE)	89
	3.7.7	Calibration Graph	89
	3.7.8	Methionine Determination / Recovery	
		Experiment	90
3.8	Procee	dures for Data Collections on Characterization	
	of Tet	rathiafulvalene (TTF) Modified Electrode	90
	3.8.1	Cyclic Voltammogram of TTF Adhered to	
		Electrode Surface via Mechanical Attachment	
		and Solvent Casting	90
	3.8.2	Effect of Different Electrodes Materials	91
	3.8.3	Effect of Varying Scan Rate	91
	3.8.4	Effect of Varying Electrode Sizes	92
	3.8.5	Scan Reversal Studies of TTF	92
	3.8.6	Cyclic Voltammogram of TTF-Modified	
		Electrode in Different Electrolyte	92
3.9	Proce	dures for Data Collections on Application of	
	Tetrat	hiafulvalene (TTF)-Modified Electrode	93
	3.9.1	Catalytic Current of L-cysteine in Various	
		pH of Supporting Electrolyte	93
	3.9.2	Effect of Varying Concentration of TTF	
		Dissolved in Acetonitrile	93
	3.9.3	Effect of Varying Amount of TTF in	
		Acetonitrile Deposited on Electrode	94
	3.9.4	Effect of Varying Concentration of	
		L-cysteine	94
	3.9.5	Cysteine Determination / Recovery	
		Experiment	94
	3.9.6	Electrochemical Quartz Crystals Microbalance,	
		EQCM	95
	3.9.7	Liquid Chromatography Mass Spectrometer	
		(LCMS)	95
3.10	Proce	dures for Data Collections on Potassium Silicon	
	Polyo	xotungstate, α -K ₄ SiW ₁₂ O ₄₀	96

	3.10.1	Solution Voltammetry of α-Potassium Silicon	
	3.10.2	Polyoxotungstate, α -K ₄ SiW ₁₂ O ₄₀ Catalytic Effect in the Presence of Nitrite Ion.	96
		NO ₂	96
	3.10.3	UV Spectrophotometry	97
	3.10.4	Data Simulation of Varying Scan Rate and	
		Effect of Varying Concentration of Nitrite	
		Ion, NO_2	98
	3.10.5	Ruthenium Bipyridine Silicon Polyoxotungstate	
		Modified Glassy Carbon Electrode	98
	3.10.6	Effect of Varying Concentration of Nitrite Ion,	
		NO ₂	99
RESI	ULTS A	ND DISCUSSION	
4.1	Charao	cterization of Fullerene-C ₆₀ Modified Electrode	100
	4.1.1	Cyclic Voltammograms of C_{60} Adhered to	
		Electrode Surface via Mechanical Attachment	
		and Solvent Casting	101
	4.1.2	Effect of the Nature of Anions and Cations in	
		the Electrolytes	109
	4.1.3	Effect of Varying Scan Rate	114
	4.1.4	Chronocoulometry of C ₆₀	116
	4.1.5	Scan Reversal Studies of C ₆₀	117
4.2	Applic	cation of C ₆₀ -Modified Electrode on Cysteine	
	Scann	ing Potential Range I: C ₆₀ Electroinactive	120
	4.2.1	Enhancement Study on Cysteine	120
4.3	Applic	cation of C_{60} -Modified Electrode on Cysteine	
	Scann	ing Potential Range II: C ₆₀ Electroactive	123
	4.3.1	Enhancement Study on Cysteine	124
	4.3.2	Effect of Potential Cycling	126
	4.3.3	Effect of Varying C_{60} Dosage	128
	4.3.4	Calibration Graph	129
	4.3.5	Cysteine Determination /	120
4.4	A	Recovery Experiment	130
4.4	Applic	ing Potential Panga C Electrone on Methonine	124
		Enhancement Study on Mathioning	134
	4.4.1	Effect of Verying pH	133
	443	Effect of Varving Temperature	137
	444	Effect of Varying Condensate	1/1
	4.4.5	Effect of Varying Scan Rate	142
	4.4.6	Hydrodynamic Voltammetry using Rotating	174
		Disk Electrode (RDE)	143
	4.4.7	Calibration Graph	146
		Stap	1.10

