H₂ sensor based on tapered optical fiber coated with MnO₂ nanostructures

ABSTRACT

A novel hydrogen (H₂) sensor was developed using optical fiber coated with manganese dioxide (MnO₂) nanostructures. Optical multimode fiber (MMF) of 125 μ m in diameter as the transducing platform was tapered to 20 μ m to enhance the evanescent field of the light propagates in the fiber core. The tapered fiber was coated with MnO₂ nanograins synthesised via chemical bath deposition (CBD) process. Catalytic Palladium (Pd) was sputtered onto the MnO₂ layer to improve the H₂detection. The sensing layer was characterized through Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray (EDX), X-ray Diffraction (XRD) and Raman Spectroscopy to verify the properties of MnO₂. Two sets of sensors consist of as-prepared MnO₂ and 200 °C annealed MnO₂ were tested towards H₂ gas. The tapered optical fiber coated with Pd/MnO₂ nanograins was found to be sensitive towards H₂with different concentrations in synthetic air at 240 °C operating temperature. The annealed sensor showed higher response and sensitivity as compared to the as-prepared sensors when measured in the visible to near infra-red optical wavelength range. The absorbance response of the annealed Pd/MnO₂ on fiber has increased to 65% as compared to 20% for the as-prepared Pd/MnO₂ upon exposure to 1% H₂in synthetic air.

Keyword: Hydrogen sensor; Tapered optical fiber; Optical sensor; Absorbance response; Manganese dioxide nanostructures; Chemical bath deposition