4

	4.4.8	Methionine Determination /	
		Recovery Experiment	147
4.5	Chara	cterization of Tetrathiafulvalene (TTF)	
	Modif	ied Electrode	150
	4.5.1	Cyclic Voltammogram of TTF Adhered onto	
		Electrode Surface via Mechanical Attachment	
		and Solvent Casting	151
	4.5.2	Effect of Different Electrode Materials	153
	4.5.3	Effect of Varying Scan Rate	156
	4.5.4	Effect of Varying Electrode Sizes	159
	4.5.5	Scan Reversal Studies of TTF	162
	4.5.6	Cyclic Voltammogram of TTF-Modified	
		Electrode in Different Electrolyte	165
4.6	Applie	cation of Tetrathiafulvalene (TTF)-Modified	
	Electr	ode	170
	4.6.1	Catalytic Current of L-cysteine in Various	
		pH Supporting Electrolyte	170
	4.6.2	Effect of Varying Concentration of TTF	
		Dissolved in Acetonitrile	174
	4.6.3	Effect of Varying Amount of TTF Dissolved	
		in Acetonitrile Deposited on Electrode	174
	4.6.4	Effect of Varying Concentration of	
		L-cysteine	175
	4.6.5	Cysteine Determination / Recovery	
		Experiment	176
	4.6.6	Electrochemical Quartz Crystals Microbalance,	
		EQCM	179
	4.6.7	Liquid Chromatography Mass Spectrometer	
		(LCMS)	181
4.7	Potas	sium Silicon Polyoxotungstate, α -K ₄ SiW ₁₂ O ₄₀	183
	4.7.1	Solution Voltammetry of α -Potassium Silicon	
		Polyoxotungstate, α -K ₄ SiW ₁₂ O ₄₀	183
	4.7.2	Catalytic Effect in the Presence of Nitrite	185
	4.7.3	UV Spectrophometry	188
	4.7.4	Data Simulation of Varying Scan Rate and the	
		Effect of Varying Concentration of Nitrite Ion,	
		NO ₂	191
	4.7.5	Ruthenium Bipyridine Silicon	
		Polyoxotungstate Modified Glassy Carbon	
	. –	Electrode	194
	4.7.6	Effect of Varying Concentration of Nitrite Ion,	
		NO_2^-	198

5	CONCLUSION	200
RE RE AP	COMMENDATIONS FOR FURTHER STUDY FERENCES PENDIX	203 204 214
BIC	DDATA OF THE AUTHOR	240

LISTS OF TABLES

Table		Page
4.1	Reduction peak potential E_{pc} (ii) of C_{60} solvent cast onto 3 mm diameter GC electrode in 0.1 M alkali-metal salts in water with scan rate of 100 mV	110
4.2	Comparisons of crystal, hydrated ion radii, ionic conductivities, and hydration enthalpies for various first class alkali-metal cations (Burgess, 1988 and Conway, 1981)	112
4.3	Reproducibility of oxidative current of cysteine detected at C_{60} / toluene coated GC electrode under specified conditions in 0.1 M KH ₂ PO ₄ electrolyte. Parameters were as in Figure 4.1, current was obtained at a potential of 0.5 V.	131
4.4(a)	Recovery data for L-cysteine spiked at known concentration into various samples prepared in 0.1 M KH ₂ PO ₄ buffer at 7.0 using 5 μ L of a saturated C ₆₀ /CH ₂ Cl ₂ modified GC electrode. Data was obtained using the calibration curve and case (II) method. Current was obtained at 1000 mV. Concentration of L-Cysteine added to sample = 0.20 mM	132
4.4(b)	Recovery data for L-cysteine spiked at known concentrations into various samples prepared 0.1 M KH ₂ PO ₄ buffer at pH 7.0 using a 5 μ L of a saturated C ₆₀ /CH ₂ Cl ₂ modified GC electrode. Data was obtained using the calibration curve and case (II) method. Current was obtained at 1000 mV. Concentration of L-Cysteine added to sample = 0.50 mM	133
4.5	Recovery data for methionine spiked at 0.1 mM into 0.1 M KNO ₃ at pH 6.0 using a 5 μ L of a saturated C ₆₀ /CH ₂ Cl ₂ modified Au electrode. Data was obtained using the calibration curve. Current was obtained at 1010 mV.	148
4.6	Recovery data for methionine spiked at 0.05 mM into 0.1 M KNO ₃ at pH 6.0 using a 5 μ L of a saturated C ₆₀ /CH ₂ Cl ₂ modified Au electrode. Data was obtained using the calibration curve. Current	149

was obtained at 1010 mV.

4.7 Recovery data for L-cysteine spiked at 0.2 mM into two samples prepared 0.1 M Borax at pH 10.0 using a 2 μ L of 0.2 mM TTF /ACN modified GC electrode. Data was obtained using the calibration curve (Figure 4.45). Current was obtained at 100 mV.

178

xxiv

LIST OF FIGURES

Figures		Pages
1.1	Linear Sweep Voltammetry	8
1.2	Potential-time behavior at the working electrode following imposition of a triangular waveform	12
1.3	A typical cyclic voltammogram showing the method of extrapolation baseline and determining peak current	12
1.4	Chronoamperogram (current-time)	14
1.5	Chronocoulogram (charge-time)	16
1.6	Structure of Buckminsterfullerene, C60	18
1.7	Structure of Tetrathiafulvalene (TTF)	19
1.8	Structure of Keggins polyoxotungstate	22
1.9	Structure of L-cysteine	25
1.10	Structure of methionine	26
2.1	An electrochemistry model of solid ferrocene (Bond et al., 1991)	32
2.2	A scheme of possible reactions of solid compounds in abrasive stripping voltammetry (Scholz et al., 1992).	34
2.3	A schematic diagram of nucleation process proposed by Bond <i>et al.</i> (1996) occurs at oxidation of TTF and reduction of TTFBr when attached to an electrode in an aqueous electrolyte.	35
2.4	Schematic form of representation of the mechanism proposed to account for the electrochemical conversion of solid TCNQ to surface-attached microcrystals during the initial stages of redox cycling experiments at a glassy	
	carbon electrode (Suárez et al., 1999).	37

